More learnable than thou?
Testing metrical phonology representations with child-directed speech

Lisa Pearl
University of California, Irvine

Zephyr Detrano
Tim Ho

February 9, 2014:
40th Annual Meeting of the Berkeley Linguistic Society
University of California, Berkeley
A language’s grammar is often thought of as a generative system speakers use to produce and comprehend the language.

The generative system can be instantiated in various ways so that it can handle any of the world’s languages, and these different ways seem to have something in common.
Grammar instantiations = Knowledge representation

The knowledge representation encodes information about the general form that grammars for human languages can have.
Grammar instantiations = Knowledge representation

Idea: If the child already knows the general form that grammars for human languages can have, all she needs to do is learn to instantiate her language’s grammar appropriately, based on the input data from her language.
Knowledge representations

This suggests two checkpoints for any knowledge representation:

1. It should explain **constrained cross-linguistic variation**
2. Its language-specific grammar **should be learnable** from the data children encounter
Knowledge representations

Traditionally, proposals for knowledge representations have focused on optimizing the first checkpoint of accounting for constrained cross-linguistic variation, with the (often implicit) assumption that the second checkpoint of learnability would be easily satisfied.
Focus on cross-linguistic variation:
This has led to several knowledge representations for the different aspects of linguistic knowledge. For example, proposals in metrical phonology have included both parametric and constraint-ranking systems.
Really different:
While different knowledge representations will often have aspects in common that they focus on, they are typically not simply notational variants of each other.
Knowledge representations

When we have several proposals that satisfy the first criterion of accounting for constrained cross-linguistic variation, it seems reasonable to focus on the second criterion of learnability.
Knowledge representations

Learnability criterion: Is a language’s specific grammar in that knowledge representation *learnable* from the kind of data children of the language encounter?
Road map

Empirically grounding & quantifying learnability

Case study:
Knowledge representations in metrical phonology
 - Knowledge representation comparison
 - English as a tricky learning scenario
 - Learnability results & implications
Road map

Empirically grounding & quantifying learnability

Case study:
Knowledge representations in metrical phonology
- Knowledge representation comparison
- English as a tricky learning scenario
- Learnability results & implications
Learnability

How easily does a knowledge representation allow children to learn their specific language’s grammar, when given realistic data?

Learnability analysis provides a quantitative way to compare competing knowledge representations (Pearl 2011, Legate & Yang 2012)

Working premise: Rational learners
Learnability

How **easily** does a knowledge representation allow children to learn their specific language’s grammar, when given realistic data?

Learnability analysis provides a quantitative way to compare competing knowledge representations (Pearl 2011, Legate & Yang 2012)

Working premise: **Rational learners**

A learner trying to learn which grammar is the right one for the language will choose the grammar perceived to be the **best.**
Learnability

How *easily* does a knowledge representation allow children to learn their specific language’s grammar, when given realistic data?

Learnability analysis provides a quantitative way to compare competing knowledge representations (Pearl 2011, Legate & Yang 2012)

Working premise: Rational learners

A learner trying to learn which grammar is the right one for the language will choose the grammar perceived to be the *best.*

able to account for the most data perceived as relevant = most useful to have
Quantifying learnability

Once we define the data set the child is learning from, we can then ask which grammar in the hypothesis space defined by the knowledge representation is best, assuming a rational learner that will choose the grammar compatible with the most data.
Quantifying learnability

Once we define the data set the child is learning from, we can then ask which grammar in the hypothesis space defined by the knowledge representation is best, assuming a rational learner that will choose the grammar compatible with the most data.

Compatibility with a data point: A grammar is compatible with a data point if the grammar can account for that data point.

A grammar that can account for 70% of the data is better than a grammar that can only account for 55% of the data.
Quantifying learnability

Once we define the data set the child is learning from, we can then ask which grammar in the hypothesis space defined by the knowledge representation is best, assuming a rational learner that will choose the grammar compatible with the most data.

Raw compatibility for a grammar: The amount of data that grammar can account for.

Example: A grammar that can account for 70% of the data has a raw compatibility of 0.70.
Quantifying learnability

Once we define the data set the child is learning from, we can then ask which grammar in the hypothesis space defined by the knowledge representation is best, assuming a rational learner that will choose the grammar compatible with the most data.

Relative compatibility for a grammar: The proportion of other grammars that this grammar is better than. This indicates how easy it would be for a rational learner to choose it, given the hypothesis space of grammars.

Example: The best grammar in the knowledge representation has ~1.00 relative compatibility.
Quantifying learnability

Once we define the data set the child is learning from, we can then ask which grammar in the hypothesis space defined by the knowledge representation is best, assuming a rational learner that will choose the grammar compatible with the most data.

Learnability potential for a knowledge representation: The amount of data the best grammar (relative compatibility ≈ 1.00) is compatible with. This is how much of the data that knowledge representation is capable of accounting for.

Example: If the best grammar can account for 70% of the data, this knowledge representation has a learnability potential of 0.70.
Quantifying learnability

Once we define the data set the child is learning from, we can then ask which grammar in the hypothesis space defined by the knowledge representation is best, assuming a rational learner that will choose the grammar compatible with the most data.

Working assumption:
The language-specific grammar should be the best grammar (relative compatibility ≈ 1.00) for the data of that language, assuming a rational learner that’s looking for the best grammar.

It would be good if this grammar also had a high raw compatibility so that it would be useful to have, once learned.
Road map

Empirically grounding & quantifying learnability

Case study:

Knowledge representations in metrical phonology
 ❖ Knowledge representation comparison
 ❖ English as a tricky learning scenario
 ❖ Learnability results & implications
Case study:
A generative system of metrical phonology

Observable data: stress contour OCtopus

Underlying representation determined by grammar?
Case study:
A generative system of metrical phonology

Observable data: stress contour

Underlying representation determined by grammar?

Involves metrical feet:
Units larger than syllables but (often) smaller than words

Divide word into syllables, look only at syllable rimes

(H L) H
VC V VC
OC to pus

(H L L)
VC V VC
OC to pus

(S S S)
VC V VC
OC to pus

(S S)
VC V VC
OC to pus

OCtopus
Three knowledge representations

Parametric systems

Correct grammar builds compatible contour

OCtopus
Three knowledge representations

Parametric systems

HV: Halle & Vergnaud 1987, Dresher 1999, Pearl 2011
5 parameters & 3 sub-parameters
Hypothesis space: 156 grammars

Correct grammar builds compatible contour

OCtopus

Grammar = Set of parameter & sub-parameter values

Quantity sensitivity
Extrametricality
Foot headedness
Boundedness
Foot directionality
Three knowledge representations

Parametric systems

HV: Halle & Vergnaud 1987, Dresher 1999, Pearl 2011

5 parameters & 3 sub-parameters

Hypothesis space: 156 grammars

Correct grammar builds compatible contour

This grammar, comprised of particular parameter values, generates the correct stress contour.

Parameter values used:

QS-VC-H, Em-Rt, FtDir-Rt, B-2-Syl, FtHd-Left

...which are the values of the English grammar.
Three knowledge representations

Parametric systems

Hayes: Hayes 1995
8 parameters
Hypothesis space: 768 grammars

Correct grammar builds compatible contour

OCtopus

Stress analysis direction
Extrametricality
Syllable weight
Foot directionality
Word layer end rule
Degenerate feet
Foot inventory
Parsing locality
Three knowledge representations

Parametric systems

Hayes: Hayes 1995

8 parameters

Hypothesis space: 768 grammars

This grammar, comprised of particular parameter values, generates an incorrect stress contour.

\[(H \thinspace)(L \thinspace L)\]

OC TÓ pus

Parameter values used:

Bot, Em-RtCons, VC-H, FtDir-Rt, PL-Strong, MorTro, DF-Strong, WLER-Rt

Correct grammar builds compatible contour

...which are the values of the English grammar.
Three knowledge representations

Constraint-ranking systems

OT: Hammond 1999, Pater 2000, Tesar & Smolensky 2000

9 violable constraints
Three knowledge representations

Constraint-ranking systems

OT: Hammond 1999, Pater 2000, Tesar & Smolensky 2000

9 violable constraints

Premise: Many different candidates for a word’s stress representation and contour are generated and then ranked according to which constraints are violated. Violating higher-ranked constraints is worse than violating lower-ranked constraints.

<table>
<thead>
<tr>
<th></th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
<th>C4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(OC to) pus</td>
<td></td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>oc (TO pus)</td>
<td></td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>(oc TO) pus</td>
<td></td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
</tbody>
</table>

Best candidate for the correct grammar has a compatible contour

OCtopus
Three knowledge representations

Constraint-ranking systems

OT: Hammond 1999, Pater 2000, Tesar & Smolensky 2000

9 violable constraints

Hypothesis space: 9! rankings = 362,880 grammars

Grammar = ranked ordering of all constraints

Best candidate for the correct grammar has a compatible contour

OCtopus
Three knowledge representations

Constraint-ranking systems

OT: Hammond 1999, Pater 2000, Tesar & Smolensky 2000
9 violable constraints
Hypothesis space: $9!$ rankings = 362,880 grammars

OCtopus

Best candidate for the correct grammar has a compatible contour

Official grammars for languages are often described as partial orderings of constraints.

English grammar
Three knowledge representations

Constraint-ranking systems

OT: Hammond 1999, Pater 2000, Tesar & Smolensky 2000

9 violable constraints

Hypothesis space: 9! rankings = 362,880 grammars

This means the “grammar” for a language is often a set of the possible rankings (grammars) that obey those orderings.

Ex: The English “grammar” is compatible with 26 rankings.
Three knowledge representations

Constraint-ranking systems

OT: Hammond 1999, Pater 2000, Tesar & Smolensky 2000

9 violable constraints

Hypothesis space: 9! rankings = 362,880 grammars

Principle (Rooting): All words must have stress

Best candidate for the correct grammar has a compatible contour

OCtopus

- Nonfinality, Parse-σ
- Foot binarity
- Trochaic
- Weight-to-Stress
- Align left, Align right
- *Sonorant nucleus
Three knowledge representations

Constraint-ranking systems

OT: Hammond 1999, Pater 2000, Tesar & Smolensky 2000

9 violable constraints

Hypothesis space: 9! rankings = 362,880 grammars

Principle (Rooting): All words must have stress

Sample candidates

A sample grammar that is a version of the English “grammar”:

- (OC to) (PUS)
- (oc TO) (PUS)

Best candidate for the correct grammar has a compatible contour

OCtopus
Three knowledge representations

Constraint-ranking systems

9 violable constraints

Hypothesis space: 9! rankings = 362,880 grammars

Principle (Rooting): All words must have stress

Nonfinality, Parse-\(\sigma\)
Foot binarity
Trochaic
Weight-to-Stress
Align left, Align right
*Sonorant nucleus

Best candidate for the correct grammar has a compatible contour

OCtopus

Only one candidate left, and it has a compatible contour.

Sample candidates

A sample grammar that is a version of the English “grammar”:

(OC to) (PUS)

(OC to) pus

(OC to) (PUS)

oc (TO pus)
Three knowledge representations

Constraint-ranking systems

9 violable constraints

Hypothesis space: 9! rankings = 362,880 grammars

Principle (Rooting): All words must have stress

Best candidate for the correct grammar has a compatible contour

OCtopus

A sample grammar that is a version of the English “grammar”:
Knowledge representation comparison

HV: 5 parameters & 3 sub-parameters
Hypothesis space: 156 grammars

Hayes: 8 parameters
Hypothesis space: 768 grammars

OT: 9 violable constraints
Hypothesis space: 362,880 grammars
English instantiations

HV: 5 parameters & 4 sub-parameters
Hypothesis space: 156 grammars

Hayes: 8 parameters
Hypothesis space: 768 grammars

OT: 9 violable constraints
Hypothesis space: 362,880 grammars
(English = 26 grammars)
Learning English metrical phonology: Non-trivial

Non-trivial because there are many data that are ambiguous for which parameter value or constraint ranking they implicate

This is generally a problem for acquisition (poverty of the stimulus = the data are compatible with many hypotheses).
Learning English metrical phonology: Non-trivial

Non-trivial because there are many irregularities. This is less common for acquisition – usually there aren’t a lot of exceptions to the system being acquired.
Learning English metrical phonology: Non-trivial

Non-trivial because there are many *irregularities*. This is less common for acquisition – usually there aren’t a lot of exceptions to the system being acquired.

Some causes of irregularity:

Interactions with morphology (Chomsky & Halle 1968, Hayes 1982, Kiparsky 1979)

Example: Adding productive morphology doesn’t change the stress pattern, even though all grammars base their stress patterns on the syllables present in the word.

```
EARly
EARlier
PREtty
PREttiest
senSAtion
senSAtional
senSAtionally
```
Learning English metrical phonology: Non-trivial

Non-trivial because there are many **irregularities**. This is less common for acquisition – usually there aren’t a lot of exceptions to the system being acquired.

Some causes of irregularity:

Stress contours may be different across grammatical categories, even though the syllabic word form doesn’t change.

<table>
<thead>
<tr>
<th>NOUNS</th>
<th>VERBS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONduct</td>
<td>conDUCT</td>
</tr>
<tr>
<td>DEsert</td>
<td>deSERT</td>
</tr>
<tr>
<td>SUspect</td>
<td>suSPECT</td>
</tr>
</tbody>
</table>
Learning English metrical phonology: Non-trivial

These irregularities can cause multiple stress contours to be associated with a syllabic word form. This is problematic for the grammars in these knowledge representations...

Syllabic word form: V VV

KI tty a WAY UH OH
V vv v VV V VV
Learning English metrical phonology: Non-trivial

These irregularities can cause multiple stress contours to be associated with a syllabic word form. This is problematic for the grammars in these knowledge representations, since a grammar can only generate a single stress contour per syllabic word form...

Syllabic word form: V VV

Generate one of these...

- KI tty
- a WAY
- V vv
- v VV
- UH OH
- V VV
Learning English metrical phonology: Non-trivial

These irregularities can cause multiple stress contours to be associated with a syllabic word form. This is problematic for the grammars in these knowledge representations, since a grammar can only generate a single stress contour per syllabic word form or select a single stressed syllabic word form as the best candidate.

Syllabic word form: V VV

Select one of these...

KI tty
V vv
a WAY
v VV
UH OH
V VV

*Sonorant nucleus
Learning English metrical phonology: Non-trivial

Upshot of **multiple stress contours**: No one grammar can account for all the stressed words in the input.

But how big of a problem is this in English child-directed speech?

Syllabic word form: \(V \ VV \)

- KI tty
- a WAY
- UH OH
- V vv
- v VV
- V VV
Learning English metrical phonology: Non-trivial

Analysis of Brent corpus (CHILDES database): 4780 word types (99,968 tokens) of American English speech directed at children between the ages of 6 and 12 months

Syllabic word form: V VV

KI tty a WAY UH OH
V vv v VV V VV

Multiple stress contours
HV: 73 of 123 syllabic word forms
Hayes: 86 of 149 syllabic word forms
OT: 166 of 452 syllabic word forms

This occurs a lot!
Learning English metrical phonology

So what’s the best any grammar in a given knowledge representation actually does, given these data?

Learnability potential = proportion of data the best grammar (relative compatibility ≈ 1.00) can account for
Learning English metrical phonology

So what’s the best any grammar in a given knowledge representation actually does, given these data?

Learnability potential = proportion of data the best grammar (relative compatibility ≈ 1.00) can account for

Raw compatibility of best grammar

- HV: 0.668 types (0.739 tokens)
- Hayes: 0.683 types (0.750 tokens)
- OT: 0.657 types (0.729 tokens)

Around 2/3 of the word types
Learning English metrical phonology

Implication:
The best grammar is pretty useful to have. It allows a learner to account for a good proportion of the input, even if there's a significant chunk that can't be accounted for.

Raw compatibility of best grammar

<table>
<thead>
<tr>
<th></th>
<th>HV:</th>
<th>Hayes:</th>
<th>OT:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.668 types (0.739 tokens)</td>
<td>0.683 types (0.750 tokens)</td>
<td>0.657 types (0.729 tokens)</td>
</tr>
</tbody>
</table>

Around 2/3 of the word types

data
Learning English metrical phonology

So how does the *(best)* English grammar in a given knowledge representation do, given these data?

Raw compatibility of the English grammar = proportion of data the *(best)* English grammar can account for
Learning English metrical phonology

So how does the (best) English grammar in a given knowledge representation do, given these data?

Raw compatibility of the English grammar = proportion of data the (best) English grammar can account for

Raw compatibility of English grammar

HV: 0.593 types (0.716 tokens)
Hayes: 0.485 types (0.531 tokens)
OT: 0.573 types (0.574 tokens)

Significantly less than the best grammar
Learning English metrical phonology

So how does the (best) English grammar in a given knowledge representation do, given these data?

Raw compatibility of the English grammar = proportion of data the (best) English grammar can account for

Raw compatibility of English grammar
HV: 0.593 types (0.716 tokens)
Hayes: 0.485 types (0.531 tokens)
OT: 0.573 types (0.574 tokens)

Raw compatibility of best grammar
HV: 0.668 types (0.739 tokens)
Hayes: 0.683 types (0.750 tokens)
OT: 0.657 types (0.729 tokens)
Learning English metrical phonology

Implication:
A rational learner would not pick the English grammar for any of these knowledge representations. It would pick the best grammar instead.

Raw compatibility of English grammar
HV: 0.593 types (0.716 tokens)
Hayes: 0.485 types (0.531 tokens)
OT: 0.573 types (0.574 tokens)

Significantly less than the best grammar

Raw compatibility of best grammar
HV: 0.668 types (0.739 tokens)
Hayes: 0.683 types (0.750 tokens)
OT: 0.657 types (0.729 tokens)
Learning English metrical phonology

So how does the *(best) English grammar compare* to the other grammars defined by the knowledge representation?

Relative compatibility of the English grammar = proportion of grammars in the hypothesis space the *(best) English grammar is better than*
Learning English metrical phonology

So how does the (best) English grammar compare to the other grammars defined by the knowledge representation?

Relative compatibility of the English grammar = proportion of grammars in the hypothesis space the (best) English grammar is better than

Relative compatibility of English grammar
HV: 0.673 by types (0.673 by tokens) out of 156 grammars
Hayes: 0.676 by types (0.685 by tokens) out of 768 grammars
OT: 0.817 by types (0.785 by tokens) out of 362,880 grammars

Better than many…but many are still better
Learning English metrical phonology

Implication:
There are many other grammars in the hypothesis space that are more compatible with the data. Even if children aren’t optimal learners, it would be easier to pick one of these other more compatible grammars.

Relative compatibility of English grammar
HV: 0.673 by types (0.673 by tokens) out of 156 grammars
Hayes: 0.676 by types (0.685 by tokens) out of 768 grammars
OT: 0.817 by types (0.785 by tokens) out of 362,880 grammars

Better than many... but many are still better
Learning English metrical phonology

Interim conclusion:

Learnability issues exist for the English grammar in all three knowledge representations.

- **Parametric:** HV
- **Parametric:** Hayes
- **Constraint-based:** OT
The learnability problem

Initial knowledge state

Knowledge representation

Child-directed speech

Target knowledge state

English system
The learnability problem: One option

Change the (immediate) target state. Assume there is a transitory state in learning that the learner reaches and then leaves once additional knowledge is acquired.
Learning English metrical phonology

One solution: The learner has derived additional knowledge that helps guide learning.

General knowledge: *Interactions* with morphology
(Chomsky & Halle 1968, Hayes 1982, Kiparsky 1979)

Specific knowledge: Adding productive morphology doesn’t change the stress pattern, even though all grammars base their stress patterns on the syllables present in the word.

EARly
EARlier
PREtty
PREttiest
senSAtion
senSAtional
senSAtionally
Learning English metrical phonology

One solution: The learner has derived additional knowledge that helps guide learning.

English children seem to use inflectional morphology productively around 3 (Brown 1973) – so they may be aware it doesn’t get stressed, based on their prior linguistic experience.
Learning English metrical phonology

So how does the (best) English grammar compare to the other grammars defined by the knowledge representation, once the learner knows inflectional morphology is stressless?

Relative compatibility of the English grammar = proportion of grammars in the hypothesis space the (best) English grammar is better than
Learning English metrical phonology

So how does the (best) English grammar compare to the other grammars defined by the knowledge representation, once the learner knows inflectional morphology is stressless?

Relative compatibility of the English grammar = proportion of grammars in the hypothesis space the (best) English grammar is better than

Relative compatibility of English grammar
HV: 0.712 by types (0.673 by tokens) out of 156 grammars
Hayes: 0.704 by types (0.685 by tokens) out of 768 grammars
OT: 0.786 by types (0.777 by tokens) out of 362,880 grammars

Better than many...but many are still better
Learning English metrical phonology

Implication:
There remain many other grammars in the hypothesis space that are more compatible with the data, even though the learner knows inflectional morphology is stressless. Even if children aren’t optimal learners, it would be easier to pick one of these other more compatible grammars.

Relative compatibility of English grammar
HV: 0.712 by types (0.673 by tokens) out of 156 grammars
Hayes: 0.704 by types (0.685 by tokens) out of 768 grammars
OT: 0.786 by types (0.777 by tokens) out of 362,880 grammars

Better than many...but many are still better
Continuing conclusion:

The same learnability issues persist for the English grammar in all three knowledge representations, even when the learner has some knowledge of the interactions between morphology and metrical phonology.
The learnability problem: Another option

- Initial knowledge state
- Knowledge representation
- Child-directed speech
- Target knowledge state
- English system
The learnability problem: Another option

The initial state of the learner includes *prior knowledge* that helps the learner learn in a more sophisticated way.
One type of useful knowledge: Unambiguous data filter

Previous working assumption: The learner will try to learn a grammar that can account for all the data encountered.
One type of useful knowledge: Unambiguous data filter

Updated working assumption: The learner will try to learn a grammar that can account for all the *unambiguous* data encountered (Fodor 1998, Pearl 2008).

This is a small subset of the available data which can be viewed as *maximally informative.*
One type of useful knowledge: Unambiguous data filter

Updated working assumption: The learner will try to learn a grammar that can account for all the *unambiguous* data encountered (Fodor 1998, Pearl 2008).

Pearl 2008: This type of bias will allow the HV English grammar to be learned from English data.
Updated working assumption: The learner will try to learn a grammar that can account for all the **productive** data encountered (Legate & Yang 2012).
Updated working assumption: The learner will try to learn a grammar that can account for all the productive data encountered (Legate & Yang 2012).
The learnability problem: A third option

- Initial knowledge state
 - Knowledge representation
- Child-directed speech
- Target knowledge state
 - English system
The learnability problem: A third option

The target grammar is different than we think, and we should update our definition of the English grammar.
What should the target grammar be?

One approach: What values/constraint rankings do the grammars have that are more compatible with the data than the official English grammar?
What should the target grammar be?

One approach: What values/constraint rankings do the grammars have that are more compatible with the data than the official English grammar?
What should the target grammar be?

One approach: What values/constraint rankings do the grammars have that are more compatible with the data than the official English grammar?

If we examine the grammars with high compatibility, it turns out that the values used by the English grammar are the values used by the majority of these grammars.
What should the target grammar be?

One approach: What values/constraint rankings do the grammars have that are more compatible with the data than the official English grammar?

Parametric: HV

- Quantity sensitivity
- Extrametricality
- Foot directionality
- Foot headedness
- Boundedness

English grammar

Upshot: Unclear for the HV knowledge representation that the learning problem can be fixed by simply switching one parameter value here or there.
What should the target grammar be?

One approach: What values/constraint rankings do the grammars have that are more compatible with the data than the official English grammar?

Parametric: Hayes
- Stress analysis direction
- Extrametricality
- Syllable weight
- Foot directionality
- Word layer end rule
- Foot inventory
- Degenerate feet

English grammar
What should the target grammar be?

One approach: What values/constraint rankings do the grammars have that are more compatible with the data than the official English grammar?

If we examine the grammars with high compatibility, it turns out that there are some parameter values that the majority of high compatibility grammars use, but which the English grammar does not use.
What should the target grammar be?

One approach: What values/constraint rankings do the grammars have that are more compatible with the data than the official English grammar?

If we examine the grammars with high compatibility, it turns out that there are some parameter values that the majority of high compatibility grammars use, but which the English grammar does not use.

(1) Change the Foot inventory value.

Relative compatibility = 0.910
What should the target grammar be?

One approach: What values/constraint rankings do the grammars have that are more compatible with the data than the official English grammar?

If we examine the grammars with high compatibility, it turns out that there are some parameter values that the majority of high compatibility grammars use, but which the English grammar does not use.

1. Change the Foot inventory value.
2. Change the Extrametricality and Degenerate feet values.

Relative compatibility = 0.923
What should the target grammar be?

One approach: What values/constraint rankings do the grammars have that are more compatible with the data than the official English grammar?

Parametric: Hayes

- Stress analysis direction
- Extrametricality
- Syllable weight
- Foot directionality
- Parsing locality
- Word layer end rule
- Degenerate feet
- Foot inventory

English grammar

Upshot: For the Hayes knowledge representation, the learning problem could be ameliorated by simply switching a small number of parameter values.
What should the target grammar be?

One approach: What values/constraint rankings do the grammars have that are more compatible with the data than the official English grammar?

Constraint-based: OT

English grammar obeys this ordering
What should the target grammar be?

One approach: What values/constraint rankings do the grammars have that are more compatible with the data than the official English grammar?

If we examine the grammars with high compatibility, it turns out that there is one constraint ordering the English grammar uses which none of these grammars use.

Weight-to-Stress VV >> Nonfinality

(Effect: Prefer long syllables to be stressed, even if they’re at the right edge of the word)
What should the target grammar be?

One approach: What values/constraint rankings do the grammars have that are more compatible with the data than the official English grammar?

If we examine the grammars with high compatibility, it turns out that there is one constraint ordering the English grammar uses which none of these grammars use.

Implication: This ranking may be better for English data.
What should the target grammar be?

One approach: What values/constraint rankings do the grammars have that are more compatible with the data than the official English grammar?

If we examine the grammars with high compatibility, it turns out that there is one constraint ordering the English grammar uses which none of these grammars use.

Relative compatibility = 0.988
What should the target grammar be?

One approach: What values/constraint rankings do the grammars have that are more compatible with the data than the official English grammar?

Constraint-based: OT

<table>
<thead>
<tr>
<th>Nonfiniteness, Parse-σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foot binarity</td>
</tr>
<tr>
<td>Trochaic</td>
</tr>
<tr>
<td>Weight-to-Stress</td>
</tr>
<tr>
<td>Align left, Align right</td>
</tr>
<tr>
<td>*Sonorant nucleus</td>
</tr>
</tbody>
</table>

English grammar obeys this ordering

Upshot: For the OT knowledge representation, the learning problem could be alleviated by simply switching one constraint ordering.
Since learnability issues exist for all three knowledge representations, something else must be going on.

As it stands, they can explain cross-linguistic variation, but the English grammars don’t seem to be learnable from English data.
One thing we can do to help learnability:

Assume there is at least one transitory state in learning that the learner reaches and then leaves once additional knowledge is acquired.

Adding some knowledge about the interaction of stress with inflectional morphology is insufficient on its own, however.
Learnability implication recap

Another thing we can do to help learnability:

Add in **prior knowledge** that helps the child perceive the input in a helpful way. Two potentially useful learning biases involve learning a grammar that accounts for a subset of the available data, rather than all of it. One parametric system’s English grammar (**HV**) has been shown to be learnable this way.
Learnability implication recap

A third thing we can do to help learnability:

Update our ideas about the **target grammar** slightly: alter certain parameter values or constraint rankings. This could allow the parametric Hayes and constraint-ranking OT English grammars to be easily learnable from English data.
Big picture
Establishing a methodology for quantitatively evaluating competing linguistic knowledge representations

- based on an argument from acquisition (how learnable are the language-specific grammars from realistic acquisition data?)
Establishing a methodology for quantitatively evaluating competing linguistic knowledge representations

• based on an argument from acquisition (how learnable are the language-specific grammars from realistic acquisition data?)

Testing against hard cases, like learning English

Idea: If a representation can handle the hard cases, it’s really useful
Big picture

Establishing a methodology for quantitatively evaluating competing linguistic knowledge representations
 • based on an argument from acquisition (how learnable are the language-specific grammars from realistic acquisition data?)

Testing against hard cases, like learning English
 Idea: If a representation can handle the hard cases, it’s really useful

Provide insight on why current instantiations fail and what can be done about it
 • alter theory about how learning proceeds
 • alter theory of language-specific grammars defined by knowledge representations
Thank you!

Zephyr Detrano

Tim Ho

Joanna Lee

Pranav Anand Adrian Brasoveanu Sandy Chung Jim McCloskey
Armin Mester Matt Wagers

UC Santa Cruz Linguistics colloquium 2014
Logic & Philosophy of Science 2013 colloquium, UC Irvine
Institute for Mathematical Behavioral Sciences 2013, UC Irvine
Extra material
Three knowledge representations

Parametric systems

HV: Halle & Vergnaud 1987, Dresher 1999, Pearl 2011

5 parameters & 3 sub-parameters

Hypothesis space: 156 grammars

Correct grammar builds compatible contour

OCtopus

Grammar = Set of parameter & sub-parameter values
Three knowledge representations

Parametric systems

HV: Halle & Vergnaud 1987, Dresher 1999, Pearl 2011
5 parameters & 3 sub-parameters
Hypothesis space: 156 grammars

Correct grammar builds compatible contour

OCtopus

oc to pus
Three knowledge representations

Parametric systems

HV: Halle & Vergnaud 1987, Dresher 1999, Pearl 2011
5 parameters & 3 sub-parameters
Hypothesis space: 156 grammars

Quantity sensitivity
Are syllables all identical, or are they differentiated by syllable weight (into Heavy and Light syllables)?

Correct grammar builds compatible contour

OCtopus

H L H
oc to pus
Three knowledge representations

Parametric systems

HV: Halle & Vergnaud 1987, Dresher 1999, Pearl 2011
5 parameters & 3 sub-parameters
Hypothesis space: 156 grammars

- Extrametricality
- Foot headedness
- Foot directionality
- Quantity sensitivity
- Boundedness

Extrametricality
Are all syllables included in the larger units of metrical feet, or are some excluded?

Correct grammar builds compatible contour

OCtopus

H L H
oc to pus
Three knowledge representations

Parametric systems

HV: Halle & Vergnaud 1987, Dresher 1999, Pearl 2011
5 parameters & 3 sub-parameters
Hypothesis space: 156 grammars

Correct grammar builds compatible contour

\textit{OCtopus}

\textbf{Foot directionality}
Are feet constructed from the left or from the right?
Three knowledge representations

Parametric systems

\textbf{HV}: Halle & Vergnaud 1987, Dresher 1999, Pearl 2011
5 parameters & 3 sub-parameters
Hypothesis space: 156 grammars

Correct grammar builds compatible contour

\textit{OC}topus

\((H \ L) H\)

oc to pus

Boundedness
How big are metrical feet?
Three knowledge representations

Parametric systems

HV: Halle & Vergnaud 1987, Dresher 1999, Pearl 2011
5 parameters & 3 sub-parameters
Hypothesis space: 156 grammars

Correct grammar builds compatible contour

Foot headedness
Which syllable in a foot is stressed?

OCtopus

(H) H
oc to pus
Three knowledge representations

Parametric systems

HV: Halle & Vergnaud 1987, Dresher 1999, Pearl 2011
5 parameters & 3 sub-parameters
Hypothesis space: 156 grammars

Correct grammar builds compatible contour

This grammar, comprised of particular parameter values, generates the correct stress contour.

(H L) H
OC to pus

Parameter values used:
Quantity sensitive, VC syllables = Heavy, Extrametricality on rightmost syllable, Feet built from the right, Foot = 2 syllables, Leftmost syllable in foot stressed
Three knowledge representations

Parametric systems

HV: Halle & Vergnaud 1987, Dresher 1999, Pearl 2011

5 parameters & 3 sub-parameters

Hypothesis space: 156 grammars

Correct grammar builds compatible contour

This grammar, comprised of particular parameter values, generates the correct stress contour.

(H L) H
OC to pus

Parameter values used:

QS-VC-H, Em-Rt, FtDir-Rt, B-2-Syl, FtHd-Left

...which are the values of the English grammar.
Three knowledge representations

Parametric systems

Hayes: Hayes 1995
8 parameters
Hypothesis space: 768 grammars

Correct grammar builds compatible contour

OCtopus
Three knowledge representations

Parametric systems

Hayes: Hayes 1995
8 parameters
Hypothesis space: 768 grammars

Correct grammar builds compatible contour

OCtopus

oc to pus
Three knowledge representations

Parametric systems

Hayes: Hayes 1995
8 parameters
Hypothesis space: 768 grammars

Stress analysis direction
Are metrical feet created before word-level stress is assigned to the edge syllables or after?

Correct grammar builds compatible contour

(...feet first...)

oc to pus
Three knowledge representations

Parametric systems

Hayes: Hayes 1995

8 parameters

Hypothesis space: 768 grammars

Extrametricality

Are syllables on the edge (or parts of syllables) excluded from metrical feet?
Three knowledge representations

Parametric systems

Hayes: Hayes 1995

8 parameters

Hypothesis space: 768 grammars

Syllable weight

Syllables are distinguished into Heavy and Light. Are syllables ending in VC (like *oc*) Heavy or Light?

Correct grammar builds compatible contour

OCtopus

H L L
oc to pu
Three knowledge representations

Hayes: Hayes 1995
8 parameters
Hypothesis space: 768 grammars

Correct grammar builds compatible contour

OCtopus

Foot directionality
Are metrical feet constructed from the left or the right?
Three knowledge representations

Parametric systems

Hayes: Hayes 1995
8 parameters
Hypothesis space: 768 grammars

Correct grammar builds compatible contour

OCtopus

Parsing locality
Is one Light syllable skipped between metrical feet?
Three knowledge representations

Parametric systems

Hayes: Hayes 1995
8 parameters
Hypothesis space: 768 grammars

Foot inventory
How big are metrical feet?
Where does the stress fall within them?
Three knowledge representations

Parametric systems

Hayes: Hayes 1995
8 parameters
Hypothesis space: 768 grammars

Degenerate feet
What do you do with leftover Light syllables if you have any?
Three knowledge representations

Parametric systems

Hayes: Hayes 1995

8 parameters

Hypothesis space: 768 grammars

Word layer end rule

Where does word-level stress go if there are multiple stressed syllables? Can leftover Light syllables have word-level stress?
Three knowledge representations

Parametric systems

Hayes: Hayes 1995

8 parameters

Hypothesis space: 768 grammars

Parameter values used:

- **Bottom-up**, Extrametricality on rightmost consonant, VC syllables = Heavy, Feet built from the right, Light syllables not skipped in between feet, Foot = Moraic trochee (2 moras with stress on leftmost), Single Light edge syllables not allowed to have stress, Rightmost syllable gets main stress
Three knowledge representations

Parametric systems

Hayes: Hayes 1995

8 parameters

Hypothesis space: 768 grammars

Parameter values used:
- Bot, Em-RtCons, VC-H, FtDir-Rt,
- PL-Strong, MorTro, DF-Strong, WLER-Rt

Correct grammar builds compatible contour

This grammar, comprised of particular parameter values, generates an incorrect stress contour.

\[(H)(L L)\]

OC TÓ pus

...which are the values of the English grammar.
Three knowledge representations

Constraint-ranking systems

OT: Hammond 1999, Pater 2000, Tesar & Smolensky 2000

9 violable constraints
Three knowledge representations

Constraint-ranking systems

OT: Hammond 1999, Pater 2000, Tesar & Smolensky 2000

9 violable constraints

Premise: Many different candidates for a word’s stress representation and contour are generated and then ranked according to which constraints are violated. Violating higher-ranked constraints is worse than violating lower-ranked constraints.

<table>
<thead>
<tr>
<th></th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
<th>C4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(OC to) pus</td>
<td></td>
<td></td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>oc (TO pus)</td>
<td>*</td>
<td></td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>(oc TO) pus</td>
<td></td>
<td></td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>
Three knowledge representations

Constraint-ranking systems

OT: Hammond 1999, Pater 2000, Tesar & Smolensky 2000

9 violable constraints

Hypothesis space: 9! rankings = 362,880 grammars

Grammar = ranked ordering of all constraints

Best candidate for the correct grammar has a compatible contour

OCtopus
Three knowledge representations

Constraint-ranking systems

9 violable constraints

Hypothesis space: 9! rankings = 362,880 grammars

Official grammars for languages are often described as partial orderings of constraints.

Best candidate for the correct grammar has a compatible contour

OCtopus

English grammar
Three knowledge representations

Constraint-ranking systems

9 violable constraints
Hypothesis space: 9! rankings = 362,880 grammars

This means the “grammar” for a language is often a set of the possible rankings (grammars) that obey those orderings.

Ex: The English “grammar” is compatible with 26 rankings.
Three knowledge representations

Constraint-ranking systems

9 violable constraints

Hypothesis space: 9! rankings = 362,880 grammars

Principle (Rooting): All words must have stress

- Nonfinality, Parse-σ
- Foot binarity
- Trochaic
- Weight-to-Stress
- Align left, Align right
- *Sonorant nucleus

OCtopus

Best candidate for the correct grammar has a compatible contour
Three knowledge representations

Constraint-ranking systems

OT: Hammond 1999, Pater 2000, Tesar & Smolensky 2000

9 violable constraints

Hypothesis space: $9!$ rankings = 362,880 grammars

Principle (Rooting): All words must have stress

Nonfinality
Should the final syllable not be in a metrical foot?

Best candidate for the correct grammar has a compatible contour

(OC to) (PUS) (OC to) pus
(OC to) (PUS) (OC to) pus
Three knowledge representations

Constraint-ranking systems

OT: Hammond 1999, Pater 2000, Tesar & Smolensky 2000

9 violable constraints

Hypothesis space: 9! rankings = 362,880 grammars

Principle (Rooting): All words must have stress

Best candidate for the correct grammar has a compatible contour

COM

Parse-σ

Should all syllables be in metrical feet?

- (OC to) (PUS)
- (oc TO) (PUS)
- (OC to) pus
- oc (TO pus)
Three knowledge representations

Constraint-ranking systems

OT: Hammond 1999, Pater 2000, Tesar & Smolensky 2000

9 violable constraints

Hypothesis space: $9!$ rankings = 362,880 grammars

Principle (Rooting): All words must have stress

Best candidate for the correct grammar has a compatible contour

OCtopus

Foot binarity

Should all metrical feet consist of two units?

- (OC to) (PUS)
- (oc TO) (PUS)
- (OC to) pus
- oc (TO pus)
Three knowledge representations

Constraint-ranking systems

OT: Hammond 1999, Pater 2000, Tesar & Smolensky 2000

9 violable constraints

Hypothesis space: $9!$ rankings = 362,880 grammars

Principle (Rooting): All words must have stress

Trochaic

Should metrical feet have stress on the leftmost syllable?

- $(OC \ to) \ (PUS)$
- $(OC \ TO) \ (PUS)$
- $(OC \ to) \ pus$
- $(oc \ TO \ pus)$

Best candidate for the correct grammar has a compatible contour

OCtopus
Three knowledge representations

Constraint-ranking systems

OT: Hammond 1999, Pater 2000, Tesar & Smolensky 2000

9 violable constraints

Hypothesis space: 9! rankings = 362,880 grammars

Principle (Rooting): All words must have stress

Best candidate for the correct grammar has a compatible contour

Weight-to-Stress (VV)
Should all VV syllables be stressed?

- (ba BY)
- (BA) by
- (BA by)
Three knowledge representations

Constraint-ranking systems

9 violable constraints

Hypothesis space: 9! rankings = 362,880 grammars

Principle (Rooting): All words must have stress

Best candidate for the correct grammar has a compatible contour

Weight-to-Stress (VC)

Should all VC syllables be stressed?

- (OC to) (PUS)
- (OC to) pus
- (oc TO) (PUS)
- oc (TO pus)
Three knowledge representations

Constraint-ranking systems

- **OT**: Hammond 1999, Pater 2000, Tesar & Smolensky 2000
- 9 violable constraints
- Hypothesis space: $9!$ rankings = 362,880 grammars

Principle (Rooting): All words must have stress

- **Nonfinality**, **Parse-σ**
- **Foot binarity**
- **Trochaic**
- **Weight-to-Stress**
- **Align left**, **Align right**
- **Sonorant nucleus**

OCtopus

Best candidate for the correct grammar has a compatible contour

Align left

≈ Should metrical feet include the leftmost syllable?

- (OC to) (PUS)
- (oc TO) (PUS)
- (OC to) pus
- oc (TO pus)
Three knowledge representations

Constraint-ranking systems

9 violable constraints

Hypothesis space: $9!$ rankings = 362,880 grammars

Principle (Rooting): All words must have stress

Best candidate for the correct grammar has a compatible contour

OCtopus

Principle (Rooting):
- All words must have stress
- Nonfinality
- Parse-σ
- Trochaic
- Weight-to-Stress
- Align left
- Align right
- *Sonorant nucleus

Align right

≈ Should metrical feet include the rightmost syllable?

✓

(OC to) (PUS)

✓ ✓

(OC to) pus

(oc TO) (PUS)

oc (TO pus)
Three knowledge representations

Constraint-ranking systems

OT: Hammond 1999, Pater 2000, Tesar & Smolensky 2000

9 violable constraints

Hypothesis space: 9! rankings = 362,880 grammars

Principle (Rooting): All words must have stress

Sonorant nucleus

Should syllables not have sonorants \((m, n, η, l, r)\) as the nucleus?

- your (SELF)
- (YOUR) (SELF)
- (yr SELF)
- (YOUR slf)
Three knowledge representations

Constraint-ranking systems

9 violable constraints

Hypothesis space: 9! rankings = 362,880 grammars

Principle (Rooting): All words must have stress

Best candidate for the correct grammar has a compatible contour

OCtopus

Sample candidates

A sample grammar that is a version of the English “grammar”:

(OC to) (PUS)

(oc TO) (PUS)

(OC to) pus

oc (TO pus)
Three knowledge representations

Constraint-ranking systems

OT: Hammond 1999, Pater 2000, Tesar & Smolensky 2000

9 violable constraints

Hypothesis space: $9!$ rankings = 362,880 grammars

Principle (Rooting): All words must have stress

Nonfinality, Parse-σ

Foot binarity

Trochaic

Weight-to-Stress

Align left, Align right

Sonorant nucleus

Best candidate for the correct grammar has a compatible contour

OCtopus

Most important: Metrical feet have stress on the leftmost syllable.

Sample candidates

A sample grammar that is a version of the English “grammar”:

- (OC to) (PUS)
- (OC to) pus
- (oc TO) (PUS)
- oc (TO pus)
Three knowledge representations

Constraint-ranking systems

OT: Hammond 1999, Pater 2000, Tesar & Smolensky 2000

9 violable constraints

Hypothesis space: 9! rankings = 362,880 grammars

Principle (Rooting): All words must have stress

Next important: VV syllables are stressed.

A sample grammar that is a version of the English “grammar”:

Best candidate for the correct grammar has a compatible contour

Sample candidates:

\((OC \ to) (PUS)\)

\((OC \ to) \ pus\)

\((oc \ TO) (PUS)\)

\(oc \ (TO \ pus)\)
Three knowledge representations

Constraint-ranking systems

OT: Hammond 1999, Pater 2000, Tesar & Smolensky 2000

9 violable constraints

Hypothesis space: $9!$ rankings = 362,880 grammars

Principle (Rooting): All words must have stress

Next important: The final syllable is not included in a foot.

Sample candidates

A sample grammar that is a version of the English “grammar”:

Best candidate for the correct grammar has a compatible contour

OCtopus
Three knowledge representations

Constraint-ranking systems

9 violable constraints

Hypothesis space: 9! rankings = 362,880 grammars

Principle (Rooting): All words must have stress

Nonfinality, Parse-σ
Foot binarity
Trochaic
Weight-to-Stress
Align left, Align right
*Sonorant nucleus

OCtopus

Best candidate for the correct grammar has a compatible contour

Only one candidate left, and it has a compatible contour.

Sample candidates

A sample grammar that is a version of the English “grammar”:

(OC to) (PUS)

(OC to) pus

(oc TO) (PUS)

oc (TO pus)
Three knowledge representations

Constraint-ranking systems

9 violable constraints

Hypothesis space: 9! rankings = 362,880 grammars

Principle (Rooting): All words must have stress

Best candidate for the correct grammar has a compatible contour

OCtopus

A sample grammar that is a version of the English “grammar”:
Knowledge representation comparison

HV: 5 parameters & 3 sub-parameters
Hypothesis space: 156 grammars

Hayes: 8 parameters
Hypothesis space: 768 grammars

OT: 9 violable constraints
Hypothesis space: 362,880 grammars
English instantiations

HV: 5 parameters & 4 sub-parameters
Hypothesis space: 156 grammars

Hayes: 8 parameters
Hypothesis space: 768 grammars

OT: 9 violable constraints
Hypothesis space: 362,880 grammars
(English = 26 grammars)
Knowledge representation comparison

HV: 5 parameters & 3 sub-parameters
Hypothesis space: 156 grammars

Hayes: 8 parameters
Hypothesis space: 768 grammars

Each representation assumes certain syllabic distinctions.

OT: 9 violable constraints
Hypothesis space: 362,880 grammars
Knowledge representation comparison

HV: 5 parameters & 3 sub-parameters
Hypothesis space: 156 grammars
Syllabic distinctions: 3
(short, closed, long)

Hayes: 8 parameters
Hypothesis space: 768 grammars
Syllabic distinctions: 4
(short, potentially short, closed, long)

OT: 9 violable constraints
Hypothesis space: 362,880 grammars
Syllabic distinctions: 8
(short, sonorant, 4 closed variants, long, super-long)
Learning English metrical phonology: Non-trivial

So what’s the best any grammar could possibly do, given these data?

Answer: Syllabic learnability potential

Account for the most frequent stress pattern for each syllabic word form.

Syllabic word form: $V \ VV$

- Ktty
- Vvv
- a WAY
- v VV
- UH OH
- V VV
Learning English metrical phonology: Non-trivial

So what’s the best any grammar could possibly do, given these data?

Answer: Syllabic learnability potential
Account for the most frequent stress pattern for each syllabic word form.

Syllabic word form: V VV

Syllabic learnability potential by knowledge representation (proportion accounted for)

HV: 0.711 types (0.766 tokens)
Hayes: 0.719 types (0.769 tokens)
OT: 0.795 types (0.829 tokens)

Pretty good potential coverage, even if it isn’t perfect
Learning English metrical phonology

So what’s the best any grammar could possibly do, given these data and the knowledge that inflectional morphology is stressless?

Syllabic learnability potential
Accounting for the most frequent stress pattern for each syllabic word form.

Syllabic word form: V VV

KI tty
V vv

a WAY
v VV

UH OH
V VV

data
Learning English metrical phonology

So what’s the best any grammar could possibly do, given these data and the knowledge that inflectional morphology is stressless?

Syllabic learnability potential

Accounting for the most frequent stress pattern for each syllabic word form.

Syllabic word form: $V \ VV$

<table>
<thead>
<tr>
<th>Syllable</th>
<th>HV</th>
<th>Hayes</th>
<th>OT</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V vv$</td>
<td>0.708 types (0.766 tokens)</td>
<td>0.711 types (0.768 tokens)</td>
<td>0.820 types (0.852 tokens)</td>
</tr>
<tr>
<td>$V VV$</td>
<td>UH OH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$V vv$</td>
<td>a WAY</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Syllabic learnability potential by knowledge representation (proportion accounted for)

Still pretty good potential coverage…but it’s also still not perfect.
Learning English metrical phonology

Why wouldn’t the best grammar’s compatibility be equivalent to the syllabic learnability potential? What’s preventing it?

A grammar is constrained by the specific parameters or constraints defined by the KR. These parameters/constraints may not be compatible with the most frequent stress contour every time.

Syllabic word form: V VV

- Ki tty
- V vv
- 18

Syllabic word form: VV VV

- a WAY
- V VV
- 242

Syllabic word form: VV VV

- BA by
- VV vv
- 198

Syllabic learnability potential: Choose these stress contours (which are opposite)
Learning English metrical phonology

Why wouldn’t the best grammar’s compatibility be equivalent to the syllabic learnability potential? What’s preventing it?

A grammar is constrained by the specific parameters or constraints defined by the KR. These parameters/constraints may not be compatible with the most frequent stress contour every time.

Syllabic word form: V VV

<table>
<thead>
<tr>
<th>Syllable</th>
<th>Stressed</th>
<th>Unstressed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kl tty</td>
<td>a WAY</td>
<td>V VV</td>
</tr>
<tr>
<td>V vv</td>
<td>v</td>
<td>242</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Syllabic word form: VV VV

<table>
<thead>
<tr>
<th>Syllable</th>
<th>Stressed</th>
<th>Unstressed</th>
</tr>
</thead>
<tbody>
<tr>
<td>BA by</td>
<td>o KAY</td>
<td>VV vv</td>
</tr>
<tr>
<td>198</td>
<td>vv VV</td>
<td>4</td>
</tr>
</tbody>
</table>

Grammar compatibility (preferring same contour): Choose these stress contours...
Learning English metrical phonology

Why wouldn’t the best grammar’s compatibility be equivalent to the syllabic learnability potential? What’s preventing it?

A grammar is constrained by the specific parameters or constraints defined by the KR. These parameters/constraints may not be compatible with the most frequent stress contour every time.

Syllabic word form: V VV

- KI tty
- V vv
- 18
- a WAY
- v VV
- 242

Syllabic word form: VV VV

- BA by
- VV vv
- 198
- o KAY
- vv VV
- 4

Grammar compatibility (preferring same contour): ...or these stress contours.
The learnability problem: One option

Change the (immediate) target state. Assume there is a transitory state in learning that the learner reaches and then leaves once additional knowledge is acquired.
Learning English metrical phonology

One solution: The learner has derived additional knowledge that helps guide learning.

General knowledge: Interactions with morphology
(Chomsky & Halle 1968, Hayes 1982, Kiparsky 1979)

Specific knowledge: Adding productive morphology doesn’t change the stress pattern, even though all grammars base their stress patterns on the syllables present in the word.

EARly
EARlier
PREtty
PREttiest
senSAtion
senSAtional
senSAtionally
Learning English metrical phonology

One solution: The learner has derived additional knowledge that helps guide learning.

English children seem to use inflectional morphology productively around 3 (Brown 1973) – so they may be aware it doesn’t get stressed, based on their prior linguistic experience.
Learning English metrical phonology

So what’s the best any grammar in a given knowledge representation actually does, given these data and the knowledge that inflectional morphology is stressless?

Learnability potential = proportion of data the best grammar (relative compatibility ≈ 1.00) can account for
Learning English metrical phonology

So what’s the best any grammar in a given knowledge representation actually does, given these data and the knowledge that inflectional morphology is stressless?

Learnability potential = proportion of data the best grammar (relative compatibility ≈ 1.00) can account for

Raw compatibility of best grammar
HV: 0.662 types (0.738 tokens)
Hayes: 0.683 types (0.750 tokens)
OT: 0.677 types (0.749 tokens)
Learning English metrical phonology

Implication:
The best grammar is still pretty useful to have. It allows a learner to account for a good proportion of the input, even if there’s a significant chunk that can’t be accounted for. However, knowing inflectional morphology is stressless doesn’t seem to help it account for any more than it could before...

Raw compatibility of best grammar

HV: 0.662 types (0.738 tokens)
Hayes: 0.683 types (0.750 tokens)
OT: 0.677 types (0.749 tokens)

Still around 2/3 of the word types...
Learning English metrical phonology

So how does the (best) English grammar in a given knowledge representation do, given these data and the knowledge that inflectional morphology is stressless?

Raw compatibility of the English grammar = proportion of data the (best) English grammar can account for
Learning English metrical phonology

So how does the (best) English grammar in a given knowledge representation do, given these data and the knowledge that inflectional morphology is stressless?

Raw compatibility of the English grammar = proportion of data the (best) English grammar can account for

Raw compatibility of English grammar

HV: 0.605 types (0.719 tokens)
Hayes: 0.550 types (0.552 tokens)
OT: 0.578 types (0.575 tokens)

Still significantly less than the best grammar
Learning English metrical phonology

So how does the (best) English grammar in a given knowledge representation do, given these data and the knowledge that inflectional morphology is stressless?

Raw compatibility of the English grammar = proportion of data the (best) English grammar can account for

Raw compatibility of English grammar
- **HV:** 0.605 types (0.719 tokens)
- **Hayes:** 0.550 types (0.552 tokens)
- **OT:** 0.578 types (0.575 tokens)

Still significantly less than the best grammar

Raw compatibility of best grammar
- **HV:** 0.662 types (0.738 tokens)
- **Hayes:** 0.683 types (0.750 tokens)
- **OT:** 0.677 types (0.749 tokens)
Learning English metrical phonology

Implication:

A rational learner would still not pick the English grammar for any of these knowledge representations, even with knowledge that inflectional morphology is stressless. It would pick the best grammar instead.

Raw compatibility of English grammar

<table>
<thead>
<tr>
<th></th>
<th>HV: 0.605 types (0.719 tokens)</th>
<th>Hayes: 0.550 types (0.552 tokens)</th>
<th>OT: 0.578 types (0.575 tokens)</th>
</tr>
</thead>
</table>

Raw compatibility of best grammar

<table>
<thead>
<tr>
<th></th>
<th>HV: 0.662 types (0.738 tokens)</th>
<th>Hayes: 0.683 types (0.750 tokens)</th>
<th>OT: 0.677 types (0.749 tokens)</th>
</tr>
</thead>
</table>

Still significantly less than the best grammar
Learning English metrical phonology

So how does the (best) English grammar compare to the other grammars defined by the knowledge representation, once the learner knows inflectional morphology is stressless?

Relative compatibility of the English grammar = proportion of grammars in the hypothesis space the (best) English grammar is better than
Learning English metrical phonology

So how does the (best) English grammar compare to the other grammars defined by the knowledge representation, once the learner knows inflectional morphology is stressless?

Relative compatibility of the English grammar = proportion of grammars in the hypothesis space the (best) English grammar is better than

Relative compatibility of English grammar

HV: 0.712 by types (0.673 by tokens) out of 156 grammars
Hayes: 0.704 by types (0.685 by tokens) out of 768 grammars
OT: 0.786 by types (0.777 by tokens) out of 362,880 grammars

Better than many... but many are still better
Learning English metrical phonology

Implication:
There remain many other grammars in the hypothesis space that are more compatible with the data, even though the learner knows inflectional morphology is stressless. Even if children aren’t optimal learners, it would be easier to pick one of these other more compatible grammars.

Relative compatibility of English grammar
HV: 0.712 by types (0.673 by tokens) out of 156 grammars
Hayes: 0.704 by types (0.685 by tokens) out of 768 grammars
OT: 0.786 by types (0.777 by tokens) out of 362,880 grammars

Better than many...but many are still better
Continuing conclusion:

The same learnability issues persist for the English grammar in all three knowledge representations, even when the learner has some knowledge of the interactions between morphology and metrical phonology.
The learnability problem: One option that didn’t work

Additional knowledge that **inflectional morphology is stressless** in English didn’t seem to help. Why not?
The learnability problem: One option that didn’t work

One problem:

All English grammars generally want long syllables (VV nucleus) to be stressed (though the HV parametric grammar allows some exceptions). However, many English words have long syllables that aren’t stressed. These remain problematic even with knowledge about inflectional morphology.

<table>
<thead>
<tr>
<th>proper names</th>
<th>diminutives</th>
</tr>
</thead>
<tbody>
<tr>
<td>EL mo</td>
<td>KI tty</td>
</tr>
<tr>
<td>MAN dy</td>
<td>DA ddy</td>
</tr>
<tr>
<td></td>
<td>BLAN kie</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SWEE tie</td>
</tr>
<tr>
<td></td>
<td>DO ggie</td>
</tr>
<tr>
<td></td>
<td>SO ckie</td>
</tr>
</tbody>
</table>
The learnability problem: One option that didn’t work

One problem:

All English grammars generally want long syllables (VV nucleus) to be stressed (though the HV parametric grammar allows some exceptions). However, many English words have long syllables that aren’t stressed. These remain problematic even with knowledge about inflectional morphology.

- **proper names**
 - EL mo
 - MAN dy

- **diminutives**
 - KI tty
 - DA ddy
 - BLAN kie
 - SWEE tie
 - DO ggie
 - SO ckie

unstressed long syllables
The learnability problem: One option that didn’t work

One solution: Additional knowledge
Perhaps children learn that the /i/ diminutive affix behaves like inflectional morphology. Then, syllables containing this ending are expected to be stressless.

proper names
- EL mo
- MAN dy

diminutives
- KI tty
- DA ddy
- BLAN kie
- SWEE tie
- DO ggie
- SO ckie

unstressed long syllables
The learnability problem: One option that didn’t work...

One solution: Additional knowledge

Perhaps children learn that proper names are a coherent (semantic) class that may have different stress properties. This is similar to recognizing that grammatical categories may have different effects on stress.

- **proper names**
 - EL mo
 - MAN dy

- **diminutives**
 - KI tty
 - DA ddy
 - BLAN kie

- **unstressed long syllables**
 - SWEE tie
 - DO ggie
 - SO ckie
The learnability problem: Another option

Initial knowledge state

Child-directed speech

Target knowledge state

Knowledge representation

English system
The initial state of the learner includes prior knowledge that helps the learner learn in a more sophisticated way.
What kind of prior knowledge?

Helpful prior knowledge: **Learning biases**

Pearl 2008: The **parametric HV** English grammar can be learned from child-directed speech if children are biased to learn only from data perceived as unambiguous for a particular parameter value.

In addition, children must learn the parameter values in **particular orders** (obeying certain order constraints).
Unambiguous data filter

Previous working assumption: The learner will try to learn a grammar that can account for all the data encountered.
Updated working assumption: The learner will try to learn a grammar that can account for all the unambiguous data encountered.

This is a small subset of the available data which can be viewed as maximally informative.
Unambiguous data filter

Updated working assumption: The learner will try to learn a grammar that can account for all the unambiguous data encountered.

Why would this occur?

Perhaps the learner prioritizes data that are viewed as highly informative. The goal then becomes to learn a system that can account for all these data.
Updated working assumption: The learner will try to learn a grammar that can account for all the unambiguous data encountered.

How would this occur?

The learner may look for cues that signal a data point is unambiguous for a particular parameter value or constraint ordering (Pearl 2008, Pearl 2011). These cues may be derived from attempting to analyze a data point with the existing parametric/constraint-ordering options (Fodor 1998, Pearl 2007) – if only one parameter value or constraint ordering is present in successful analyses, this is a cue.
What kind of prior knowledge?

Helpful prior knowledge: Learning biases

Potentially helpful: A bias to learn only from data viewed as productive (Legate & Yang 2012).
Previous working assumption: The learner will try to learn a grammar that can account for all the data encountered.
Updated working assumption: The learner will try to learn a grammar that can account for all the productive data encountered.
Updated working assumption: The learner will try to learn a grammar that can account for all the productive data encountered.

Why would this occur?

Perhaps the learner realizes that some data are unproductive, and therefore likely irregular and unpredictable. The goal then becomes to learn a grammar that can account for all the data that are predictable.
Updated working assumption: The learner will try to learn a grammar that can account for all the **productive** data encountered.

How would this occur?

For every syllable word form (ex: V VV) that has multiple stress contours associated with it, the learner assumes that **one of these patterns may be the productive contour** and the others are exceptions to this general “rule”.
Updated working assumption: The learner will try to learn a grammar that can account for all the productive data encountered.

How would this occur?

A formal way for identifying if there is a dominant rule for a set of items is the Tolerance Principle (Yang 2005, Legate & Yang 2012). This is used to estimate how many exceptions a rule can tolerate in a set before it’s no longer useful for the learner to have the rule. If there are too many exceptions, it’s better not to have a rule and learn patterns on an individual item basis instead of having a rule that keeps getting violated.
Productive data filter

Updated working assumption: The learner will try to learn a grammar that can account for all the *productive* data encountered.

How would this occur?

The number of exceptions a rule can tolerate for a set of N items is

$$\frac{N}{\ln(N)}$$

(Yang 2005, Legate & Yang 2012)
The Tolerance Principle in action

For every syllable word form with multiple stress contours, the learner could assess whether any of those contours is the dominant one (the “rule” for that syllable word form), using the Tolerance Principle.
The Tolerance Principle in action

For every syllable word form with multiple stress contours, the learner could assess whether any of those contours is the dominant one (the “rule” for that syllable word form), using the Tolerance Principle.

If one contour is dominant, the learner should focus on accounting for that pattern, since it’s regular and productive. The grammar should be able to generate it. The other contours can be ignored for purposes of learning the grammar.
The Tolerance Principle in action

For every syllable word form with multiple stress contours, the learner could assess whether any of those contours is the dominant one (the “rule” for that syllable word form), using the Tolerance Principle.

If no contour is dominant, the learner should ignore this syllable word form for the purposes of learning the grammar since there is no obvious regularity to account for.
Productive data filter in action
Productive data filter in action

Parametric: HV & Hayes, with inflectional knowledge

HV: 123 syllable word forms
Hayes: 149 syllable word forms

3 syllable distinctions
4 syllable distinctions

V VV

01
a WAY
162 types
3713 tokens

10
Kl tty
325 types
12709 tokens

11
UH OH
19 types
1509 tokens
Productive data filter in action

Parametric: HV & Hayes, with inflectional knowledge

HV: 123 syllable word forms
3 syllable distinctions

Hayes: 149 syllable word forms
4 syllable distinctions

These items are good for the HV English grammar.
Productive data filter in action

Parametric: **HV & Hayes**, with inflectional knowledge

HV: 123 syllable word forms
- 3 syllable distinctions

Hayes: 149 syllable word forms
- 4 syllable distinctions

These items are good for the Hayes English grammar.
Productive data filter in action

Parametric: HV & Hayes, with inflectional knowledge

HV: 123 syllable word forms
Hayes: 149 syllable word forms

3 syllable distinctions
4 syllable distinctions

These items aren’t good for either English grammar.
Productive data filter in action

Parametric: HV & Hayes, with inflectional knowledge
HV: 123 syllable word forms Hayes: 149 syllable word forms
 3 syllable distinctions 4 syllable distinctions

The Tolerance Principle looks at the **word types** with each stress pattern. Each represents an individual item that might follow the regular stress pattern rule (if there is one).
Productive data filter in action

Parametric: HV & Hayes, with inflectional knowledge
HV: 123 syllable word forms
 3 syllable distinctions
Hayes: 149 syllable word forms
 4 syllable distinctions

How many items should the stress “rule” apply to?
\[N = 162 + 325 + 19 = 506 \]
Productive data filter in action

Parametric: HV & Hayes, with inflectional knowledge

HV: 123 syllable word forms
 3 syllable distinctions
Hayes: 149 syllable word forms
 4 syllable distinctions

If this is the dominant pattern, too many exceptions:
325 + 19 > 81

How many exceptions are allowed? \(\frac{506}{\ln(506)} = 81 \)
Productive data filter in action

Parametric: HV & Hayes, with inflectional knowledge

HV: 123 syllable word forms
Hayes: 149 syllable word forms

3 syllable distinctions
4 syllable distinctions

If this is the dominant pattern, too many exceptions:
162 + 19 > 81

How many exceptions are allowed? 506 / ln(506) = 81
Productive data filter in action

Parametric: HV & Hayes, with inflectional knowledge

HV: 123 syllable word forms

Hayes: 149 syllable word forms

3 syllable distinctions

4 syllable distinctions

If this is the dominant pattern, way too many exceptions:

162 + 325 > 81

How many exceptions are allowed? 506 / ln(506) = 81
Productive data filter in action

Parametric: HV & Hayes, with inflectional knowledge

HV: 123 syllable word forms
3 syllable distinctions

Hayes: 149 syllable word forms
4 syllable distinctions

Learner conclusion: No dominant stress pattern, so none of these syllable word form data should be used to learn the English grammar.
Productive data filter in action

Parametric: HV & Hayes, with inflectional knowledge

HV: 123 syllable word forms
 3 syllable distinctions

Hayes: 149 syllable word forms
 4 syllable distinctions

This will end up helping both grammars, since they won’t be penalized for the patterns they can’t account for.
Productive data filter in action

Parametric: HV & Hayes, with inflectional knowledge

HV: 123 syllable word forms
3 syllable distinctions

Hayes: 149 syllable word forms
4 syllable distinctions

However, the Hayes grammar is helped a little more, since it couldn’t account for
the most frequent stress pattern before, while the HV grammar could.
Productive data filter in action

Constraint-based: OT, with inflectional knowledge

- 452 syllable word forms
- 8 syllable distinctions
Productive data filter in action

Constraint-based: **OT**, with inflectional knowledge

- 452 syllable word forms
- 8 syllable distinctions

![Diagram with VVV structure and word forms](attachment:image.png)

- 01: a WAY
 - 25 types
 - 976 tokens

- 10: Kl tty
 - 316 types
 - 12664 tokens

- 11: UH OH
 - 14 types
 - 1480 tokens
Productive data filter in action

Constraint-based: OT, with inflectional knowledge

- 452 syllable word forms
- 8 syllable distinctions

These items are bad for all English grammars.
Productive data filter in action

Constraint-based: **OT**, with inflectional knowledge

- 452 syllable word forms
- 8 syllable distinctions

These items are good for most English grammars (21/26).
Productive data filter in action

Constraint-based: **OT**, with inflectional knowledge

- 452 syllable word forms
- 8 syllable distinctions

![Diagram](image)

These items are good for a few English grammars (5/26).
Productive data filter in action

Constraint-based: OT, with inflectional knowledge

452 syllable word forms
8 syllable distinctions

How many items should the stress “rule” apply to? $N = 25 + 316 + 14 = 355$
Productive data filter in action

Constraint-based: OT, with inflectional knowledge

- 452 syllable word forms
- 8 syllable distinctions

How many exceptions are allowed? \(\frac{355}{\ln(355)} = 60 \)
Productive data filter in action

Constraint-based: OT, with inflectional knowledge
- 452 syllable word forms
- 8 syllable distinctions

If this is the dominant pattern, too many exceptions:
316 + 14 > 60

How many exceptions are allowed? $\frac{355}{\ln(355)} = 60$
Productive data filter in action

Constraint-based: OT, with inflectional knowledge

- 452 syllable word forms
- 8 syllable distinctions

If this is the dominant pattern, NOT too many exceptions:
25 + 14 < 60

How many exceptions are allowed? $\frac{355}{\ln(355)} = 60$
Productive data filter in action

Constraint-based: OT, with inflectional knowledge

452 syllable word forms
8 syllable distinctions

If this is the dominant pattern, too many exceptions:
25 + 316 > 60

How many exceptions are allowed? \(\frac{355}{\ln(355)} = 60 \)
Under the OT syllable representation, there is a dominant stress pattern for this word form. Therefore, this pattern should be accounted for by the English grammar.
Productive data filter in action

Constraint-based: **OT**, with inflectional knowledge

- 452 syllable word forms
- 8 syllable distinctions

Unfortunately, this is the only pattern the English grammars cannot account for….this means a learner using the productivity filter would have even more trouble learning the current English OT grammar constraints.
The learnability problem: A third option

Initial knowledge state

Knowledge representation

Child-directed speech

Target knowledge state

English system
The learnability problem: A third option

The target grammar is different than we think, and we should update our definition of the English grammar.
What should the target grammar be?

One approach: What values/constraint rankings do the grammars have that are more compatible with the data than the official English grammar?
What should the target grammar be?

One approach: What values/constraint rankings do the grammars have that are more compatible with the data than the official English grammar?

Parametric: HV

- Quantity sensitivity
- Extrametricality
- Foot directionality
- Foot headedness
- Boundedness

English grammar
What should the target grammar be?

One approach: What values/constraint rankings do the grammars have that are more compatible with the data than the official English grammar?

Parametric: HV

If we examine the grammars with high compatibility, it turns out that the values used by the English grammar are the values used by the majority of these grammars.

Example: Extrametricality on the rightmost syllable is used by 53 of 58 high compatibility grammars.
What should the target grammar be?

One approach: What values/constraint rankings do the grammars have that are more compatible with the data than the official English grammar?

Parametric: HV

- Quantity sensitivity
- Extrametricality
- Foot directionality
- Foot headedness
- Boundedness

English grammar

Upshot: Unclear for the HV knowledge representation that the learning problem can be fixed by simply switching one parameter value here or there.
What should the target grammar be?

One approach: What values/constraint rankings do the grammars have that are more compatible with the data than the official English grammar?

Parametric: Hayes

- Stress analysis direction
- Extrametricality
- Syllable weight
- Foot directionality
- Word layer end rule
- Foot inventory
- Degenerate feet
- Parsing locality

English grammar
What should the target grammar be?

One approach: What values/constraint rankings do the grammars have that are more compatible with the data than the official English grammar?

If we examine the grammars with high compatibility, it turns out that there are some parameter values that the majority of high compatibility grammars use, but which the English grammar does not use.
What should the target grammar be?

One approach: What values/constraint rankings do the grammars have that are more compatible with the data than the official English grammar?

Parametric: Hayes

- Stress analysis direction
- Word layer end rule
- Degenerate feet
- Foot inventory
- Syllable weight
- Foot directionality
- Parsing locality

If we examine the grammars with high compatibility, it turns out that there are some parameter values that the majority of high compatibility grammars use, but which the English grammar does not use.

(1) Change the Foot inventory value.

This boosts raw compatibility from 0.485 types (0.531 tokens) to 0.644 types (0.733 tokens).

Relative compatibility = 0.910
What should the target grammar be?

One approach: What values/constraint rankings do the grammars have that are more compatible with the data than the official English grammar?

Parametric: Hayes

- Stress analysis direction
- Word layer end rule
- Degenerate feet
- Foot inventory
- Foot directionality
- Parsing locality

If we examine the grammars with high compatibility, it turns out that there are some parameter values that the majority of high compatibility grammars use, but which the English grammar does not use.

1. Change the Foot inventory value.
2. Change the Extrametricality and Degenerate feet values.

This boosts raw compatibility from 0.485 types (0.531 tokens) to 0.652 types (0.729 tokens).

Relative compatibility = 0.923

Optimal: 0.683 types (0.750 tokens)
What should the target grammar be?

One approach: What values/constraint rankings do the grammars have that are more compatible with the data than the official English grammar?

Upshot: For the Hayes knowledge representation, the learning problem could be ameliorated by simply switching a small number of parameter values.
What should the target grammar be?

One approach: What values/constraint rankings do the grammars have that are more compatible with the data than the official English grammar?

Constraint-based: OT

- Nonfinality, Parse-σ
- Foot binarity
- Trochaic
- Weight-to-Stress
- Align left, Align right
 - *Sonorant nucleus

English grammar obeys this ordering
What should the target grammar be?

One approach: What values/constraint rankings do the grammars have that are more compatible with the data than the official English grammar?

Constraint-based: OT

Nonfinality, Parse-σ
Foot binarity
Trochaic
Weight-to-Stress
Align left, Align right
*Sonorant nucleus

If we examine the grammars with high compatibility, it turns out that there is one constraint ordering English uses which none of these grammars use.

Weight-to-Stress VV >> Nonfinality

(Effect: Prefer long syllables to be stressed, even if they’re at the right edge of the word)

BA by problematic
What should the target grammar be?

One approach: What values/constraint rankings do the grammars have that are more compatible with the data than the official English grammar?

Constraint-based: OT

- Nonfinality, Parse-σ
- Foot binarity
- Trochaic
- Weight-to-Stress
- Align left, Align right
- *Sonorant nucleus

If we examine the grammars with high compatibility, it turns out that there is one constraint ordering English uses which none of these grammars use.

Implication: This ranking may be better for English data.
What should the target grammar be?

One approach: What values/constraint rankings do the grammars have that are more compatible with the data than the official English grammar?

Constraint-based: OT

- Nonfinality, Parse-σ
- Foot binarity
- Trochaic
- Weight-to-Stress
- Align left, Align right
- *Sonorant nucleus

If we examine the grammars with high compatibility, it turns out that there is one constraint ordering English uses which none of these grammars use.

Best English grammar raw compatibility with the original ranking is 0.574 types (0.573 tokens).

Best English grammar raw compatibility with this swapped ranking is 0.655 types (0.729 tokens).

Relative compatibility = 0.988
What should the target grammar be?

One approach: What values/constraint rankings do the grammars have that are more compatible with the data than the official English grammar?

Constraint-based: OT

- Nonfinality, Parse-σ
- Foot binarity
- Trochaic
- Weight-to-Stress
- Align left, Align right
- *Sonorant nucleus

English grammar obeys this ordering

Upshot: For the OT knowledge representation, the learning problem could be alleviated by simply switching one constraint ordering.
Parametric knowledge representation comparison
• HV English grammar outperforms Hayes English grammar in overall compatibility

Raw compatibilities by type for English grammar in parameter systems (with no knowledge of inflection):

<table>
<thead>
<tr>
<th></th>
<th>HV</th>
<th>Hayes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>59.33%</td>
<td>48.05%</td>
</tr>
<tr>
<td>Difference</td>
<td>11.28%</td>
<td>difference</td>
</tr>
</tbody>
</table>

Which common stressed wordforms are contributing to the relatively high performance of the HV English grammar?

The 10 most common stressed wordforms by type constitute 58.32% of total types in the input. (L = VVC*, X = V, A = VCC+, P = VC)

<table>
<thead>
<tr>
<th>Stressed wordform</th>
<th># Types</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lp</td>
<td>592</td>
<td>water, doing, going</td>
</tr>
<tr>
<td>Xp</td>
<td>472</td>
<td>little, getting, coming</td>
</tr>
<tr>
<td>Ll</td>
<td>334</td>
<td>baby, sweetie, mommy</td>
</tr>
<tr>
<td>Xl</td>
<td>309</td>
<td>kitty, daddy, very</td>
</tr>
<tr>
<td>Ap</td>
<td>235</td>
<td>goodness, handsome, helper</td>
</tr>
<tr>
<td>LL</td>
<td>188</td>
<td>okay, byebye, TV</td>
</tr>
<tr>
<td>Al</td>
<td>172</td>
<td>window, birdie, only</td>
</tr>
<tr>
<td>La</td>
<td>171</td>
<td>peanuts, secrets, highest</td>
</tr>
<tr>
<td>Xa</td>
<td>170</td>
<td>biggest, buckets, hiccups</td>
</tr>
<tr>
<td>xL</td>
<td>145</td>
<td>below, today, hurray</td>
</tr>
</tbody>
</table>
HV English grammar derives 8 of the 10 most common stressed wordforms.

<table>
<thead>
<tr>
<th>Stressed wordform</th>
<th># Types</th>
<th>Examples</th>
<th>HV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lp</td>
<td>592</td>
<td>water, doing, going</td>
<td>Yes</td>
</tr>
<tr>
<td>Xp</td>
<td>472</td>
<td>little, getting, coming</td>
<td>Yes</td>
</tr>
<tr>
<td>Ll</td>
<td>334</td>
<td>baby, sweetie, mommy</td>
<td>Yes</td>
</tr>
<tr>
<td>Xl</td>
<td>309</td>
<td>kitty, daddy, very</td>
<td>Yes</td>
</tr>
<tr>
<td>Ap</td>
<td>235</td>
<td>goodness, handsome, helper</td>
<td>Yes</td>
</tr>
<tr>
<td>LL</td>
<td>188</td>
<td>okay, byebye, TV</td>
<td>No</td>
</tr>
<tr>
<td>Al</td>
<td>172</td>
<td>window, birdie, only</td>
<td>Yes</td>
</tr>
<tr>
<td>La</td>
<td>171</td>
<td>peanuts, secrets, highest</td>
<td>Yes</td>
</tr>
<tr>
<td>Xa</td>
<td>170</td>
<td>biggest, buckets, hiccups</td>
<td>Yes</td>
</tr>
<tr>
<td>xL</td>
<td>145</td>
<td>below, today, hurray</td>
<td>No</td>
</tr>
</tbody>
</table>
Hayes English grammar derives 5 of the 10 most common stressed wordforms.

<table>
<thead>
<tr>
<th>Stressed wordform</th>
<th># Types</th>
<th>Examples</th>
<th>Hayes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lp</td>
<td>592</td>
<td>water, doing, going</td>
<td>Yes</td>
</tr>
<tr>
<td>Xp</td>
<td>472</td>
<td>little, getting, coming</td>
<td>Yes</td>
</tr>
<tr>
<td>Ll</td>
<td>334</td>
<td>baby, sweetie, mommy</td>
<td>No</td>
</tr>
<tr>
<td>Xl</td>
<td>309</td>
<td>kitty, daddy, very</td>
<td>No</td>
</tr>
<tr>
<td>Ap</td>
<td>235</td>
<td>goodness, handsome, helper</td>
<td>Yes</td>
</tr>
<tr>
<td>LL</td>
<td>188</td>
<td>okay, byebye, TV</td>
<td>Yes</td>
</tr>
<tr>
<td>Al</td>
<td>172</td>
<td>window, birdie, only</td>
<td>No</td>
</tr>
<tr>
<td>La</td>
<td>171</td>
<td>peanuts, secrets, highest</td>
<td>No</td>
</tr>
<tr>
<td>Xa</td>
<td>170</td>
<td>biggest, buckets, hiccups</td>
<td>No</td>
</tr>
<tr>
<td>xL</td>
<td>145</td>
<td>below, today, hurray</td>
<td>Yes</td>
</tr>
</tbody>
</table>
The **Hayes English grammar** misses **Ll** and **XL**, two common patterns that together account for **13%** of the input by type.

However, it derives **LL** and **xL**, alternate contours for these wordforms that are also frequent, accounting for **7%** of input by type.

<table>
<thead>
<tr>
<th>Stressed wordform</th>
<th># Types</th>
<th>Examples</th>
<th>HV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lp</td>
<td>592</td>
<td>water, doing, going</td>
<td>Yes</td>
</tr>
<tr>
<td>Xp</td>
<td>472</td>
<td>little, getting, coming</td>
<td>Yes</td>
</tr>
<tr>
<td>Ll</td>
<td>334</td>
<td>baby, sweetie, mommy</td>
<td>No</td>
</tr>
<tr>
<td>XL</td>
<td>309</td>
<td>kitty, daddy, very</td>
<td>No</td>
</tr>
<tr>
<td>Ap</td>
<td>235</td>
<td>goodness, handsome, helper</td>
<td>Yes</td>
</tr>
<tr>
<td>LL</td>
<td>188</td>
<td>okay, byebye, TV</td>
<td>Yes</td>
</tr>
<tr>
<td>Al</td>
<td>172</td>
<td>window, birdie, only</td>
<td>No</td>
</tr>
<tr>
<td>La</td>
<td>171</td>
<td>peanuts, secrets, highest</td>
<td>No</td>
</tr>
<tr>
<td>Xa</td>
<td>170</td>
<td>biggest, buckets, hiccups</td>
<td>No</td>
</tr>
<tr>
<td>xL</td>
<td>145</td>
<td>below, today, hurray</td>
<td>Yes</td>
</tr>
</tbody>
</table>
HV vs. Hayes on most frequent word forms

<table>
<thead>
<tr>
<th>Stressed wordform</th>
<th># Types</th>
<th>Examples</th>
<th>HV</th>
<th>Hayes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lp</td>
<td>592</td>
<td>water, doing, going</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Xp</td>
<td>472</td>
<td>little, getting, coming</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Li</td>
<td>334</td>
<td>baby, sweetie, mommy</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Xl</td>
<td>309</td>
<td>kitty, daddy, very</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Ap</td>
<td>235</td>
<td>goodness, handsome, helper</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>LL</td>
<td>188</td>
<td>okay, byebye, TV</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Al</td>
<td>172</td>
<td>window, birdie, only</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>La</td>
<td>171</td>
<td>peanuts, secrets, highest</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Xa</td>
<td>170</td>
<td>biggest, buckets, hiccups</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>xL</td>
<td>145</td>
<td>below, today, hurray</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>
The impact of morphological knowledge

Example: What happens to words of the La stressed word form when the child gets morphological knowledge? (for the Hayes grammar, which can’t account for it without morphological knowledge)

<table>
<thead>
<tr>
<th>Stressed wordform</th>
<th># Types</th>
<th>Examples</th>
<th>HV</th>
<th>Hayes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lp</td>
<td>592</td>
<td>water, doing, going</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Xp</td>
<td>472</td>
<td>little, getting, coming</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Ll</td>
<td>334</td>
<td>baby, sweetie, mommy</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Xl</td>
<td>309</td>
<td>kitty, daddy, very</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Ap</td>
<td>235</td>
<td>goodness, handsome, helper</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>LL</td>
<td>188</td>
<td>okay, byebye, TV</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Al</td>
<td>172</td>
<td>window, birdie, only</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>La</td>
<td>171</td>
<td>peanuts, secrets, highest</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Xa</td>
<td>170</td>
<td>biggest, buckets, hiccups</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>xL</td>
<td>145</td>
<td>below, today, hurray</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>
The impact of morphological knowledge

Example: What happens to words of the La stressed word form when the child gets morphological knowledge? (for the Hayes grammar, which can’t account for it without morphological knowledge)

Before morphological knowledge
171 La (island, giant, moment)

After morphological knowledge
57 La (54 of the 171 + 3 added from Lp form)
– Hayes still can’t account for these

100 Lp (father's→father pockets→pocket slobbered→slobber)
17 L (cutest→cute nicest→nice weirdest→weird)
- Hayes can now account for these

In this case, knowing inflectional morphology is stressless helps!
The impact of morphological knowledge

In general, the Hayes English grammars benefit from morphology knowledge (6.95% more types accounted for, due to 322 types), unlike the HV and OT English grammars.

Where are these changes happening?

- 28 types: incorrectly derived bisyllabics become monosyllabic
 Examples: cleanest → clean (La→L); biggest → big (Xa→P); bestest → best (Aa→A)

- 100 types: incorrectly derived La becomes correctly-derived Lp
 Examples: father’s → father; pockets → pocket; slobbered → slobber

- 112 types: incorrectly derived Xa becomes correctly-derived Xp
 Examples: sister’s → sister; apples → apple; tickled → tickle;

~ 92 types: Changes in less common wordforms
 Examples: messages → message; promises → promise; modeling → model