Computational models for language acquisition: Why, how, and what we can learn

Lisa Pearl
University of California, Irvine

June 3, 2017:
Cognitive Science 1st Annual Workshop
Simon Fraser University
Today’s Plan:
Computational models of language acquisition

I. Why

II. How

III. What we can learn

Who does... is pretty?

another one

Every kitty didn’t...
Today’s Plan:
Computational models of language acquisition

I. Why
Babies are amazing at learning language

Why language acquisition?
Babies are amazing at learning language

Adults think other adults are the best, teens know teens are the coolest, and kids posit that kids rule while parents, in comparison, drool. But you know who's REALLY the coolest?

Dang ol' BABIES.

You can take a baby, put it down in a room full of complete strangers making crazy noises, and that baby will do the following: presuppose those noises have meaning, INDEPENDENTLY INVENT THE VERY IDEA OF LANGUAGE, and then learn to communicate in that language. They will stone-cold deduce rules of grammar FROM OBSERVATION ALONE, and they'll do it way faster than an adult ever could.

But babies are stupid! They crawl off cliffs if given half a chance!

Absolutely!

Our offspring are idiot savants who think "oh, lexical categories, I'll definitely come up with that idea ENTIRELY ALONE. Hahah oh no a poop came out, time to cry for six hours while simultaneously inventing subject-verb agreement." And they're coming up with these thoughts WITHOUT EVEN HAVING A LANGUAGE TO THINK THEM IN.

Meanwhile, I can't even think "I wanna eat meat tomorrow with Utahraptor" without literally thinking those words in my head like it's friggin' amateur hour.

sigh
Babies are amazing at learning language

Wait...what exactly do you know when you know a language?
Wait...what exactly do you know when you know a language?

A lot!
Wait...what exactly do you know when you know a language?

A lot!

You know how to identify words in fluent speech *(speech segmentation)*

= wəʔəmˈrikiri
what a pretty kitty!
Wait...what exactly do you know when you know a language?

A lot!

You know how to pronounce words (metrical phonology)

✔ Kitty

✗ ki TTY
Wait...what exactly do you know when you know a language?

A lot!

You know that certain words behave like other words (syntactic categorization)

what a pretty ___!

speech segmentation

metrical phonology

Noun

what a pretty kitty!

penguin

kitty
Wait... what exactly do you know when you know a language?

A lot!

You know how to interpret words in context (syntax, semantics)

“Oh look — a pretty kitty!”
“Look — there’s another one!”
Wait...what exactly do you know when you know a language?

A lot!

speech segmentation

What a pretty kitty!

metrical phonology

“Oh look — a pretty kitty!”
“Look — there’s another one!”

syntax, semantics

You know how to put words together to ask questions (syntax).

This kitty was bought as a present for someone.

Lily thinks this kitty is pretty.

Who does Lily think the kitty for is pretty?
Wait...what exactly do you know when you know a language?

A lot!

Who does Lily think the kitty for is pretty?

You know how to identify the right interpretation in context (pragmatics)

"Every kitty didn’t sit on the stairs"

Not all kitties sat on the stairs.

Syntax, semantics
Wait...what exactly do you know when you know a language?

A lot!

Who does Lily think the kitty for is pretty?

“Who does Lily think the kitty for is pretty?”

“Look — there’s another one!”

“Every kitty didn’t sit on the stairs”

“Every kitty didn’t sit on the stairs”

Not all kitties sat on the stairs.

Speaker segmentation

syntax

syntax, semantics

metrical phonology

pragmatics

Noun

penguin

owl

kitty

syntactic categorization

syntax, semantics

metrical phonology

pragmatics
Wait...what exactly do you know when you know a language?

A lot!

speech segmentation

metrical phonology

syntax

syntactic categorization

pragmatics

syntax, semantics

So how exactly do children learn all this?
So how exactly do children learn all this?

We know they do it relatively quickly.

Much of the linguistic system is already known by age 4.
So how exactly do children learn all this?

They also don’t seem to get a lot of explicit instruction. And when they do, they don’t really pay attention to things that don’t impact meaning.

(From Martin Braine)

Child: Want other one spoon, Daddy.
Father: You mean, you want the other spoon.
Child: Yes, I want other one spoon, please Daddy.
Father: Can you say “the other spoon”?
Child: Other...one...spoon.
Father: Say “other”.
Child: Other.
Father: “Spoon.”
Child: Spoon.
Father: “Other spoon.”
Child: Other...spoon. Now give me other one spoon?
So how exactly do children learn all this?

They also don’t seem to get a lot of **explicit instruction**. And when they do, they **don’t really pay attention** to things that don’t impact meaning.

What they’re doing: **Extracting patterns** and **making generalizations** from the surrounding data mostly just by hearing examples of what’s allowed in the language.
So how exactly do children learn all this?

What they’re doing: **Extracting patterns** and **making generalizations** from the surrounding data mostly just by hearing examples of what’s allowed in the language.

What’s so hard about that?
So how exactly do children learn all this?

What’s so hard about that?

There are often many ways to generalize beyond the input, and most of them aren’t right.

“birdie”

“What a pretty birdie!”
So how exactly do children learn all this?

What’s so hard about that?

There are often **many ways to generalize beyond the input**, and most of them aren’t right.

???

“birdie”

“Look - a **birdie**!”
So how exactly do children learn all this?

What’s so hard about that?

There are often **many ways to generalize beyond the input**, and most of them aren’t right.

???

“birdie”

“Look at that **birdie**!”
So how exactly do children learn all this?

What’s so hard about that?

There are often many ways to generalize beyond the input, and most of them aren’t right.

How to generalize beyond the input?

???

“birdie”
So how exactly do children learn all this?

What’s so hard about that?

There are often many ways to generalize beyond the input, and most of them aren’t right.

One hypothesis

+blue

“birdie”
So how exactly do children learn all this?

What’s so hard about that?

There are often many ways to generalize beyond the input, and most of them aren’t right.

Another hypothesis

+on branch

“birdie”
So how exactly do children learn all this?

What’s so hard about that?

There are often many ways to generalize beyond the input, and most of them aren’t right.

The right hypothesis

+bird

“birdie”
So how exactly do children learn all this?

What’s so hard about that?

There are often many ways to generalize beyond the input, and most of them aren’t right.

These kind of induction problems are everywhere in cognitive development, including language acquisition.

Language acquisition = Solving a lot of induction problems.
Language acquisition = Solving a lot of induction problems.
We can also think about this as an information processing task.
Language acquisition = Solving a lot of induction problems. We can also think about this as an information processing task.

Given the available input,

Look at that kitty! There’s another one.

Input

Where did he hide? What happened?
Language acquisition = Solving a lot of induction problems. We can also think about this as an information processing task.

Given the available input, information processing done by human minds

Look at that kitty! There’s another one.

Input

Where did he hide? What happened?
Language acquisition = Solving a lot of induction problems.
We can also think about this as an information processing task.

Given the available input, information processing done by human minds to build a system of linguistic knowledge.

Input

Look at that kitty!
There’s another one.

Where did he hide?
What happened?
Language acquisition = Solving a lot of induction problems. We can also think about this as an information processing task.

Given the available input, information processing done by human minds to build a system of linguistic knowledge whose output we observe.

Look at that kitty! There’s another one.

Where did he hide? What happened?

Where’s the kitty?

That one’s really cute.
Language acquisition = Solving a lot of induction problems. We can also think about this as an information processing task.

To understand how children solve the acquisition task, we need theories of representation and theories of development.

Look at that kitty! There’s another one.

Input
Where did he hide? What happened?

Where’s the kitty?
That one’s really cute.
Language acquisition = Solving a lot of induction problems.

A framework that makes components of the acquisition task more explicit.

Lidz & Gagliardi 2015
A framework that makes components of the acquisition task more explicit.

Distinguishes between things external to the child that we can observe (input signal, child’s behavior) vs. things internal to the child (everything else).
Perceptual encoding:

Turning the input signal into an internal linguistic representation = perceptual intake.
Perceptual encoding:
Involves current grammar
Perceptual encoding:
Involves current grammar being deployed in real time to parse the input
Perceptual encoding:
Involves current grammar being deployed in real time to parse the input often drawing on extralinguistic systems
Generating observable **behavior**

Involves current linguistic representations being used by production systems.
Doing inference
Generalization happens
Theoretical & computational methods

Doing inference

Generalization happens by using existing learning biases, (some of which may be innate and language-specific)
Doing inference

Generalization happens by using existing learning biases, (some of which may be innate and language-specific) operating over the acquisitional intake — what’s perceived as relevant for acquisition
Doing inference

Generalization happens by using existing learning biases, (some of which may be innate and language-specific) operating over the acquisitional intake — what’s perceived as relevant for acquisition to produce the most up-to-date hypotheses about linguistic knowledge.
The current linguistic hypotheses are used in subsequent perceptual encoding.
This whole process happens over and over again throughout the learning period.
An informative computational model of language acquisition captures these important pieces in an empirically-grounded way.
This is language acquisition
...which involves solving induction problems

Informative computational models = informative about
the learning strategies children use to solve induction problems
Learning strategies children use to solve induction problems

A successful learning strategy is an existence proof that linguistic knowledge is attainable using the knowledge, learning biases, and capabilities comprising that strategy.
Learning strategies children use to solve induction problems

Important learning strategy components include
- knowledge (= theories of representation)
Learning strategies children use to solve induction problems

Important learning strategy components include:

- knowledge (= theories of representation)
- biases & capabilities that must exist for that knowledge to be successfully deployed during acquisition (= theories of the learning process).
Learning strategies children use to solve induction problems

And this is what we really want to know about!
And this is what we really want to know about!

Which learning strategies could children be using?
And this is what we really want to know about!

Which learning strategies could children be using?

Which learning biases are necessary?

(Pearl, Ho, & Detrano in press, 2014; Pearl & Mis 2016, Pearl & Sprouse 2015, 2013a, 2013b, Pearl & Mis 2011, Pearl & Lidz 2009, Pearl 2008, Pearl & Weinberg 2007)
And this is what we really want to know about!

Which learning strategies could children be using?

Which learning biases are necessary?

Which knowledge representations are learnable — and which aren’t?

(Pearl, Ho, & Detrano in press, 2014; Pearl in press, Pearl 2011, Pearl 2009)
And this is what we really want to know about!

Which learning strategies could children be using?

Which learning biases are necessary?

Which knowledge representations are learnable — and which aren’t?

When do children learn different aspects of the linguistic system?

And this is what we really want to know about!

Which learning strategies could children be using?
Which learning biases are necessary?
Which knowledge representations are learnable — and which aren’t?
When do children learn different aspects of the linguistic system?

What factors affect children’s observable behavior?

(Nguyen & Pearl in prep., Savinelli, Scontras, & Pearl 2017)
And this is what we really want to know about!

Which learning strategies could children be using?
Which learning biases are necessary?
Which knowledge representations are learnable — and which aren’t?
When do children learn different aspects of the linguistic system?
What factors affect children’s observable behavior?

Why we do computational modeling: It can help us find out!
Today’s Plan:
Computational models of language acquisition

I. Why

II. How

III. What we can learn

Who does... is pretty?

another one

Every kitty didn’t...
Today’s Plan:
Computational models of language acquisition

II. How
How do we model language acquisition?

What **level** of model do you want to build?

A **very basic** question:
Is it possible for the child with a **specific initial state** to use the **acquisitional intake** to achieve the **target state**?

Computational-level (Marr 1982)

Is this the right conceptualization of the acquisition task? Do we have the right goal in mind?
How do we model language acquisition?

What level of model do you want to build?

** Computational-level**
A very basic question:
Is it possible for the child with a specific initial state to use the acquisitional intake to achieve the target state?

Helpful for determining **if this implementation of the acquisition task is the right one.**

Are these **useful** learning assumptions for children to have? Are these **useful** linguistic representations?
How do we model language acquisition?

What level of model do you want to build?

Computational-level

A very basic question:
Is it possible for the child with a specific initial state to use the acquisitional intake to achieve the target state?

This is typically implemented as an ideal learner model, which isn’t concerned with the cognitive limitations and incremental learning restrictions children have.

(That is, useful for children is different from useable by children in real life.)
How do we model language acquisition?

What level of model do you want to build?

Computational-level
A very basic question:
Is it possible for the child with a specific initial state to use the acquisitional intake to achieve the target state?

Practical note:
Doing a computational-level analysis is often a really good idea to make sure we’ve got the right conceptualization of the acquisition task (see Pearl 2011 for the trouble you can get into when you don’t do this first).
How do we model language acquisition?

What level of model do you want to build?

Computational-level
A very basic question:
Is it possible for the child with a specific initial state to use the acquisitional intake to achieve the target state?

(What happened in a nutshell in Pearl 2011)

Because they’re solving the wrong acquisition task...oops.
How do we model language acquisition?

What **level** of model do you want to build?

Another basic question:
Is it possible for the child with a **specific initial state** to use the **acquisitional intake** to achieve the **target state** in the **amount of time** children typically get to do it, given the **incremental nature of learning and children’s cognitive constraints**?
How do we model language acquisition?

What **level** of model do you want to build?

Another basic question:
Is it possible for the child with a **specific initial state** to use the **acquisitional intake** to achieve the **target state** in the **amount of time** children typically get to do it, given the **incremental nature of learning** and children’s **cognitive constraints**?

Algorithmic-level (Marr 1982)
Is it possible for children to use this strategy? That is, once we know it’s **useful for children**, it’s important to make sure it’s also **useable by children**.
How do we model language acquisition?

What **level** of model do you want to build?

Computational-level

Another important (not so basic) question: If we have an algorithm that seems **useable** by children to **usefully solve an acquisition task**, how is it **implemented** in the brain?

Algorithmic-level

Implementational-level

Lidz & Gagliardi 2015
How do we model language acquisition?

What **level** of model do you want to build?

Another important (not so basic) question: If we have an algorithm that seems *useable* by children to *usefully* solve an acquisition task, how is it implemented in the brain?

Implementation-level

This isn’t easy to model yet.

Advances in natural language processing: ways to encode complex information into distributed representations like what we think the brain uses.

How do we model language acquisition?

What level of model do you want to build?

The types I’ll tell you about today

- Computational-level
- Algorithmic-level
- Implementational-level
How do we model language acquisition?

Computational-level

So let’s say you’ve figured out what level of model is appropriate to build. **Now what?**

Time to actually build it!

Algorithmic-level

Let’s look at an example with speech segmentation
How do we model language acquisition?
An example with speech segmentation

= wʌəpɪɾɪɪɾɪ
wʌm ə prɪɪɾɪ kɪɾɪ

what a pretty kitty!
How do we model language acquisition?
An example with speech segmentation

(1) Decide what kind of learner the model represents

This depends on what task you’re modeling

For the first stages of speech segmentation:
Typically developing 6- to 8-month-old child learning first language
How do we model language acquisition?
An example with speech segmentation

(2) Decide what data the child learns from (input)
This depends on your acquisition theory and the empirical data available
How do we model language acquisition?
An example with speech segmentation

(2) Decide what data the child learns from (input)

Example empirical data: CHILDES database
http://childes.talkbank.org

Video/audio recordings of speech samples, along with transcriptions and some structural annotations.
How do we model language acquisition?
An example with speech segmentation

(3) Decide how the child perceives the data,
and which data are relevant (intake)
This depends on your acquisition theory
How do we model language acquisition?
An example with speech segmentation

(3) Decide how the child perceives the data, and which data are relevant (intake)

syllables with stress

= wˈʌ rə prɪ ri kɪ ri
How do we model language acquisition?

An example with speech segmentation

What a pretty kitty!

Many models will try to make cognitively plausible assumptions about how the child is representing and processing input data.
How do we model language acquisition?

An example with speech segmentation

= \text{'wʌ ɾə prɪ ri kɪ ri'}

What a pretty kitty!

(4) Decide what hypotheses the child has and what information is being tracked in the input.

This depends on your acquisition theory.
How do we model language acquisition?

An example with speech segmentation

(4) Decide what hypotheses the child has and what information is being tracked in the input

Example hypotheses: what the words are

\[\text{what a pretty kitty!} \]
How do we model language acquisition?
An example with speech segmentation

(4) Decide what hypotheses the child has and what **information** is being tracked in the input

Example information:
transitional probability between syllables,
stress on syllables

\[
\text{what a pretty kitty!}
\]
How do we model language acquisition?

An example with speech segmentation

(5) Decide how belief in different hypotheses is updated

This depends on your acquisition theory

Example: based on transitional probability between syllables
How do we model language acquisition?

An example with speech segmentation

(5) Decide how belief in different hypotheses is updated

This depends on your acquisition theory

Example: based on transitional probability between syllables

what a pretty kitty!
How do we model language acquisition?
An example with speech segmentation

(6) Decide what the measure of success is
This can be based on your theory...
How do we model language acquisition?

An example with speech segmentation

(6) Decide what the measure of success is

This can be based on your theory or empirical data about behavior.
How do we model language acquisition?

An example with speech segmentation

(6) Decide what the measure of success is

Example developing knowledge

Proto-lexicon of word forms

This can be based on your theory or empirical data about behavior
How do we model language acquisition?

An example with speech segmentation

(6) Decide what the measure of success is

This can be based on your theory or empirical data about behavior

Example behavior indicating developed knowledge:
Recognizing useful units (such as words) in a fluent speech stream, as indicated by looking time behavior

what a pretty kitty!
How do we model language acquisition?
An example with speech segmentation

This is the heart of the model

= wˈʌ ə ɾɪ ɪ kˈɪ ɪ

what a pretty kitty!
How do we model language acquisition?
An example with speech segmentation

(7) Implement the model in a programming language of choice
How do we model language acquisition?
An example with speech segmentation

(8) See how well the model did w.r.t. the measure of success

Example developing knowledge
Proto-lexicon of word forms
How do we model language acquisition?

An example with speech segmentation

(8) See how well the model did w.r.t. the measure of success

Recognizing useful units (such as words) in a fluent speech stream, as indicated by looking time behavior
How do we model language acquisition?

An example with speech segmentation

See how well the model did w.r.t. the measure of success.

From this, we can determine how well the model did — and more importantly, how well the strategy implemented concretely in the model did.
How do we model language acquisition?

An example with speech segmentation

(9) Interpret the results for other people who aren’t you so they know why they should care

“The modeled child has the same developing knowledge as we think 8-month-olds do. This strategy can be what they’re using!”
How do we model language acquisition?

An example with speech segmentation

(9) Interpret the results for other people who aren’t you so they know why they should care

“The modeled child can reproduce the behavior we see in 8-month-olds. This strategy could be what they’re using to generate that behavior!”
Today’s Plan:
Computational models of language acquisition

I. Why

II. How

III. What we can learn

Who does... is pretty?

another one

Every kitty didn’t...
Today’s Plan:
Computational models of language acquisition

III. What we can learn

speech segmentation

syntax

grammars

metrical phonology

syntactic categorization

pragmatics

syntax, semantics

Who does... is pretty?

Every kitty didn’t...

Another one
What we can learn

= ˌwʌədɪˌkiːri

what a pretty kitty!
What we can learn

Investigating a Bayesian inference strategy for the very early stages of speech segmentation occurring around six months

$$P(s|u) \propto P(s)P(u|s)$$
What we can learn

Bayesian inference

$$P(s|u) \propto P(s)P(u|s)$$

Strategy: Identify a proto-lexicon of words that best generates the observable fluent speech utterances

Mathematically encoded preferences:

$\text{what a pretty kitty!}$

What we can learn

Bayesian inference

\[P(s|u) \propto P(s)P(u|s) \]

Strategy: Identify a proto-lexicon of words that best generates the observable fluent speech utterances

Mathematically encoded preferences:

1. Prefer shorter words

What we can learn

Bayesian inference

\[P(s|u) \propto P(s)P(u|s) \]

Strategy: Identify a proto-lexicon of words that best generates the observable fluent speech utterances

Mathematically encoded preferences:

1. Prefer shorter words
2. Prefer lexicons with fewer words

\[\text{what a pretty kitty!} \]

What we can learn

Bayesian inference

$$P(s|u) \propto P(s)P(u|s)$$

Strategy: Identify a proto-lexicon of words that best generates the observable fluent speech utterances

Mathematically encoded preferences:

1. Prefer shorter words
2. Prefer lexicons with fewer words

Find the best segmentation

What we can learn

Bayesian inference

\[P(s|u) \propto P(s)P(u|s) \]

Strategy: Identify a proto-lexicon of words that best generates the observable fluent speech utterances

Mathematically encoded preferences:

1. Prefer shorter words
2. Prefer lexicons with fewer words

Find the best segmentation that **balances these proto-lexicon preferences**
What we can learn

Bayesian inference

$$P(s|u) \propto P(s)P(u|s)$$

Strategy: Identify a proto-lexicon of words that best generates the observable fluent speech utterances

Mathematically encoded preferences:
(1) Prefer shorter words
(2) Prefer lexicons with fewer words

Find the best segmentation that balances these proto-lexicon preferences and can generate the observable fluent speech utterances

What we can learn

Bayesian inference

$$P(s|u) \propto P(s)P(u|s)$$

speech segmentation

Is it useful?

Computational-level modeled learners using this strategy segment fairly well, given realistic English child-directed speech data.

The inferred proto-lexicons, while not perfect, are very useful for subsequent stages of language acquisition.

What we can learn

Bayesian inference

$$P(s|u) \propto P(s)P(u|s)$$

Algorithmic-level modeled learners with cognitive constraints on their inference and memory can still use this strategy and segment English quite well.

Is it useful?

Is it usable?

What we can learn

Bayesian inference

\[P(s|u) \propto P(s)P(u|s) \]

Is it useful?

Is it useable?

Does it work for different languages?

It segments well for languages with different morphology and syllable properties: Spanish, Italian, German, Hungarian, Japanese, Farsi

What we can learn

Bayesian inference

\[P(s|u) \propto P(s)P(u|s) \]

Is it useful? ✓

Is it useable? ✓

Does it work for different languages? ✓

Bayesian inference seems to be a good proposal for a very early speech segmentation strategy.

What we can learn

- **speech segmentation**
- **syntax**
- **pragmatics**
- **metrical phonology**
- **syntactic categorization**

Example sentences:
- *Who does... is pretty?*
- *another one*
- *Every kitty didn’t...*
What we can learn

- metrical phonology

- Kitty

- ki TTY
What we can learn

☑️ a DO ra ble
☒ A do RA ble
☒ a DO ra BLE

☑️ Ki tty
☒ ki TTY
What we can learn

- a DO ra ble
- A do RA ble
- a DO ra BLE
- KI tty
- ki TTY

Our underlying knowledge representation of the metrical phonology system allows us to generate these metrical stress preferences.
What we can learn

knowledge representation options

parameters whose values must be set

metrical phonology

✅ a DO ra ble ✅ KI tty
❌ A do RA ble ❌ ki TTY
❌ a DO ra BLE
What we can learn

metrical phonology

parameters whose values must be set

knowledge representation options

English
What we can learn

knowledge representation options

Violable constraints that must be ranked

English
What we can learn

metrical phonology

knowledge representation options

parameters

Violable constraints that must be ranked

English
What we can learn

knowledge representation options

parameters

constraints

These representations have some similarities, but aren’t obviously using identical variables.

How do we choose among these representations and their English versions?
What we can learn

knowledge representation options

parameters

constraints

English

How do we choose among these representations and their English versions?

Answer: Let’s see how learnable they are from the English data children typically encounter!

Pearl et al. 2014, Pearl 2017, Pearl et. al in press
What we can learn

knowledge representation options

parameters

constraints

how learnable they are

Computational-level analysis
Modeled learners given realistic samples of English child-directed speech can identify parameter combinations or constraint rankings that are very good at accounting for the input especially if children use a data filter.

Pearl et al. 2014, Pearl 2017, Pearl et. al in press
What we can learn

knowledge representation options

parameters

constraints

how learnable they are

Computational-level analysis

But the best options for English data aren’t the ones currently proposed for English.

Pearl et al. 2014, Pearl 2017, Pearl et. al in press
What we can learn

metrical phonology

knowledge representation options

parameters

constraints

how learnable they are

Computational-level analysis

Other options (differing very slightly) are much more easily learnable.

Pearl et al. 2014, Pearl 2017, Pearl et. al in press
What we can learn

metrical phonology

A do RA ble

ki TTY

a DO ra BLE

knowledge representation options

parameters

how learnable they are

constraints

Computational-level analysis

And two do particularly well when a data filter is in place.

Pearl et al. 2014, Pearl 2017, Pearl et. al in press
What we can learn

By modeling acquisition, we provide support for these two theories of English representation.

Pearl et al. 2014, Pearl 2017, Pearl et. al in press
What we can learn

- syntax
- speech segmentation
- metrical phonology
- syntactic categorization
- pragmatics
- syntax, semantics

Who does... is pretty?

Another one

Every kitty didn’t...
What we can learn

Noun

- glitter
- penguin
- idea
- unicorn
- owl
- kitty
What we can learn

Nouns behave similarly:

They can combine with certain types of words to make larger units (like Noun Phrases).
What we can learn: syntactic categorization

Determiner + Noun ("the kitty")

\[\text{NP} \rightarrow \text{Det} + \text{N} \]

Nouns behave similarly:
They can combine with certain types of words to make larger units (like Noun Phrases).
What we can learn

Determined + Noun ("the")

[NP → Det + N]

Rule with category Noun = new phrases with words of category Noun

This is very handy for generating new expressions we haven’t heard before.
What we can learn

syntactic categorization

Determiner + Noun ("the dax")

[NP \rightarrow \text{Det + N}]

Rule with category Noun = new phrases with words of category Noun

This is very handy for generating new expressions we haven’t heard before.
We have many categories in human language. Some are open-class — it’s easy to add new words to them.
What we can learn

We have many categories in human language.

Some are open-class — it’s easy to add new words to them.

[VP → Negation + V]

It’s not daxing
- it’s dancing!

Verb

stand

surprise

find

Verb
dance

adore

Noun

penguin

owl

kitty

idea

unicorn

glitter
What we can learn

We have many categories in human language.

Some are open-class — it’s easy to add new words to them.
What we can learn

We have many categories in human language.

Some are **closed-class** — the words in them are fixed.

\[\text{VP} \rightarrow \text{Negation} + \text{V} \]

It’s **not** daxing
- it’s dancing!

Negation

\[\text{didn’t} \quad \text{not} \quad \text{wouldn’t} \quad \text{can’t} \quad \text{won’t} \]
What we can learn

We have many categories in human language. Some are closed-class — the words in them are fixed.

[VP → Auxiliary + V]
It would sing
if it could sing

Auxiliary
What we can learn

There’s significant debate on when these categories develop.
What we can learn

Syntactic categorization

Negation

Auxiliary

Noun

Verb

There’s significant debate on when these categories develop.

Easy to observe: When children know individual words.

it’s dancing

dance
What we can learn

syntactic categorization

- **Negation**
 - didn’t
 - not
 - wouldn’t
 - can’t
 - won’t

- **Auxiliary**
 - might
 - would
 - could
 - will
 - should
 - can

- **Noun**
 - penguin
 - owl
 - glitter
 - idea
 - unicorn
 - kitty

There’s significant debate on when these categories develop.

Harder to observe: When children have recognized these words belong to **categories**.

it’s dancing

find stand

surprise adore
What we can learn: **syntactic categorization**

What we can do: **Computational-level** analysis of children’s productions, using formal metrics that describe how children **generate their utterances** given their **underlying representations**

Bates, Pearl & Braunwald, in prep.
Computational-level

Analyzing the utterances produced by a single American English child between the ages of 20 and 24 months
What we can learn

Negation

Auxiliary

Computational-level

Analyzing the utterances produced by a single American English child between the ages of 20 and 24 months

Utterances compatible with having adult-like closed-class categories, but not adult-like open-class categories.

Bates, Pearl & Braunwald, in prep.
What we can learn

Negation

Auxiliary

Computational-level

This suggests that closed-class categories may develop into an adult-like state earlier than open-class categories and much earlier than previously thought.

Bates, Pearl & Braunwald, in prep.
What we can learn

speech segmentation

syntax

Who does ... is pretty? another one
Every kitty didn’t ...

pragmatics

metrical phonology

Noun

syntactic categorization

syntax, semantics
What we can learn

“Oh look — a pretty kitty!”

“Look — there’s another one!”
What we can learn

“Oh look — a **pretty kitty**!”

“Look — there’s another **one**!”

Interpretation: another **pretty kitty**

same

syntactic category

???
What we can learn

“Look — there’s another one!”

Interpretation: another

same

syntactic category

???

bigger than a plain Noun

Noun

| pretty kitty
What we can learn

“Oh look — a pretty kitty!”

“Look — there’s another one!”

Interpretation: another the pretty kitty

same syntactic category

smaller than a full Noun Phrase

Noun Phrase

the

Noun

| pretty kitty
What we can learn

syntax, semantics

another one

“Oh look — a pretty kitty!”

“Look — there’s another one!”

Interpretation: another

In-between category Noun’
that includes strings with nouns and modifiers+nouns

Noun Phrase

the Noun’

Noun’

Noun

pretty kitty
What we can learn

"Oh look — a pretty kitty!"

"Look — there’s another one!"

Interpretation: another

This is why we can also interpret one as just kitty.
What we can learn syntax, semantics another one

“Oh look — a pretty kitty!”

“Do you see another one?”

Lidz, Waxman, & Freedman 2003: 18-month-old interpretations
What we can learn

“Oh look — a pretty kitty!”

“Do you see another one?”

pretty kitty Noun'

Lidz, Waxman, & Freedman 2003: 18-month-old interpretations
What we can learn

“Oh look — a pretty kitty!”

“Do you see another kitty?”

another one

pretty kitty

Lidz, Waxman, & Freedman 2003: 18-month-old interpretations
What we can learn

“Oh look — a pretty kitty!”

“Do you see another kitty?”

Lidz, Waxman, & Freedman 2003: 18-month-old interpretations
What we can learn

“Oh look — a pretty kitty!”

“Do you see another pretty kitty?”

Lidz, Waxman, & Freedman 2003: 18-month-old interpretations
What we can learn

“Oh look — a pretty kitty!”

“Do you see another pretty kitty?”

Lidz, Waxman, & Freedman 2003: 18-month-old interpretations
What we can learn

“Oh look — a pretty kitty!”

“Do you see another one?”

Several learning strategies implemented with algorithmic-level modeled learners, given realistic samples of English child-directed speech.

Pearl & Mis 2016
What we can learn

“Oh look — a pretty kitty!”

“Do you see another one?”

Algorithmic-level
Evaluated on whether they matched 18-month-old looking preferences.
What we can learn

“Oh look — a pretty kitty!”

“Do you see another one?”

Algorithmic-level

Two strategies were successful at generating the 18-month-old behavior. We can then look inside the modeled learner and see what the underlying representations were.
What we can learn

syntax, semantics

another one

“Oh look — a pretty kitty!”

Algorithmic-level

“Do you see another one?”

Strategy 1: Ignore some of the available one data in the input
What we can learn

“Oh look — a pretty kitty!”

Algorithmic-level

“Do you see another one?”

Strategy 1: Ignore some of the available one data in the input

Adult representations
 Noun’ pretty kitty

But...required additional situational context to be present to succeed.
 Less robust

Inference engine
 Acquisitional intake

Developing grammar

syntax, semantics
another one

Pearl & Mis 2016
What we can learn

“Oh look — a pretty kitty!”

Algorithmic-level

Strategy 1: Ignore

Less robust

“Do you see another one?”

Strategy 2: Include other pronoun data besides one data in the intake

Noun’

pretty kitty

Pearl & Mis 2016
What we can learn

“Oh look — a pretty kitty!”

Algorithmic-level

Strategy 1: Ignore

Less robust

“Do you see another one?”

Strategy 2: Include other pronoun data besides one data in the intake

Immature representations

Noun’ only in certain linguistic contexts

pretty kitty ❌ otherwise Noun

But...does this for pretty much any situational context.

More robust

Pearl & Mis 2016
What we can learn

“Oh look — a pretty kitty!”

Algorithmic-level

Strategy 1: Ignore

Less robust

Strategy 2: Include other

More robust

“Do you see another one?”

By modeling, we have two concrete proposals for how children learn the knowledge they do by 18 months.

This also motivates future experimental work to distinguish these two possibilities.

Pearl & Mis 2016
What we can learn

speech segmentation

syntax

metrical phonology

syntactic categorization

pragmatics

syntax, semantics

Who does ... is pretty? another one
Every kitty didn’t ...
What we can learn

This kitty was bought as a present for someone.

Lily thinks this kitty is pretty.

What’s going on here?

Who does Lily think the kitty for is pretty? 😞

What does Lily think is pretty, and who does she think it’s for? 😊
What we can learn

What’s going on here?
There’s a dependency between the wh-word *who* and where it’s understood (the gap)

Who does Lily think the kitty for ___ is pretty?

This dependency is not allowed in English.

One explanation: The dependency crosses a “syntactic island” (Ross 1967)
What we can learn

What’s going on here? syntactic island

Who does Lily think the kitty for ___ is pretty?

Jack is somewhat tricksy.
He claimed he bought something.

What did Jack make the claim that he bought ___?
What we can learn

What’s going on here? syntactic island

Who does Lily think the kitty for ___ is pretty?

What did Jack make the claim that he bought ___?

Jack is somewhat tricksy.

He claimed he bought something.

Elizabeth wondered if he actually did and what it was.

What did Elizabeth wonder whether Jack bought ___?
What we can learn

What’s going on here? syntactic island

Who does Lily think the kitty for ___ is pretty?

What did Jack make the claim that he bought ___?

What did Elizabeth wonder whether Jack bought ___?

What did Elizabeth worry if Jack bought ___?

Jack is somewhat tricksy.
He claimed he bought something.
Elizabeth worried it was something dangerous.
What we can learn

Who does Lily think the kitty for is pretty?

Who does Lily think the kitty for ___ is pretty?

Adults judge these dependencies to be far worse than many others, including others that are very similar except that they don’t cross syntactic islands (Sprouse et al. 2012).
What we can learn

Who does Lily think the kitty for is pretty?

Previous learning theories suggested children need syntactic-island-specific innate knowledge.
An alternative learning strategy suggests children need less-specific linguistic prior knowledge along with probabilistic learning.

Pearl & Sprouse (2013a, 2013b, 2015)
What we can learn

This alternative strategy was implemented in an algorithmic-level learning model that learned from realistic samples of child-directed speech. The modeled learner was able to reproduce the pattern of adult judgments.
What we can learn

Who does Lily think the kitty for is pretty?

syntactic island

Who does Lily think the kitty for ____ is pretty?

Upshot: Children can learn these sophisticated restrictions without relying as much on very specific linguistic knowledge that’s necessarily innate.

Pearl & Sprouse (2013a, 2013b, 2015)
What we can learn

speech segmentation

syntax

metrical phonology

syntactic categorization

pragmatics

syntax, semantics

Who does ... is pretty? another one
Every kitty didn’t ...
What we can learn

“Every kitty didn’t sit on the stairs”

✗ No kitties sat on the stairs.

✓ Not all kitties sat on the stairs.

Why are two interpretations available?

Quantifier scope
What we can learn

Quantifier scope

“Every kitty didn’t sit on the stairs”

\(\forall \)

\(\times \) No kitties sat on the stairs.

\(\checkmark \) Not all kitties sat on the stairs.
What we can learn

Quantifier scope

“Every kitty didn’t sit on the stairs”

\(\forall \) kitten

surface \(\forall\) kittens \(k\) \(k\) sat on the stairs

“For all kittens \(k\), it’s not true that \(k\) sat on the stairs”

\(\times\) No kittens sat on the stairs.

\(\checkmark\) Not all kittens sat on the stairs.
What we can learn

Quantifier scope

“Every kitty didn’t sit on the stairs”

\[\forall k \text{ kitty didn’t sit on the stairs} \]

surface \[\forall \text{kitties } k, \; k \text{ sat on the stairs} \]

“For all kitties } k, \text{ it’s not true that } k \text{ sat on the stairs”}

No kitties sat on the stairs.

inverse \[\forall \text{kitties } k, \; k \text{ sat on the stairs} \]

“It’s not true that for all kitties } k, \text{ } k \text{ sat on the stairs”}

Not all kitties sat on the stairs.
What we can learn

Quantifier scope

✓ “Every kitty didn’t sit on the stairs”

ação

surface

✓ No kittens sat on the stairs.

inverse

✓ Not all kittens sat on the stairs.

Adults
What we can learn

Quantifier scope

"Every kitty didn’t sit on the stairs"

表面

∀ No kittens sat on the stairs.

逆向

∀ Not all kittens sat on the stairs.

5-year-olds

But why?
What we can learn

Quantifier scope

“Every kitty didn’t sit on the stairs”

Not all kitties sat on the stairs.

One idea: grammatical processing problem
What we can learn

Quantifier scope

"Every kitty didn’t sit on the stairs"

Not all kittens sat on the stairs.

5-year-olds

One idea: grammatical processing problem

The inverse scope is harder to get from the surface string.
What we can learn

Quantifier scope

X "Every kitty didn’t sit on the stairs"

∀ ??

inverse ∀ ?? Not all kitties sat on the stairs.

5-year-olds

One idea: grammatical processing problem

Another idea: pragmatic context management problem.
What we can learn

Quantifier scope

"Every kitty didn’t sit on the stairs"

Not all kitties sat on the stairs.

Did none of the kittens sit on the stairs?

Do kittens like stairs? QUD How many kittens sat on the stairs?

5-year-olds

One idea: **grammatical processing** problem

Another idea: **pragmatic context** management problem.

Children thought the topic of conversation (the implicit Question Under Discussion) was something else and this utterance doesn’t answer that QUD very well.
What we can learn

Quantifier scope

\forall "Every kitty didn’t sit on the stairs"

\forall Not all kitties sat on the stairs.

Kitties don’t like stairs

Kitties love stairs. Kitties don’t care about stairs.

5-year-olds

One idea: grammatical processing problem

Another idea: pragmatic context management problem.

QUD

Children’s prior expectations about the world make this utterance less informative.
What we can learn

Quantifier scope

- "Every kitty didn’t sit on the stairs"
- Not all kitties sat on the stairs.

inverse

It’s hard to manipulate only one of these factors in experimental research investigating children’s responses.
What we can learn

Quantifier scope

× “Every kitty didn’t sit on the stairs”

∀ ?? Not all kitties sat on the stairs.

inverse ∀

QUD grammatical processing expectations about the world

5-year-olds

Using a computational-level model that formalizes the separate contribution of each factor, we can determine which ones have the largest impact on children’s observed behavior.

Savinelli, Scontras, & Pearl 2017
What we can learn

Quantifier scope

"Every kitty didn’t sit on the stairs"

Not all kittens sat on the stairs.

The pragmatic factors seem to be the driving force behind children’s behavior. This suggests that 5-year-olds are still developing their ability to manage the pragmatic context of a conversation as well as adults do.

Savinelli, Scontras, & Pearl 2017
Today’s Plan: Computational models of language acquisition

I. Why

II. How

III. What we can learn

Who does... is pretty? another one

Every kitty didn’t...
Today’s Plan:
Computational models of language acquisition

I. Why: Because language acquisition is pretty amazing and we want to understand how it works

II. How

III. What we can learn

Who does... is pretty? another one
Every kitty didn’t...
Today’s Plan:
Computational models of language acquisition

I. Why: Because language acquisition is pretty amazing and we want to understand how it works

II. How: By building informative computational models

III. What we can learn

Who does... is pretty?
"another one"

Every kitty didn’t...
Today’s Plan:
Computational models of language acquisition

I. Why: Because language acquisition is pretty amazing and we want to understand how it works

II. How: By building informative computational models

III. What we can learn: A lot about a lot

- speech segmentation
- KITTY
- metrical phonology
- Noun
- syntax
- syntactic categorization
- another one

Every kitty didn’t...
Today’s Plan:
Computational models of language acquisition

I. Why: Because language acquisition is pretty amazing and we want to understand how it works

II. How: By building informative computational models

III. What we can learn: A lot about a lot

This is a great tool - so let’s use it to understand how linguistic representations develop!
Thank you!

Lawrence Phillips Timothy Ho Zephyr Detrano
Alandi Bates Sue Braunwald Galia Bar-sever
Jon Sprouse Ben Mis Greg Scontras K.J. Savinelli
Jeff Lidz Members of CoLaLab

Audiences at: CSUF 2016, GLEEFUL 2016, GALANA 2015

This work was supported in part by NSF grants BCS-0843896 and BCS-1347028.