Jack only learns from this data point, but Lily learns from that one, too.

Lisa Pearl, University of Maryland
(in collaboration with Jeff Lidz)
University of Rochester: Center for Language Sciences
May 14, 2007
Overview of the Plan

Human language learning: mechanism
 investigating one component: data filtering
 interests: feasibility, sufficiency, necessity

Case Study: English Anaphoric One
 tool: computational modeling
 empirical grounding: experimental results, child-directed speech data
 conclusion: data filtering is feasible, sufficient, & necessary
Road Map

Language Learning Mechanism

- Learning language and why it’s hard
- Potentially helpful bias
- Computational modeling utility

Learning Framework

Case Study: English Anaphoric One
Human Language Learning: The How

worthwhile quest: understanding the mechanism of acquisition
given the boundary conditions provided by

(a) linguistic representation
 from theoretical work

(b) the trajectory of learning
 from experimental work

\[
\text{NP} \quad \frac{}{\text{det} \quad \text{N'}}
\quad \frac{}{\text{this} \quad \text{N}^0}
\quad \frac{}{\text{data point}}
\]
Why is learning tricky?

The linguistic system is made up of many different pieces... and there is often a non-transparent relationship between the observable form of the data and the underlying system that produced it.

Syntactic System

Observable form: word order
Interference: movement rules

Subject Verb \(t_{\text{Subject}} \) Object \(t_{\text{Verb}} \)
Why is learning tricky?

The linguistic system is made up of many different pieces... and they may be linked across different levels of representation, corresponding to different information sources.

linguistic structure
referent in the world

```
NP
   \_______________/
  det  N'
   \___________/
this  N^0
   \________/
   ball

this ball
```
Road Map

Language Learning Mechanism
- Learning language and why it’s hard
- Potentially helpful bias
- Computational modeling utility

Learning Framework

Case Study: English Anaphoric One
Some Potentially Helpful Bias = Parameters

Premise: learner considers finite range of hypotheses (parameters) for the linguistic system

“Assuming that there are n binary parameters, there will be 2^n possible core grammars.” - Clark (1994)
Not Completely Helpful Bias = Parameters

“It is unlikely that any example … would show the effect of only a single parameter value; rather, each example is the result of the interaction of several different principles and parameters” - Clark (1994)
Not Completely Helpful Bias = Parameters

“It is unlikely that any example ... would show the effect of only a single parameter value; rather, each example is the result of the interaction of several different principles and parameters” - Clark (1994)

Potential solution: the learner focuses in on a subset of the data perceived as “informative”.

Additional Bias = Filter on data intake
Big Questions for Filtering

1. Feasibility
 - Is there a data sparseness problem?

2. Sufficiency
 - Can we filter and get correct behavior?

3. Necessity
 - Must we filter to get correct behavior?
Big Questions for Filtering

(1) **Feasibility**
Is there a data sparseness problem?
Big Questions for Filtering

(1) **Feasibility**
Is there a data sparseness problem?

(2) **Sufficiency**
Can we filter and get correct behavior?
Big Questions for Filtering

(1) **Feasibility**
Is there a data sparseness problem?

(2) **Sufficiency**
Can we filter and get correct behavior?

(3) **Necessity**
Must we filter to get correct behavior?
Road Map

Language Learning Mechanism
- Learning language and why it’s hard
- Potentially helpful bias
- Computational modeling utility

Learning Framework

Case Study: English Anaphoric One
Computational Modeling of Data Intake Filtering

Why?

(1) Can easily (and ethically) restrict data intake to simulated learners and observe the effect on learning.

\[P_A = .1 \]
\[P_B = .9 \]

(2) Can empirically ground with data from experimental work & corpora: learners searching through realistic data space for evidence of the underlying system.

Recent computational modeling surge: Yang, 2000; Sakas & Fodor, 2001; Yang, 2002; Pearl, 2005; Pearl & Weinberg, 2007
Road Map

Language Learning Mechanism

Learning Framework
- Separable Components
- Investigating Data Filtering

Case Study: English Anaphoric One
Learning Framework: 3 Separable Components

(1) Hypothesis space

(2) Data intake

(3) Update procedure
Benefits of Learning Framework

Components:
(1) hypothesis space (2) data intake (3) update procedure

Application to a wide range of learning problems, provided these three components are defined

Ex: hypothesis space defined in terms of parameter values (Yang, 2002) or in terms of how much structure is posited for the language (Perfors, Tenenbaum, & Regier, 2006)

Can combine discrete representations (hypothesis space) with probabilistic components (update procedure) to get gradualness and variation found in human language learning
The Hypothesis Space & The Update Procedure

Update Procedure: recent experimental work on probabilistic learning as feasible in adults (Tenenbaum, 2000; Thompson & Newport, 2007) and infants (Newport & Aslin, 2004; Gerken, 2006).
The Hypothesis Space &
The Update Procedure

Update Procedure: recent experimental work on probabilistic learning as feasible in adults (Tenenbaum, 2000; Thompson & Newport, 2007) and infants (Newport & Aslin, 2004; Gerken, 2006).

Bayesian updating
- Infers likelihood of given hypothesis, given data. Amount of probability shifted depends on layout of hypothesis space.
Road Map

Language Learning Mechanism

Learning Framework
- Separable Components
- Investigating Data Filtering

Case Study: English Anaphoric One
Investigating Data Intake Filtering

Intuition 1: Use all available data to uncover a full range of systematicity, and allow probabilistic model enough data to converge.

Intuition 2: Use more “informative” data or more “accessible” data only.
Modeling Case Study of Data Intake Filters

Case Study: English Anaphoric *One*

Hypothesis Space: *structures & associated referents in world*

Proposed Filtering: *ignore some (pervasive) ambiguous data*

Update Procedure: *Bayesian updating + hypothesis space layout information*

Interesting Feature: *multiple sources of information across domains*
Big Questions for Filtering

(1) **Feasibility**
Is there a data sparseness problem?

(2) **Sufficiency**
Can we filter and get correct behavior?

(3) **Necessity**
Must we filter to get correct behavior?
Road Map

Language Learning Mechanism

Learning Framework

Case Study: English Anaphoric One

- Interesting problems, adult knowledge, & infant behavior
- Linked hypothesis spaces & additional sources of information
- No filters: available data & equal-opportunity learners
- Filters: feasibility considerations
- Data intake filters: sufficiency & necessity
Anaphoric *One*: Why Is It Interesting?

“Look, a red bottle! Do you see another *one*?”

Representations that are linked across domains (syntactic structure & semantic reference)

Available information: linguistic antecedent (*red bottle*) + referent in world
Anaphoric One: Adult Knowledge

“Jack likes this red ball, and Lily likes that one.

\(one = \text{red ball} \)

“Jack likes this ball, and Lily likes that one.

\(one = \text{ball} \)
One = N' (not N^0)
Anaphoric One: Adult Knowledge

Syntax: $one = N'$

Preference when two N' constituents = pick larger one

“Jack likes this [red [ball]$_{N'}$]$_{N'}$, and Lily likes that one.”

Semantic consequences: more restrictive set of referents (red balls vs. all balls)
Anaphoric One: Infant Behavior
(Lidz, Waxman, & Freedman 2003)

“Look! A red bottle.”

18-month old baby

TV

camera

0

"Look! A red bottle."

18-month old baby

TV

camera

"Do you see another one?"

(Same results as "Do you see another red bottle?")

18-month old baby

TV

camera
18-month olds have looking preference for red bottle.

LWF (2003) interpretation & conclusion:
Red bottle preference = semantic consequence of syntactic knowledge that
one = [*red bottle*]_{N'}. 18-month olds, like adults, believe *one* has an N’ antecedent (since *red bottle* can’t be N^0).
Road Map

Language Learning Mechanism

Learning Framework

Case Study: English Anaphoric One

- Interesting problems, adult knowledge, & infant behavior
- Linked hypothesis spaces & additional sources of information
- No filters: available data & equal-opportunity learners
- Filters: feasibility considerations
- Data intake filters: sufficiency & necessity
Syntactic Hypothesis Space: Structure
“What is the antecedent of one?”

All elements in the sets described by the hypotheses are possible antecedents of one.

All elements in the N^0 set (ex: ball, bottle) are also elements of the N' set. In addition, there are elements in the N' set (ex: red ball, ball behind his back) that are not elements of N^0.

Subset-superset relationship
All elements in the sets described by the hypotheses are possible referents of *one*.

All elements in the N’-property set (ex: red balls) are also elements of the any-property set. In addition, there are elements in the any-property set (ex: non-red balls) that are not elements of the N’-property set.

Subset-superset relationship

“Jack wants a red ball, and Lily has another *one*.”
Size principle (Tenenbaum & Griffiths, 2001): favor the subset hypothesis when encountering an ambiguous data point.

Specific application to learning anaphoric *one* (Regier & Gahl, 2004).

Size principle logic:
- Likelihood of ambiguous data point d
- Learner expectation of set of data points d_1, d_2, \ldots, d_n
Exploiting the Hypothesis Space Layout

Subset-superset hypothesis space

Likelihood of d Logic:

Suppose the learner encounters an ambiguous data point d.

Let the number of examples covered by subset A be a. Let the number of examples covered by superset B be $a + b$.
The likelihood that d was produced from A is $1/a$. The likelihood that d was produced from B is $1/(a+b)$.

$$1/a > 1/(a+b)$$

So, A has a higher probability of having produced d. Thus, A is favored when encountering ambiguous data.
Learner Expectation Logic:

If B were correct, learner should encounter some **unambiguous data points for B**.
Additional Information Source: Exploiting the Hypothesis Space Layout

Subset-superset hypothesis space

Learner Expectation Logic:

If **only subset data points** are encountered, a restriction to the subset A becomes more and more likely.

The more subset data points encountered (while not encountering superset B data points), the more the learner is **biased towards A**.
“Jack wants a ball, and Lily has another one”
"Jack wants a red ball, and Lily has another one"
Road Map

Language Learning Mechanism

Learning Framework

Case Study: English Anaphoric One
- Interesting problems, adult knowledge, & infant behavior
- Linked hypothesis spaces & additional sources of information
- No filters: available data & equal-opportunity learners
- Filters: feasibility considerations
- Data intake filters: sufficiency & necessity
Available Anaphoric One Data

By 18 months, estimated 4017 anaphoric one data points. (CHILDES database)
Note: data points are pairing of utterance and situation

Unambiguous data points: only 10

“Jack wants a red ball, but Lily doesn’t have another one.”
Situation: Lily doesn’t have another red ball. She has a red and a purple one, and wants to keep a red ball herself.
“Jack wants a red ball, but Lily doesn’t have another one”
Available Anaphoric One Data

Type I Ambiguous data points: 183
(potential antecedents with modifiers)

“Jack wants a red ball, and Lily has another one for him.”
(Situation: Lily has another red ball. She has two - one for herself, and one for Jack.)

Why ambiguous: She has another ball, as well. One could refer to ball, which is compatible with the N^0 structure.
“Jack wants a red ball, and Lily has another one for him”
Available Anaphoric One Data

Type II Ambiguous data points: 3805
(potential antecedents without modifiers)

“Jack wants a ball, and Lily has another one for him.”
(Situation: Lily has another ball. She has two - one for herself, and one for Jack.)

Why ambiguous: One refers to ball, which is compatible with the N0 structure.
“Jack wants a ball, and Lily has another one for him”
Modeling Anaphoric *One* Learning

Initial State for learner:

Both hypotheses are equiprobable in each hypothesis space

Syntax: $p_{N0} = 0.5$, $p_{N'} = 0.5$

Semantic referents: $p_{N'-property} = 0.5$, $p_{any-property} = 0.5$

Updating, based on data points encountered:

(1) Update probabilities *within* each domain
(2) Update probabilities *across* domains
 (linked hypothesis spaces)
(3) Update for each source of information
 (syntactic & semantic)
Updating Within Domains: Syntax

Two hypotheses: *one* has an antecedent that is N^0 or N'

Track $p_{N'}$ ($p_{N0} = 1 - p_{N'}$)

Max($\text{Prob}(p_{N'} \mid u)$) = Max($\frac{p_{N'} \cdot \binom{t}{r} \cdot p_{N'}^r \cdot (1 - p_{N'})^{t-r}}{\text{Prob}(u)}$) (for each point r, $0 \leq r \leq t$)

$$\frac{d}{dp_{N'}} \left(\frac{p_{N'} \cdot \binom{t}{r} \cdot p_{N'}^r \cdot (1 - p_{N'})^{t-r}}{\text{Prob}(u)} \right) = 0$$

$$\frac{d}{dp_{N'}} \left(\frac{p_{N'} \cdot \binom{t}{r} \cdot p_{N'}^r \cdot (1 - p_{N'})^{t-r}}{\text{Prob}(u)} \right) = 0 \quad (P(u) \text{ is constant with respect to } p_{N'})$$

$$p_{N'} = \frac{r + 1}{t + 1}, \quad r = p_{N' \text{ old}} \cdot t$$

$$p_{N'} = \frac{p_{N' \text{ old}} \cdot t + 1}{t + 1}$$
Two hypotheses: \textit{one} has an antecedent that is \(N^0\) or \(N'\)
Track \(p_{N'} (p_{N0} = 1 - p_{N'})\)

Update: \textbf{Unambiguous Data Point} (10 of 4017)

\[p_{N'} = \frac{p_{N'_\text{old}} \times t + 1}{t + 1}\]

\(t = \# \text{ of data points expected (amount of change allowed)} = 4017\)

“Jack wants a red ball, but Lily doesn’t have another \textit{one}”
Two hypotheses: *one* has an antecedent that is N^0 or N'

Track $p_{N'}$ ($p_{N0} = 1 - p_{N'}$)

Update: **Unambiguous Data Point** (10 of 4017)

\[
p_{N'} = \frac{p_{N'} \text{ old} \cdot t + 1}{t + 1}
\]

Intuition: 1 added to numerator since learner is fully confident that unambiguous data point signals N' hypothesis

“Jack wants a red ball, but Lily doesn’t have another *one*”
Two hypotheses: *one* has an antecedent that is N^0 or N'

Track $p_{N'}$ ($p_{N0} = 1 - p_{N'}$)

Update: **Unambiguous Data Point** (10 of 4017)

$$p_{N'} = \frac{p_{N'}^{old} t + 1}{t + 1}$$

Intuition: 1 added to denominator since 1 data point seen

“Jack wants a red ball, but Lily doesn’t have another *one*”
Updating Within Domains: Syntax

Update: **Unambiguous Data Point** (10 of 4017)
Two hypotheses: *one* has an antecedent that is N^0 or N'

Track $p_{N'}$ ($p_{N0} = 1 - p_{N'}$)

Update: **Type II Ambiguous Data Point** (3805 of 4017)

$p_{N'} = \frac{p_{N'} \cdot t + p_{N'}|a}}{t + 1}$

Intuition: number added should be less than 1, since learner is not certain that type II ambiguous data point signals N' hypothesis

“Jack wants a ball, and Lily has another *one* for him”
Updating Within Domains: Syntax

Two hypotheses: *one* has an antecedent that is \(N^0 \) or \(N' \)

Track \(p_{N'} (p_{N0} = 1 - p_{N'}) \)

Update: **Type II Ambiguous Data Point** (3805 of 4017)

\[
p_{N'} = p_{N' \text{ old}} \frac{t}{t + 1} + p_{N'|a}
\]

Value added is partial confidence value, \(p_{N'|a} \), which will be < 1. Using size principle, where the relative sizes of the hypotheses influence how much bias there is for the subset \((N^0) \)

“Jack wants a ball, and Lily has another *one* for him”
Type II Ambiguous: N^0 Subset Bias

If hypotheses are defined by what **word strings** they cover, the N^0 set is much smaller than the N' set (based on vocabulary).

The bias towards the subset N^0 is stronger = more bias towards the incorrect hypothesis.

MacArthur CDI (Dale & Fenson, 1996) estimates: subset-to-superset ratio $\approx 1/50$
Type II Ambiguous: \(N^0\) Subset Bias

If hypotheses are defined by what category strings they cover, the \(N^0\) set is more comparable to the \(N'\) set.

The bias towards the subset \(N^0\) is weaker = less bias towards the incorrect hypothesis.

For generous estimates of learner performance: use category instantiation.

subset-to-superset ratio = 1/4
Updating Within Domains: Syntax

Two hypotheses: one has an antecedent that is N^0 or N'

Track $p_{N'}$ ($p_{N0} = 1 - p_{N'}$)

Update: **Type II Ambiguous Data Point** (3805 of 4017)

$$p_{N'} = p_{N'}^{old} \cdot t + \frac{p_{N'} | a}{t + 1}$$

Example Update for **Type II Ambiguous**

$$p_{N'} = 0.5, \ t = 4017, \ \text{subset-to-superset ratio} = 0.25$$

$$p_{N'} = 0.5 \cdot 4017 + 0.2 = \frac{.499925}{4017 + 1}$$ (slight bias for N^0)
Updating Within Domains: Syntax

Two hypotheses: one has an antecedent that is N^0 or N'
Track $p_{N'}$ ($p_{N0} = 1 - p_{N'}$)

Update: **Type I Ambiguous Data Point** (183 of 4017)

\[
p_{N'} = \frac{p_{N',\text{old}}^t + ???}{t + 1}
\]

Intuition: value should be < 1 (learner not fully confident).

“Jack wants a red ball, and Lily has another one for him”
Two hypotheses: *one* has an antecedent that is N^0 or N'

Track $p_{\text{N}'}$ ($p_{\text{N0}} = 1 - p_{\text{N}'}$)

Update: **Type I Ambiguous Data Point** (183 of 4017)

\[
p_{\text{N}'} = \frac{p_{\text{N}'}_{\text{old}} * t + 1}{t + 1}
\]

However, we’ll be generous and allow full confidence. This gives an overestimation of the learner’s probability of converging on the N' hypothesis.

“Jack wants a red ball, and Lily has another *one* for him”
Two hypotheses: one has referent with \textbf{any-prop} or \textbf{N'-prop}

Track $p_{\text{N'-prop}} (p_{\text{any-prop}} = 1 - p_{\text{N'-prop}})$

Update: \textbf{Unambiguous} + Type I Ambiguous (193 of 4017)

\[
p_{\text{N'}} = p_{\text{N'}_{\text{old}}} \frac{t + ???}{t + 1}
\]

“…red ball…”
Updating Within Domains: Semantics

Two hypotheses: one has referent with \textit{any-prop} or \textit{N'-prop}

Track $p_{N'-\text{prop}}$ ($p_{\text{any-prop}} = 1 - p_{N'-\text{prop}}$)

Update: \textbf{Unambiguous} + \textbf{Type I Ambiguous} (193 of 4017)

\[p_{N'} = \frac{p_{N' \text{ old}}^t + p_{N'-\text{prop} | s}}{t + 1} \]

“…red ball…”

Value added is partial confidence value, $p_{N'-\text{prop}|s}$, which will be < 1. Using size principle, where the relative sizes of the hypotheses influence how much bias there is for the subset (N’-prop)
If the learner is aware of many types of balls in the world (so that red balls are a small subset), the bias for the subset is greater. This is the \textit{correct bias}.

Generous: Assume number of ball types corresponds to number of adjectives known at 18 months (MacArthur CDI ≈ 49) even though all won’t necessarily apply to the balls in the situation.

“…red ball…”

\textit{Lily}
Two hypotheses: one has referent with any-prop or N’-prop

Track $p_{N’\text{-prop}} (p_{\text{any-prop}} = 1 - p_{N’\text{-prop}})$

Update: Unambiguous + Type I Ambiguous (193 of 4017)

$$p_{N’} = \frac{p_{N’ \text{ old}} \cdot t + p_{N’\text{-prop} \mid s}}{t + 1}$$

“…red ball…”
Two hypotheses: *one* has referent with **any-prop** or **N’-prop**

Track \(p_{N’-prop} = 1 - p_{any-prop} \)

Update: **Type II Ambiguous** (3805 of 4017)

No update function invoked for semantic referents, because no subset is defined. (No N’-property.)
Updating Across Domains & From Multiple Data Sources

syntax

\[N' \]
Prob = 0.5

\[N^0 \]
Prob = 0.5

semantics

any-property
Prob = 0.5

N'-property
Prob = 0.5
Updating Across Domains & From Multiple Data Sources

- **syntax**
 - N'
 - Prob = 0.5
 - N^0
 - Prob = 0.5

- **semantics**
 - any-property
 - Prob = 0.5
 - N'-property
 - Prob = 0.5
Encounter data point: Unambiguous/Type I Ambiguous

Unambiguous/Type I Ambiguous Data point

syntax: “…red ball…one…” (N’)

semantics: N’-property
Choose one domain to update (Syntax hypotheses)

Unambiguous/Type I Ambiguous Data point

Syntax: “…red ball…one…” (N’)

Semantics: N’-property

\[N' \]
\[\text{Prob} = 0.5 \]

\[N^0 \]
\[\text{Prob} = 0.5 \]

\[\text{any-property} \]
\[\text{Prob} = 0.5 \]

Choose one domain to update (Syntax hypotheses)
Choose one domain to update (Syntax hypotheses)

Unambiguous/Type I Ambiguous Data point

Syntax: “…red ball…one…” (N’)

Semantics: N’-property
Update linked hypotheses (Semantic consequences)

syntax

N'
Prob = 0.6

N^0
Prob = 0.4

semantics

any-property
Prob = 0.4

N’-property
Prob = 0.6

Unambiguous/Type I Ambiguous Data point

syntax: “…red ball…one…” (N’)

semantics: N’-property
Unambiguous/Type I Ambiguous Data point

syntax: “…red ball…one…” (N’)

semantics: N’-property

Prob = 0.4

Prob = 0.6

Prob = 0.4
Update the other domain (Semantic hypotheses)

Unambiguous/Type I Ambiguous Data point

syntax: “…red ball…one…” (N’)

semantics: N’-property
Unambiguous/Type I Ambiguous Data point

syntax: “…red ball…one…” (N’)

semantics: N’-property
Unambiguous/Type I Ambiguous Data point

syntax: “...red ball...one...” (N')

semantics: N’-property
Prob = 0.63
Prob = 0.37

Unambiguous/Type I Ambiguous Data point

syntax: “…red ball…one…” (N’)

semantics: N’-property
Encounter data point: Type II Ambiguous

Syntax:

- N' with Prob = 0.63
- N^0 with Prob = 0.37

Semantics:

- Any-property with Prob = 0.37
- N'-property with Prob = 0.63

Syntax: “…ball…one…” (N^0 bias)

Semantics: N/A
Type II Ambiguous Data point

syntax: “…ball…one…” (N^0 bias)

semantics: N/A
Type II Ambiguous Data point

syntax: “…ball…one…” (N⁰ bias)

semantics: N/A
Type II Ambiguous Data point
syntax: “…ball…one…” (N⁰ bias)

syntax: N’
Prob = 0.58

N⁰
Prob = 0.42

semantics:

any-property
Prob = 0.37

N’-property
Prob = 0.63

semantics: N/A
Metric of Success: Does an equal-opportunity learner (no data filters) steadily increase the probability of interpreting anaphoric one correctly? (sufficiency)

\[one = N' \ (p_{N'}) \]

semantic referent = set corresponding to larger \(N' \) (\(p_{N'\text{-prop}} \))

"Look! A red bottle. Do you see another one?"

\[\text{Prob(correct interpretation)} = p_{N'} \ast p_{N'\text{-prop}} \]

initial = 0.5*0.5 = 0.25
Learning Without Filters: The Equal-Opportunity Learner

The equal-opportunity learner has incorrect behavior: learning without filters is **insufficient** even with generous estimates of variables involved.
Road Map

Language Learning Mechanism

Learning Framework

Case Study: English Anaphoric One

- Interesting problems, adult knowledge, & infant behavior
- Linked hypothesis spaces & additional sources of information
- No filters: available data & equal-opportunity learners
- Filters: feasibility considerations
- Data intake filters: sufficiency & necessity
Data Intake Filtering

Possible Filter: Use only **Unambiguous** data (Pearl & Weinberg, 2007; Dresher, 1999; Lightfoot, 1999; Fodor, 1998)

problem: **feasibility**

Estimate from CHILDES: Only 10 data points are unambiguous for the correct interpretation of anaphoric *one* - out of months and months of available data

Data sparseness!
Data Intake Filtering

Possible Filter: Use Unambiguous & Type I Ambiguous data
- less data sparseness (feasibility): 193 total
- data will bias learner in the correct direction
- Note: Still use both syntactic & semantic information (different from Regier & Gahl, 2004)

Metric of Success: Does learner steadily increase probability of interpreting anaphoric one correctly (sufficiency)

“Look! A red bottle. Do you see another one?”
Road Map

Learning Framework Overview

Computational Case Studies:

Brief Highlights: Old English OV/VO word order
Details: English Metrical Phonology
Highlights: English Anaphoric *One*
 - interesting problems, adult knowledge, & infant behavior
 - available data & filter feasibility considerations
 - additional sources of information: hypothesis space layout
 - data intake filters: sufficiency & necessity
The learner that uses data intake filtering has correct behavior: learning without filters is *sufficient*.
Data Intake Filtering: Big Questions

Filter: Use only Unambiguous & Type I Ambiguous data

Feasible: can find sufficient data

Sufficient: produces behavior qualitatively similar to human learners

Necessary: removing the filter and learning from all available data (specifically type II ambiguous) produces behavior unlike human learners
How does a learner know to use this filter?

Want: Filter to ignore type II ambiguous data to result from some principled strategy for learning

Principled strategy: Learn only in cases of uncertainty (Shannon 1948; Gallistel 2001) - that’s where information is gained
How does a learner know to use this filter?

Want: Filter to ignore type II ambiguous data to result from some principled strategy for learning

Principled strategy: Learn only in cases of uncertainty (Shannon 1948; Gallistel 2001) - that's where information is gained

Need to ignore: data points where potential antecedent has no modifier

Jack wants a ball and Lily has another one for him.
How does a learner know to use this filter?

Want: Filter to ignore type II ambiguous data to result from some principled strategy for learning

Possibility 1: Look for situations where there is uncertainty in the semantic referent set (e.g. balls vs. red balls) only. This will occur when the utterance has a modifier on the potential antecedent (e.g. red ball).

Jack wants a red ball and Lily has/doesn’t have another one for him.
Problem: Learner must only care about semantic referents and not about syntactic structure (N' vs. N^0). (~Regier & Gahl, 2004) Then, only updating hypotheses from semantic information, not semantic & syntactic. Result: lower probability of correct interpretation.
How does a learner know to use this filter?

Want: Filter to ignore type II ambiguous data to result from some principled strategy for learning

Possibility 2: Syntactocentric approach, and solving the problem of *which N’ antecedent* is correct when there is more than one. Only relevant data are those with multiple potential N’ antecedents (e.g. nouns with modifiers like *red ball*).

Jack wants a red ball and Lily has/doesn’t have another one for him.
Syntactocentric Approach

Requirement: Prior knowledge that the antecedent of one is N’.
Methods:
- Innate constraints (Hornstein & Lightfoot, 1981)
- Syntactocentric filter over distribution of one vs. distribution of other nouns w.r.t complements (Foraker et al. in press)

Benefit: learner uses syntactic data to update as well since this is a question of which syntactic antecedent (larger or smaller N’) is correct

Jack wants a red ball and Lily has/doesn’t have another one for him.

\[\text{one} = \text{N’}\]
Syntactocentric Approach
Anaphoric One: Filters (Recap)

Feasible:

Jack only learns from this unambiguous data point, but Lily learns from that ambiguous one, too.

Jack has a data sparseness problem. Lily doesn’t.

Data filters can be made feasible for this case study.
Anaphoric One: Filters (Recap)

Feasible: Data filters can be made feasible for this case study.

Sufficient:

Jack used this semantocentric filter, and Lily used that syntactocentric one.

Filter used: Ignore type II ambiguous data.

Learner instantiation:

- **Good:** semantocentric approach, views only semantic data as relevant
- **Better:** syntactocentric approach, still allowing multiple sources of information (syntactic & semantic referents)

Filtering produced qualitatively **correct behavior**.
Anaphoric One: Filters (Recap)

Feasible: Data filters can be made feasible for this case study.

Sufficient: Filtering produced qualitatively correct behavior.

Necessary:

Jack only learns from this ambiguous data point, but Lily learns from that one, too.

Lily fails if she’s using type II ambiguous data (i.e. no filter).

Filtering was **necessary** for correct behavior.
Anaphoric One: Filters (Recap)

Feasible: Data filters can be made feasible for this case study.

Sufficient: Filtering produced qualitatively correct behavior.

Necessary: Filtering was necessary for correct behavior.
Big Picture
Big Picture

(1) Explaining language learning: theory of the mechanism
Big Picture

(1) Explaining language learning: theory of the mechanism

(2) Learning framework: separable components that can be explored individually
Big Picture

(1) Explaining language learning: theory of the mechanism

(2) Learning framework: separable components that can be explored individually

(3) Data intake filtering: feasibility, sufficiency, necessity
Big Picture

(1) Explaining language learning: theory of the mechanism

(2) Learning framework: separable components that can be explored individually

(3) Data intake filtering: *feasibility, sufficiency, necessity*

(4) Computational modeling: tool for exploring questions of the learning mechanism
Thank You

Jeff Lidz
Colin Phillips
Amy Weinberg
Norbert Hornstein
Howard Lasnik
Bill Idsardi
Paul Pietroski

the Psycho-Acquisition Lab Group
at the University of Maryland

the Cognitive Neuroscience of Language Lab
at the University of Maryland
Deriving the Bayesian Update Equations for a Hypothesis Space with 2 Hypotheses

\[
\text{Max}(\text{Prob}(p_{N'}|u)) = \text{Max}\left(\frac{\text{Prob}(u|p_{N'}) \times \text{Prob}(p_{N'})}{\text{Prob}(u)}\right)
\]

Bayes’ Rule, find maximum of a posteriori (MAP) probability
Manning & Schütze (1999)
Deriving the Bayesian Update Equations for a Hypothesis Space with 2 Hypotheses

\[
\text{Max}(\text{Prob}(p_{N'}|u)) = \text{Max}\left(\frac{\text{Prob}(u|p_{N'}) \times \text{Prob}(p_{N'})}{\text{Prob}(u)}\right)
\]

\text{Prob}(u | p_{N'}) = \text{probability of seeing unambiguous data point } u, \text{ given } p_{N'} = p_{N'}

\text{Prob}(p_{N'}) = \text{probability of seeing } r \text{ out of } t \text{ data points that are unambiguous for } N', \text{ for } 0 \leq r \leq t

= \binom{t}{r} \times p_{N'}^r \times (1 - p_{N'})^{t-r}
Deriving the Bayesian Update Equations for a Hypothesis Space with 2 Hypotheses

\[\text{Max}(\text{Prob}(p_{N'} | u)) = \text{Max}(\frac{p_{\text{vo}} * \binom{t}{r} * p_{N'}^r * (1 - p_{N'})^{t-r}}{\text{Prob}(u)}) \]
(for each point \(r, 0 \leq r \leq t \))

\[\frac{d}{dp_{N'}} \left(\frac{p_{N'}^r * \binom{t}{r} * (1 - p_{N'})^{t-r}}{\text{Prob}(u)} \right) = 0 \]

\[\frac{d}{dp_{N'}} \left(\frac{p_{N'}^r * \binom{t}{r} * (1 - p_{N'})^{t-r}}{\text{Prob}(u)} \right) = 0 \]
(P\((u) \) is constant with respect to \(p_{N'} \))

\[p_{N'} = \frac{r + 1}{t + 1} \]
Deriving the Bayesian Update Equations for a Hypothesis Space with 2 Hypotheses

\[p_{N'} = \frac{r + 1}{t + 1}, \quad t = p_{N' \text{ old}} \times t \]

\[p_{N'} = \frac{p_{N' \text{ prev}} \times t + 1}{t + 1} \]
Ambiguous Data Points: Type II (Syntactic)

\[p_{N'} = \frac{p_{N'} \text{old} \ast t + p_{N'} \ast a}{t + 1}, \text{ ambiguous} = "...ball..." \]

\[p_{N'} \ast (\frac{n}{n + o}) + (1 - p_{N'}) \ast 1 \]

\[p_{N'} \ast \sum_{\text{hypothesis}} p(a \mid \text{hypothesis}) \ast p(a \mid p_{N'}) + p_{N0} \ast (a \mid p_{N0}) \]

\[p_{N'} \ast \frac{n}{n + o} \]

\[p_{N'} \ast \frac{n}{n + o} \]
Ambiguous Data Points: Type II (Semantic)

\[p_{N'}^{\text{-prop}} = \frac{p_{N'}^{\text{-prop old}} \ast t + p_{N'}^{\text{-prop}} \mid a}{t + 1}, \text{ ambiguous } = \text{ ball of } N'\text{-property} \]

\[p_{N'}^{\text{-prop}} \mid a = \frac{\text{Prob}(a \mid N'\text{-prop}) \ast \text{Prob}(N'\text{-prop})}{\text{Prob}(a)} = \frac{1 \ast p_{N'}^{\text{-prop}}}{p_{N'}^{\text{-prop}} \ast 1 + (1 - p_{N'}^{\text{-prop}}) \ast \frac{1}{c}} \]

\[\sum_{\text{hypotheses}} p_{\text{hypothesis}} \ast p(a \mid p_{\text{hypothesis}}) \\
\sum_{\text{hypotheses}} p_{N'}^{\text{-prop}} \ast p(a \mid p_{N'}^{\text{-prop}}) + p_{\text{any} - \text{prop}} \ast p(a \mid p_{\text{any} - \text{prop}}) \\
p_{N'}^{\text{-prop}} \ast 1 + (1 - p_{N'}^{\text{-prop}}) \ast \frac{1}{c} \]