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Chapter 8

Using computational modeling 
in language acquisition research

Lisa Pearl

1. Introduction

Language acquisition research is o!en concerned with questions of what, when, and 
how – what children know, when they know it, and how they learn it.

"eoretical research traditionally yields the what – the knowledge that children 
attain. For instance, this includes how many vowel phonemes the language has, how 
the plural is formed, and if the verb comes before or a!er the object. "ese and many 
other questions must be answered before the child can speak the language natively. 
"is linguistic knowledge is the child’s goal.

Experimental work traditionally provides the when – at what point in develop-
ment the child attains particular knowledge about the language. Of course, there is a 
certain logical trajectory. It would be di#cult to discover how the past tense is formed 
before being able to identify individual words in $uent speech. Still, this logical trajec-
tory does not o%er precise ages of acquisition. Experimental work can, for example, 
pinpoint when word segmentation occurs reliably and when English children cor-
rectly produce past tense forms. "is gives us the time course of language acquisition. 
"e child can segment words reliably by this age, and apply regular past tense mor-
phology by that age, and so on.

"en, there is the how – how the child learns the appropriate what by the appro-
priate when. "is is the mechanism of language acquisition, which includes what 
knowledge is required to reach the adult knowledge state at the appropriate time. 
Computational modeling can be used to examine a variety of questions about the 
language acquisition process, because a model is meant to be a simulation of the rel-
evant parts of a child’s acquisition mechanism. In a model, we can precisely manipu-
late some part of the mechanism and see the results on acquisition. If we believe the 
model accurately re$ects the child’s language acquisition mechanism, these manipu-
lations and their e%ects inform us about the nature of that mechanism. Importantly, 
some manipulations we can do within a model are di#cult to do with children. "e 
modeling data are thus particularly useful because of the di#culty of getting those 



164 Lisa Pearl

same data through experimental means. "e aim of this chapter is to provide readers 
with additional background about how to e%ectively use computational modeling for 
language acquisition research.

2. Rationale

We generally model to answer questions about the nature of language acquisition that 
we cannot easily test otherwise. But exactly what questions are these? "is section will 
&rst outline di%erent levels at which we can model a language acquisition problem, 
and then discuss when modeling will likely prove informative for understanding a 
language acquisition problem. 

First, we should think about how to characterize the general problem of language 
acquisition. Marr (1982:24–29) identi&ed three levels at which an information-pro-
cessing problem can be characterized: (a) the computational, which describes what 
the problem is, (b) the algorithmic, which describes the steps needed to carry out the 
solution, and (c) the implementational, which describes how the algorithm is instan-
tiated in the available medium. Marr’s insight was that these three levels are distinct 
and can be explored separately. Even if we do not understand how the solution can be 
implemented, we can know what the problem is and what properties a psychologi-
cally plausible algorithm needs to have. Moreover, understanding the problem at one 
level can inform the understanding of the problem at other levels.

"is transfers readily to language acquisition. We can identify the computation-
al-level problems to be solved: stress assignment, word segmentation, word order 
rules, etc. A psychologically plausible algorithm should include considerations like 
the available memory resources children have, and how much processing is needed 
to identify useful data. "e medium where all solutions must be implemented is the 
brain. Crucially, we do not need to know exactly how a given algorithm is instanti-
ated in neural tissue. Consider stress assignment as a speci&c example. We can iden-
tify that the algorithm must involve processing and assigning stress to syllables, 
without knowing how neurons translate sound waves into the mental representation 
of syllables.

Note that the levels are not completely disconnected from each other. Knowledge 
of the algorithmic level, for instance, can constrain the implementational level for 
stress assignment. If we know the solution involves recognizing syllables within words, 
we can look for neural implementations that can recognize syllables.

For language acquisition, we can ask questions at all three levels. At the computa-
tional level, we can identify the problem to be solved, including de&nitions of both the 
input and the output. "ese will be used to de&ne what the model should do. For our 
stress assignment example, the input is the available data in the linguistic environment, 
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organized into syllables. "e output is syllables with a certain amount of stress as-
signed to them. At the algorithmic level, we can identify psychologically plausible al-
gorithms that allow the child to learn the necessary information from the available 
data. "ese will be used to de&ne how our model should operate. With stress assign-
ment, considerations may include what linguistic units probabilistic learning should 
operate over (syllables, bisyllable clusters, metrical feet, etc.). At the implementational 
level, we can test the capability of biologically faithful models for implementing given 
algorithms and producing solutions that are behaviorally faithful. Neural networks 
are an example of biologically-inspired models that attempt to replicate human be-
havior in this way, as is the framework ACT-R (Anderson 1993).

In general, models are used to provide insight for problems that are not readily 
solvable. Testing the obvious with a model will, unsurprisingly, give obvious answers. 
For example, suppose we have a model that learns the word order of verbs and objects 
in the language. A question inappropriate for modeling might be to ask if the model 
will always learn Verb-Object order when given examples of only Verb-Object order. 
Unless the model incorporates some very strong biases for another word order, the 
model will of course learn Verb-Object order. "e model’s output is unsurprising. No 
serious question will have been answered by this model.

Similarly, modeling does not provide informative answers to uninformative ques-
tions. A good rubric of informativeness is theoretical grounding. An example of an 
uninformative question is to ask if the model will hypothesize that the past tense is 
formed by not changing the word form when its input consists only of words ending 
in -yze (e.g. analyze) and -ect (e.g. protect). "is is uninformative because there is no 
theoretical grounding, i.e., no particular behavior from the model will yield anything 
more about the problem. Whether the model does or does not hypothesize the no-
change past tense behavior, it is unclear what information we have gained. Without a 
theory that makes predictions one way or the other, all we have done by modeling this 
question is practice our computer programming skills.

In short, a model provides a way to investigate a speci&c claim about language 
acquisition, which will involve a non-obvious informative question. An example of an 
informative question might involve testing an acquisition theory that claims children 
should not learn from all the available data in order to acquire the correct generaliza-
tions about the language. Instead, children should only learn from “good” data, where 
“good” is de&ned by the acquisition theory. If a model is provided with data from the 
language and incorporates the theory’s “good” data bias, will the model learn the cor-
rect generalizations about the language at the same rate children do?

Obviously, this is a very abstract question that can be instantiated numerous ways. 
One instantiation can be found in a study of learning word order by Pearl & Weinberg 
(2007), where children learned whether their language was Verb Object or Object 
Verb. "ere, a learning theory by Lightfoot (1991) claimed that children should learn 
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only from word order data in main clauses (as opposed to data in embedded clauses). 
Moreover, children should learn only from data perceived as unambiguous for a par-
ticular word order (Lightfoot 1999). Unambiguous data are compatible only with one 
hypothesis, while ambiguous data are compatible with more than one hypothesis. For 
example, unambiguous data for Verb Object would be compatible only with the Verb-
Object order and not the Object-Verb order. To implement their model, Pearl & 
Weinberg used this acquisition theory to de&ne the abstract notion of “good” data as 
unambiguous word order data found in main clauses.

"e question mentioned above is informative for several reasons. First, the ques-
tion is grounded theoretically in a claim about the data children use during acquisition. 
Second, the model can be grounded empirically from language data and the time course 
of acquisition that come from experimental work. "ird, the model provides a clear test 
of the theory’s prediction. If the model learns the correct generalizations at the same 
rate children do, then the theory’s “good” data bias is supported. However, if the model 
does not display the correct behavior, then the theory’s claim is considerably weakened 
as it does not succeed when tested explicitly. For these reasons, this model’s behavior is 
both non-obvious and informative – and so the question is good to model.

We can then evaluate the model’s contribution to language acquisition. "ree 
ways to do this are to assess its formal su!ciency, developmental compatibility, and 
explanatory power. Formal su#ciency asks if the model learns what it is supposed to 
when it is supposed to from the data it is supposed to. "is is evaluated against known 
child behavior and input. Developmental compatibility asks if the model learns in a 
psychologically plausible way, using resources and algorithms the way a child could. 
"is is evaluated against what is known about a child’s cognitive capabilities. Explana-
tory power asks what the crucial part of the model is for generating the correct behav-
ior, and how that impacts the theoretical claim the model is testing. "is is evaluated 
by the modeler via manipulation of the model’s relevant variables (for example, 
whether the modeled children learn from unambiguous main-clause data only in the 
example above). When these questions can be answered satisfactorily, the model con-
tributes something signi&cant to language acquisition research.

3. Linguistic variables

Simply speaking, modeling can be applied to any acquisition problem where there is 
a theoretical claim, a de&ned set of input data, and a de&ned output behavior. "is can 
range from identifying phonemes to word segmentation to learning word order rules 
to identifying the correct parameter values for complex linguistic systems. "is sec-
tion surveys a number of modeling studies for a variety of language acquisition tasks. 
In each case, the model’s strength is in its empirical grounding and its ability to make 
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testable predictions. Because we obviously cannot include all relevant studies, the in-
terested reader is encouraged to look within the studies mentioned for references to 
additional modeling studies examining similar acquisition problems.

3.1 Aspects of the sound system

Modeling can be applied to the problem of discovering the phonemes of a language. 
Vallabha, McClelland, Pons, Werker & Amano (2007) investigated the acquisition of 
vowel contrasts in both English and Japanese from English and Japanese vowel 
sound data. "e acquisition task was well-de&ned: can a model learn the relevant 
vowel contrasts for these languages without explicit knowledge about the relevant 
dimensions of variation and the number of distinct vowels? "is task is non-trivial, 
especially since the model receives no explicit feedback regarding the correctness of 
its hypotheses. "e data came from English and Japanese mothers speaking to their 
children, and so were a realistic estimation of the data children encounter. "e learn-
ing algorithms were incremental variants of probabilistic algorithms from computer 
science. "e model was fairly successful, depending on the type of learning algo-
rithm used. One implication for acquisition was that learning probabilistically from 
noisy data can lead to human-like performance, even without de&ning the hypoth-
esis space very strictly. Moreover, the type of probabilistic learning signi&cantly in-
$uences how successful acquisition is. A prediction from this model might be that 
the processes underlying acquisition are more similar to the more successful algo-
rithm – in this case, perhaps involving an assumption about how the acoustic data 
are generated.

Modeling can also be used to investigate the acquisition of metrical phonology, a 
complex linguistic system that determines where the stress is in words (Dresher & 
Kaye 1990; Dresher 1999; Pearl 2008). For instance, the word emphasis has stress only 
on the &rst syllable ‘em’: it is pronounced EMphasis. Generative metrical theory be-
lieves that this stress pattern is generated by a system that groups syllables into larger 
units called metrical feet, and a number of parameters describe how the grouping 
works. Languages vary on how they group syllables, and so vary on what values these 
parameters have. "e child’s task is to unconsciously infer the parameter values that 
lead to the stress patterns observed in the input.

Pearl (2008) examined this acquisition problem for English, which has many ex-
ceptions to the general rules of the language. Child-directed English speech from the 
freely available Child Language Data Exchange System (CHILDES) (MacWhinney 
2000) was used as input, and the measure of successful acquisition was whether the 
English parameter values could be learned from these data. "is model speci&cally 
tested a claim that children can only succeed if they learn exclusively from unambigu-
ous data (Dresher 1999; Lightfoot 1999). As an example of unambiguous data in this 
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model, consider that one parameter was whether all syllables are included in metrical 
feet. Unambiguous data for the English value are compatible only with an analysis that 
does not include all syllables in metrical feet; ambiguous data are compatible both 
with an analysis where all syllables are not included and with one where all syllables 
are included.

"e results showed that children with a bias to learn only from unambiguous data 
could succeed. In addition, acquisition success was only guaranteed if the parameter 
values were learned in a particular order. A prediction generated from this model is 
that if they really are learning only from unambiguous data, English children should 
learn the English parameter values in that special order.

3.2 Aspects of words

Another problem modeling is used for is understanding how children extract the 
units we think of as words from $uent speech, i.e. word segmentation. Experimental 
work on arti&cial languages suggests that infants can unconsciously track the statisti-
cal information known as transitional probability between syllables, e.g. the probabil-
ity for syllable sequence AB that syllable B is next when syllable A is the &rst syllable. 
One question is if this strategy succeeds on realistic data.

Gambell & Yang (2006) modeled the performance of a transitional probability 
learner on English child-directed speech. "e data came from transcripts of English 
caretakers speaking to children, drawing from the speech samples available in 
CHILDES. To transform the written transcripts into the sounds children hear, 
Gambell & Yang used a freely available pronunciation dictionary, the CMU Pro-
nouncing Dictionary (http://www.speech.cs.cmu.edu/cgi-bin/cmudict), that trans-
forms written words into individual sounds. For example, the word “eight” would be 
transformed into the sound sequence “EY T”, which contains two sounds (as op-
posed to &ve letters).

It turns out that a transitional probability learner actually performs quite poorly 
on the English dataset. Further exploration by Gambell & Yang showed that when a 
transitional probability learner is armed with additional information about the sound 
pattern of words (speci&cally, an assumption of one primary stress per word), the 
modeled learner succeeds. Interestingly, this assumption yields success even if the 
learner does not use transitional probabilities. A prediction from this model is that 
this knowledge about sound patterns is very useful to have, and we can then test if 
children have it before they can segment words. Because this model was explicitly 
de&ned, the learning procedure could be precisely manipulated and informative pre-
dictions made about strategies children might use to solve this task.

Another task modeling can investigate is the grammatical categorization of words. 
Grammatical category information tells the child how the word is used in the language 



 Chapter 8. Using computational modeling in language acquisition research 169

– for instance, nouns (but not verbs) can be modi&ed by adjectives: juicy peach (but not 
juicy eat). Wang & Mintz (2008), building on work by Mintz (2003), explored one 
strategy children might use to identify words that behave similarly: frequent frames.

Frequent frames consist of framing words that cooccur frequently in the child’s 
input. For example, in she eats it, the frame is she___it for the word eats. "is strategy 
was motivated by experimental evidence suggesting that infants can track the cooc-
currence of items that are non-adjacent. Frequent frames were intended as a means to 
initially cluster similarly behaving words in languages with relatively &xed word order. 
Notably, frames do not rely on word meaning, unlike some other theories of gram-
matical categorization. 

"e data used as input for the model came from transcripts of child-directed 
speech from CHILDES. "e modeling demonstrated that a frequent frame learner 
can indeed successfully identify words that behave similarly solely on the basis of their 
common frames. "e resulting categories mapped well to the “true” grammatical cat-
egories like noun and verb. However, note that not all words belonging to a particular 
grammatical category were identi&ed as being in the category, e.g. not all nouns were 
grouped into the noun category (see Section 6.1 for discussion). "is implies that, 
while useful for languages with &xed word order, frequent frames cannot be solely 
responsible for children’s grammatical categorization. A prediction generated from 
this model was that children are sensitive to the information in frequent frames when 
learning a word’s grammatical category. Experimental work by Mintz (2006) tested 
the proposed sensitivity in 12-month-olds, and found that they do seem to use this 
distributional information.

Modeling can also be applied to learning morphology. One problem commonly 
examined, due to the English data resources available and the potential impact on larg-
er questions in language acquisition, is the acquisition of the English past tense,. "e 
problem itself is one of mapping: given a verb (blink, sing, think), map that form to the 
appropriate past tense form (blinked, sang, thought). "e input to models is usually re-
alistic estimates of the verbs children encounter during acquisition, derived from re-
sources like CHILDES. "e output of the model is compared against what is known 
from experimental work about how and when children learn certain past tense forms.

"e main point of interest in many morphology models is that there is a division 
between a regular pattern and several irregular patterns (e.g. blink–blinked vs. sing–
sang, think–thought in the English past tense). Experimental work indicates that many 
English children have a trajectory that involves good performance on all the verbs 
they know, followed by poor performance on only the irregular verbs, which is then 
followed by good performance on all the verbs again. "e ability to generate this learn-
ing trajectory (good-poor-good performance) can be one output goal for English past 
tense models. Another goal can be to assess if the correct behavior can result without 
the model explicitly learning a regular rule (e.g. +ed in the English past tense).
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"e learning procedures of these models usually try to consider psychological 
plausibility with some seriousness, and o!en vary between neural networks (Rumelhart 
& McClelland 1986; Plunkett & Marchman 1991; Prasada & Pinker 1993; Hare & El-
man 1995; Plunkett & Juola 1999; Nakisa, Plunkett & Hahn 2000; among others) and 
probabilistic rule-learning models (Yang 2002; Albright & Hayes 2003; Yang 2005; 
among others). Most models are incremental, learning as the data come in. When the 
models are able to produce the correct output behavior, it is because of some precise 
design feature within the model – perhaps the order data are presented to the model 
(e.g., Rumelhart & McCelland 1986) or what causes the child to posit a regular rule 
pattern (e.g., Yang 2005).

Of course, all these models make assumptions about the knowledge available to 
children. For instance, they assume that children know the underlying form of a word 
when they encounter the surface form (e.g. the child knows thought is the past tense 
of think), which may not be true in real life. As mentioned in the rationale section, 
these are simplifying assumptions on the part of the modeler. However, even simpli-
&ed models can o%er good insights into language acquisition with respect to what will 
(and will not) work, given the best possible acquisition scenario.

"e predictions generated from these models pertain to the factors causing the 
output behavior. For instance, the model by Yang (2005) predicts that the perfor-
mance trajectory depends very precisely on the number of regular and irregular verbs 
encountered by the child and the order in which these verbs are encountered. "is 
prediction can be assessed by examining speci&c input and performance data from 
experimental work with children learning the English past tense, and seeing if the 
model’s predictions match children’s behavior.

3.3 Aspects of syntax and semantics

Modeling can also be used to investigate the acquisition of syntactic and semantic rep-
resentations, and the connection between them. "is is necessary for referential linguis-
tic elements, such as anaphors, pronouns, and other referring expressions. An interest-
ing property of referential items is they are only interpretable if the listener knows what 
they refer to. For example, the word one in English can be used referentially (known as 
anaphoric one): “Jack has a red ball – he wants another one.” Most adult English speak-
ers interpret this to mean “He wants another red ball.” "us, the word one refers to the 
words red ball (not just ball), and the referent of one in the world is a ball that is red (not 
just any ball). "e correct interpretation of one relies on identifying the words one refers 
to (red ball), which then leads to the object in the world one refers to (a ball that is red). 
"e problem for English children is acquiring this correct interpretation.

Several models have attempted to tackle this problem, using incremental, proba-
bilistic learning algorithms on the data. Regier & Gahl (2004) and Pearl & Lidz (2009) 
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manipulated the data children use as input in their models, and found that the correct 
interpretation can be learned very quickly if children use only a highly informative 
subset of the available input. Foraker, Regier, Khetarpal, Perfors & Tenenbaum (to 
appear) created a model that learned what words one referred to (e.g. red ball vs. ball) 
separately and prior to learning what object in the world one referred to (e.g. a ball 
that is red vs. any ball). While the models di%er in their details, the general prediction 
is that children should be sensitive to speci&c aspects of the available data when ac-
quiring this interpretation rule – and importantly, not learn from all available data. As 
before, because the hypothesis space and input to these models were precisely de&ned, 
the models could manipulate both and see the results on acquisition.

Modeling is also useful for examining the acquisition of word order rules in syn-
tax. One example involves the formation of yes/no questions in English when the 
subject is complex. For instance, consider this sentence: “"e knight who can defeat the 
dragon will save the princess.” "e yes/no question equivalent is “Will the knight who 
can defeat the dragon save the princess?” Importantly, the auxiliary verb (will, can, etc.) 
that moves to the beginning of the question is the auxiliary verb from the main clause 
of the sentence ("e knight...will save the princess.).

Interestingly, though children know this rule fairly early, the data they encounter 
have very few explicit examples of this rule – few enough that children’s early acquisition 
of it may seem surprising if their hypotheses for possible rules are not constrained 
(Legate & Yang 2002). However, given children’s statistical learning capabilities, Reali & 
Christiansen (2005) questioned whether a probabilistically learning child could infer the 
correct rule from simpler yes/no questions that are more abundant in the input. "ey 
designed a model sensitive to certain simple statistical information, called bigrams, that 
children might plausibly track in the data. A bigram probability refers to how o!en two 
words cooccur together in sequence. In the sentence “She ate the peach”, the bigrams are 
she ate, ate the, and the peach. Based on the input data (derived from CHILDES), a big-
ram model preferred the correct complex yes/no question over an incorrect alternative.

However, Kam, Stoyneshka, Tornyova, Sakas & Fodor (2008), worried that this 
model’s success was due to particular statistical coincidences in the speci&c dataset 
used as input, and would not generally perform well. When they tried the bigram 
model on other datasets of child-directed speech, they found the model was at chance 
performance when choosing between yes/no question options. A prediction from 
these two models is that children must be learning the yes/no question formation rule 
from something besides bigram probability.

Other models have continued to examine this question (e.g. Perfors, Tenenbaum 
& Regier 2006), as it relates to the knowledge children require to acquire language 
successfully. Put simply, if the information about the correct rule is available statisti-
cally in the data and children can access that statistical information, they do not re-
quire other prior knowledge to lead them to the correct rule.
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Another type of syntactic modeling work concerns parametric systems popular in 
generative linguistic theory (e.g. Gibson & Wexler 1994; Niyogi & Berwick 1996; 
Sakas & Fodor 2001; Yang 2002). One di#culty of parametric systems is interacting 
parameters, which makes identifying the parameter values responsible for an observ-
able word order non-trivial. For instance, suppose a child hears a sentence with the 
form Subject Verb Object. Suppose also that the child was aware of two parameters: 
Verb-Object/Object-Verb (OV/VO) order and Verb-Second (V2) Movement (whether 
the Verb moves to the second position of the clause and some other phrase moves to 
the &rst position). "e sentence mentioned could be due to di%erent combinations of 
these parameters: (1) VO, no V2 (Subject Verb Object), (2) VO, V2 (Subject Verb tSub-
ject tVerb Object), or (3) OV, V2 (Subject Verb tSubject Object tVerb). "e goal of these 
models is to converge on the correct parameter values of the language, given the data 
available in the language. Yang (2002), in particular, considers the relative frequency 
of the di%erent data types available to a child. 

Each model’s results demonstrate what is necessary to ensure children end up 
with the right parameter values. For example, the model in Yang (2002) demonstrates 
that children can learn from all data, so long as they use a probabilistic update proce-
dure when converging on the correct parameter values. More generally, this model 
also provided a way to bridge the gap between acquisition via linguistic parameters 
and the empirical data that showed children’s syntactic development was gradual. Tra-
ditionally, acquisition via linguistic parameters was believed to be necessarily abrupt 
– rather than gradual – which was problematic when trying to reconcile with the 
available empirical data. "is model, however, produced a gradual trajectory by means 
of its probabilistic update procedure.

4. Subjects

In modeling, the question is what kind of subject the model is of. All the modeling 
studies mentioned in Section 3 used simulated learners who were typically developing 
monolingual (L1) speakers learning from monolingual data. However, modeling can 
be extended to other scenarios when the appropriate input data are available. 

For example, we could create a second-language (L2) learning model that learns 
from L2 data. However, in contrast to an L1 model, the L2 model will already have 
linguistic information in place from its own L1. Importantly, we should ground the 
model theoretically and empirically. "eoretical grounding includes a description of 
the knowledge L2 learners have of their L1, how it is represented, and how this repre-
sentation is altered or augmented by data from the L2 language. Empirical grounding 
includes the data learners have as input and what information they use to interpret 
that input (e.g., bias from their L1).
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Similarly, the age of the simulated learner can vary. It is usually set at the age when 
the knowledge in question is thought to be acquired – information available from 
experimental work. For instance, in the Gambell & Yang (2006) word segmentation 
model, the simulated learner was assumed to be around 8 months. "e age restriction 
in a model can be instantiated as the model having access to the data children of that 
age have access to (in the word segmentation case, syllables), and processing the data 
in ways children of that age would be able to process it (in the word segmentation 
case, without access to word meaning).

More generally, modeling di%erent kinds of subjects requires a detailed instantia-
tion of the relevant aspects of those subjects (e.g. knowledge known and initial bias). 
If this information can be reasonably estimated, an acquisition model can be designed 
for that subject. "e key to an informative model is considering what the relevant in-
formation about the subject is and representing it in the model.

5. Description of procedure

For modeling, the relevant experimental procedure is the model itself. O!en, models 
are more concrete than the theories they test. "is is both a strength and a weakness. 
A model’s concreteness is good because it allows us to identify the aspects a theory 
may be vague about, e.g. how much data children process before learning the relevant 
information and how quickly children alter their linguistic knowledge when learning. 
"e not-so-good part is that the modeler is forced to estimate reasonable values for 
these unknown variables.

Most crucial is the decision process behind a model’s design, not the details of 
how to program it. For this reason, we focus on the kinds of decisions that are most 
relevant for language acquisition models. All these decisions involve how the model 
will represent both the learner and the acquisition process. As theories o!en do not 
specify all the details a modeler needs to implement the model, the modeler must rely 
on other information sources to make the necessary decisions, e.g. experimental data 
and electronic databases like CHILDES. Still, the modeler’s ingenuity is required to 
successfully integrate the available information into the model’s design.

5.1 Empirical grounding of the model

One of the key details for model design is empirical grounding. "is can include using 
realistic data as input, measuring the model’s learning behavior against children’s 
learning behavior, and incorporating psychologically plausible algorithms into the 
model. "ese all combine to ensure that the model is actually about acquisition, rather 
than simply about what behavior a computational algorithm is capable of producing.
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Let us examine word segmentation in detail as an example. Realistic data would 
be child-directed speech, which would be the un-segmented utterances a child is like-
ly to hear early in life. "ese data can come from transcripts of caretakers interacting 
with very young children. An excellent resource for this kind of data is CHILDES.

Measuring the model’s learning behavior against known acquisition behavior would 
include being able to segment words as well as children do and being able to learn the 
correct segmentations at the same rate that children do. Both of these measures – the 
correct segmentations and the correct rate of learning to segment – will come from ex-
perimental work that probes children’s word segmentation performance over time.

Psychologically plausible algorithms will include features like gradual learning, 
robustness to noise in the data, and learning incrementally. A gradual learner will 
slowly alter its behavior based on data, rather than making sudden leaps in perfor-
mance. A robust learner will not be thrown o% when there is noise in the data, such as 
slips of the tongue or chance data from a non-native speaker. An incremental learner 
is one that learns from data points as they are encountered, rather than remembering 
all data points encountered and analyzing them altogether later. "ese features are 
derived from what is known about the learning abilities of children – speci&cally, 
what their word segmentation performance looks like over time (it is gradual, and not 
thrown o% by noisy data) and what cognitive constraints they may have at speci&c 
ages (such as memory or attention limitations).

Without this empirical grounding – without realistic data, without measuring be-
havior against children’s behavior, and without psychologically plausibility consider-
ations – the model is not as informative about how humans learn. Since language ac-
quisition is about how humans learn, models should be empirically grounded as much 
as possible if they are to have explanatory power.

5.2 Variables in models

No model (at least none created yet) can encode everything about a child’s mind and 
linguistic experience – there are simply too many variables. Variables are o!en called 
“parameters” in models. "e crucial decisions in modeling involve where to simplify. 
A model, for instance, may assume that children will pay equal attention to each data 
point encountered. In real life, this is not likely to be true – there are many factors in 
a child’s life that may intervene. Perhaps the child is tired or distracted by some inter-
esting object nearby. In these cases, the data at that point in time will likely not impact 
the child’s hypotheses as much as other data have or will. Yet it would be an unusual 
model that included a random noise factor of this kind.

"e reason for this excision is that unless there is an extremely pervasive pattern 
in the noise due to varying levels of attention in the child, the model’s overall behavior 
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is unlikely to be a%ected by this variable. Generally, a model should include only as 
many parameters as it needs to explain the resultant behavior pattern. If too many 
parameters of the model vary simultaneously, the cause of the model’s behavior is 
unknown – and so there is less explanatory power.

"e solution, of course, is very similar to that of more traditional experimental 
work: isolate the relevant variables as much as possible. "e key word is relevant. It is 
alright to have some model parameters that vary freely or only have their value &xed 
a!er their e%ect on the model’s behavior is assessed. For example, the input to the 
model is a certain number of data points, and that quantity may need to be set only 
a!er observing its e%ect on the model’s behavior. "e modeler should always assess 
the e%ect the value for a model parameter has on the model’s behavior. For the input 
set size, does the behavior change if the model receives more data points? If so, then 
this is a relevant parameter a!er all. Does the behavior remain stable so long as the 
input quantity is above a certain number? If so, then this is only a relevant parameter 
if the input size is below that threshold. In explaining the model’s behavior, this input 
size variable can be removed as long as its value exceeds that critical threshold.

A good general strategy with free parameters in a model, that is, those that do not 
have a known value, is to systematically vary them and see if the model’s behavior 
changes. If it does not, then they are truly irrelevant parameters – they are simply re-
quired because a model needs to be fully $eshed out (for instance, how much input 
the model will encounter). However, these parameters are not part of the real cause of 
the model’s behavior. Still, if the behavior is dependent on the free parameters having 
some speci&c values or range of values, then these become relevant. In fact, they may 
become predictions of the model. For instance, if the model only performs appropri-
ately when the input quantity is greater than the amount of data encountered by a 
child in 6 months, then the model predicts that this behavior should emerge later than 
6 months a!er the onset of acquisition.

It is reasonable to ask why models have free parameters, instead of only including 
parameters speci&ed by the theoretical claim the model is investigating. "e reason is 
that, as mentioned in the introduction of this section, theoretical claims are rarely as 
$eshed out as a model needs to be. "ey may not say exactly how much data the child 
should encounter; they may not predict the exact time of acquisition or even the gen-
eral time course; they will o!en make no claims about how exactly children update 
their hypotheses based on the available data. "ese (and many others) are decisions 
le! to the modeler. It is alright to have free parameters in the model, but it is the mod-
eler’s responsibility to (a) assess their e%ect on the model’s behavior, and in some 
cases (b) highlight that these are instrumental to the model’s behavior and are there-
fore predictions the model makes about human behavior. For example, if the model 
only matches children’s behavior when it receives more than a certain quantity of 
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input, then the model predicts children need to encounter at least that much data 
before successfully acquiring the knowledge in question.

Parameters common to most models include how much data the model processes 
and the parameters involved in updating the model’s beliefs (usually in the form of 
some equation that requires one or more parameters, such as the equations involved 
in the algorithms mentioned in the next paragraph). "e input to the model can usu-
ally be estimated from the time course of acquisition. Suppose a child solves a par-
ticular learning task within 6 months; the amount of data a child would hear in 
6 months can be estimated from transcripts of child-directed speech.

"e update of the model’s beliefs usually involve probabilistic learning of some 
kind, which in turn involves using some particular algorithm. "ree examples of algo-
rithm types are those used in Linear reward-penalty (Bush & Mosteller 1951, used in 
Yang 2002, among others), neural networks (Rumelhart & McClelland 1986; Plunkett 
& Marchman 1991; Hare & Elman 1995; Plunkett & Juola 1999; among others), and 
Bayesian updating (used in Perfors, Tenenbaum & Regier 2006; Pearl & Weinberg 
2007; Pearl & Lidz 2009; among others). No matter the method, it will involve some 
parameters (Linear reward-penalty: learning rate; neural networks: architecture of 
network; Bayesian updating: priors on hypothesis space). 

5.3 Control conditions and experimental conditions

From a certain perspective, models are similar to traditional experimental techniques 
that require a control condition and an experimental condition so that the results can 
be compared. In modeling, this can correspond to trying ranges of parameter values 
for parameters that are not speci&ed by the theory being tested. If the same results are 
obtained no matter what the conditions, then the variables tested – that is, the param-
eter values chosen for the model – do not a%ect the model’s results.

Also, models that simulate children’s ability to generalize can more transparently 
have control and test conditions. Suppose a model simulates children’s ability to cat-
egorize sounds into phonemes, as in Vallabha et al. (2007). "e model &rst learns 
from data in the input, e.g. individual sounds from child-directed speech. To gauge 
the model’s ability to generalize correctly, the model must then be tested. "e sound 
category model may be given a sound as input and then asked to output the category 
that sound belongs to. "e control condition would give the model sounds that were 
in its input, i.e. sounds the model has encountered and learned from. "e model’s 
ability to correctly classify these sounds is its baseline performance. "e test condition 
would then give the model sounds that were not in its input – i.e. these are sounds that 
the model has not previously encountered. Its ability to correctly classify them will 
demonstrate whether it has correctly generalized its linguistic knowledge (as children 
do), or if it is simply good at classifying familiar data.
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As we recall, data for models o!en comes from child-directed speech databases. 
Test condition data may come from a di%erent speaker within that database. If the 
model has not learned to generalize, the model may perform well on data from one set 
of speakers (perhaps similar to the data it learned from) but fail on data from other 
speakers. "is was the case for the word order rule model proposed by Reali & 
Christiansen (2005). While it was successful when tested on one dataset, Kam et al. 
(2005) showed that it failed when tested on another dataset. "is suggests that the 
model is probably not a good re$ection of how children learn since they can learn 
from many di%erent data types and still learn the correct generalizations.

"is last point is particularly important for models that import learning proce-
dures (usually statistical) from more applied domains in computer science. Many sta-
tistical procedures are very good at maximizing the predictability of the data used to 
learn, but fail to generalize beyond those data. It is wise for a model using one of these 
procedures to show good performance on a variety of datasets, which underscores the 
model’s ability to generalize. Since this is a property children’s acquisition has, a model 
able to generalize will be more informative about the main questions in acquisition.

5.4 Equipment

In general, a model will require a computer capable of running whatever program the 
model is built in. Sometimes, the program will be a so!ware package where the mod-
eler can simply input values for relevant variables and run it on the computer. For 
example, the PRAAT framework (Boersma 1999) functions this way, allowing a mod-
eler to test the learnability of sound systems using a particular algorithm. 

In general, however, modelers need to write the program that implements the 
necessary algorithm and describes the relevant details of the simulated learner. For 
this, a working knowledge of a programming language is vital – some useful ones that 
o%er great $exibility are Perl, Java/C++, and Lisp. O!en, it will not take a large amount 
of programming to implement the desired model in a particular programming lan-
guage. "e trickier part is the design of the model itself.

Modelers must consider what should be represented in the simulated learner, 
such as (a) how the model represents the required information (e.g. syllables or indi-
vidual sounds), (b) if there is access to additional information during acquisition 
(e.g. stress contours of words during word segmentation), (c) how the model inter-
prets data (e.g. if the model should separate words into syllables), and (d) how the 
models learns (e.g. tracking transitional probabilities between syllables). Again, theo-
ries are not usually explicit about all these details, but a model must be. "erefore, 
modelers will o!en spend a while making decisions about these questions before ever 
writing a single line of programming code.
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6. Analysis and outcomes

"ere are numerous ways to present modeling results, depending on what the model 
is testing. Unsurprisingly, the most e%ective measure for a model depends on the na-
ture of the model, i.e. on what acquisition task it is simulating. "e key is to identify 
the purpose of the model, and then present the results in such a way that they can be 
easily compared to the relevant behavior in children. Below, we review some common 
methods of representing modeling results.

For models that extract information, the relevant results are (not surprisingly) 
how well that information is extracted. Two useful measures, taken from computa-
tional linguistics, are recall and precision. To illustrate these two measurements, con-
sider the task of a search engine like Google. Google’s job is to identify web pages of 
interest when given a search term (e.g. “1980s fantasy movies”). "e ideal search en-
gine returns all and only the relevant web pages for a given term. If the search engine 
returns all the relevant web pages, its recall will be perfect. If the search engine returns 
only relevant web pages, its precision will be perfect. Usually, there is a tradeo% be-
tween these two measurements. A search engine can achieve perfect recall by return-
ing all the web pages on the internet; however, only a small fraction of these web 
pages will be relevant, so the precision is low. Conversely, the search engine might 
return only a single relevant web page: precision is perfect (all returned pages were 
relevant), but recall is low because presumably there are many more relevant web 
pages than simply that one. Both precision and recall are therefore relevant for tasks 
of this nature, and both should be reported.

To transfer this to some models already discussed, consider Gambell & Yang’s 
(2006) word segmentation model. Given a stream of syllables, the model tries to ex-
tract all and only the relevant words using di%erent learning algorithms. Precision is 
calculated by dividing the number of real words posited by the number of total words 
posited. Recall is calculated by dividing the number of real words posited by the total 
number of real words that should have been posited. O!en, the more successful strat-
egies have fairly balanced precision and recall scores.

Another example is the word categorization model of Wang & Mintz (2008). Giv-
en a stream of words, the model clusters words appearing in similar frequent frames. 
"ese clusters are compared against real grammatical categories (e.g. verb) to see how 
well they match, with a given cluster assigned to a given grammatical category 
(e.g., cluster 23 is verb). Precision is calculated by dividing the number of words fall-
ing in that grammatical category within the cluster (e.g. all the verbs in the cluster) by 
the total number of words in the cluster. Recall is calculated by dividing the number 
of words falling in that grammatical category within the cluster (e.g. all the verbs in 
the cluster) by the total number of that grammatical category in the dataset (e.g. all 
the verbs in the corpus). O!en precision is nearly perfect, but recall is very low. "is 
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implies frequent frames are very accurate in their classi&cations, but not very com-
plete in classifying all the words that should be classi&ed a particular way.

Some models simulate the trajectory of children’s performance i.e., their results 
are the model’s performance over time. "is can then be matched against children’s 
performance over time. For example, models of English past tense acquisition will 
o!en try to generate the “U-shaped” performance curve observed in children 
(e.g. Rumelhart & McClelland 1986; Yang 2005; among others). Speci&cally, the mod-
el aims to show an initial period where performance on producing verb past tenses is 
high (many correct forms), followed by a period where performance is low (usually 
due to overregularized forms like goed), followed again by a period where the perfor-
mance is high. A successful model generates this trajectory without having the trajec-
tory explicitly programmed in. "e model explains children’s behavior by whatever 
factor within the model generated this acquisition trajectory.

Some models measure how o!en acquisition succeeds within the model. For in-
stance, the goal of Vallabha et al. (2007) was to correctly cluster individual sounds into 
larger language-speci&c perceptual categories. Di%erent algorithms were tested mul-
tiple times and measured by how o!en they correctly classi&ed a high proportion of 
individual sounds. "e algorithm with a higher success rate was deemed more desir-
able. "is measurement generally demonstrates the robustness of the acquisition 
method. Ideally, we want a method that succeeds all the time, since (nearly) all chil-
dren succeed at acquisition.

Some models measure how o!en a correct generalization is made. "e models of 
Reali & Christiansen (2005), Kam et al. (2005), and Perfors et al. (2006) learned how 
to form yes/no questions (e.g. Can the girl who is in the Labyrinth #nd her brother?) 
from child-directed speech. "e test was if the model preferred the correct way of 
forming a yes/no question over an incorrect alternative. If the model had generalized 
correctly from its training data, it would prefer the correct yes/no question all the 
time. As with the previous measurement, this measurement demonstrates the robust-
ness of the learning method. If the model chooses the correct option all the time, it 
can be said to have acquired the correct generalization.

7. Advantages and disadvantages

Although every model is di%erent, we can still discuss the main advantages and dis-
advantages of modeling without getting into the details of individual models.

"e main advantage is the ability to precisely manipulate the language acquisition 
process and see the results of that manipulation. Generally, the manipulation should 
be something di#cult to do with traditional experimental techniques – such as con-
trolling the hypotheses children entertain, how children interpret the available data, 
and how they use the data to shi! belief between competing hypotheses. 
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As an example of controlling the hypothesis space, consider the syntactic struc-
ture that generates the observable word order of a language, such as Subject Verb Ob-
ject. Should a child only entertain hypotheses that are hierarchical (i.e. they involve 
clustering words into larger units like phrases)? Or, could the child also consider lin-
ear hypotheses (where words of a sentence are viewed as a single large group that has 
no special divisions within it)? "is de&nition of the child’s hypothesis space would be 
hard to implement in a traditional experiment because, while we can assess what hy-
potheses a child is entertaining (e.g. see Crain & Nakayama (1987)), we cannot easily 
control the hypotheses a child has about the pattern of data presented. Within a mod-
el, however, we can do this.

As an example of controlling how children interpret the available data, let us con-
sider word order again. "ere are many languages that seem to alter the basic word 
order of the language in certain linguistic contexts. For German, many theoreticians 
believe the basic order is Subject Object Verb. However, the word order in main claus-
es is o!en Subject Verb Object, which, according to some, is generated by movement 
options in the grammar. If a child is trying to decide the basic order of the language, 
Verb-Object or Object-Verb, should the child only use data that unambiguously sig-
nal one option? Or, should the child use all available data, and guess between the two 
when the data are ambiguous? "at is, should the child’s data intake include all the 
available data in the input, or should some data be ignored? As with the hypothesis 
space de&nition, controlling how a child uses the available data may be more di#cult 
to implement in a traditional experiment than it is inside a model. If we believe chil-
dren only need a subset of the available data to acquire the adult language success-
fully, the logical experiment would be to give children only the restricted input set and 
then see if they acquire the adult language correctly. If they need more than that sub-
set, their acquisition will be derailed. However, we cannot simply lock children up in 
a room for a few years, only allow them to hear various subsets of data from their na-
tive language, and then see the e%ect on their acquisition. It is unethical (and a logisti-
cal nightmare besides). However, this is precisely what we can do with our modeled 
child. If the modeled child with the restriction is successful while the modeled child 
without the restriction is not, we have reason to believe that children may &lter their 
input to the relevant data subset.

We can again look to word order for an example of controlling how children use 
data to update their beliefs in various hypotheses. Suppose the child has encountered 
a datum signaling Verb-Object order. Should this immediately increase the likelihood 
of the Verb-Object hypothesis? Or, should the child wait until she encounters more 
Verb-Object data, in case this datum was some kind of $uke? If the child does update 
her beliefs based on this datum, how much should they be updated? "is kind of ma-
nipulation, like the others discussed above, is not feasible to implement experimentally, 



 Chapter 8. Using computational modeling in language acquisition research 181

as we cannot easily control how children change their beliefs. Modeling, however, 
provides a way to manipulate this.

Modeling’s strength is its ability to create a language acquisition mechanism we 
have complete control over. In this way, we garner data we could not easily get other-
wise. However, the point of modeling is to increase our knowledge about the way 
human language acquisition works, not simply provide a model capable of solving a 
particular problem. We must thus be careful to ground our model empirically – that 
is, we must consider if the details of the model are psychologically plausible by look-
ing at the data available on human language acquisition from theoretical and experi-
mental research. We should remember that modeling is an additional tool we use to 
understand language acquisition, not a replacement for others we already have.

Of course, despite good intentions, most models in the real world may not satisfy 
all psychological plausibility criteria. "is is the di%erence between modeling ideals 
and modeling reality. In practice, the real test of a model is whether it reveals some-
thing interesting we did not know before and whether it generates testable predictions. 
It is easier for a model to do both of these when the model is empirically grounded.

"e main disadvantage of modeling is that we can never be absolutely sure our 
model is really showing how acquisition works in children’s minds. Perhaps some 
crucial information has been le! out of the model’s knowledge. Perhaps some critical 
oversimpli&cations have been made about how the model interprets the available 
data. Perhaps the output of the model lacks the nuances that children’s behavior has. 
"is is why empirical grounding is key. "e more checkpoints on the model, the more 
we can believe what the model shows us about acquisition. "is is where drawing 
from the results of experimental work can help.

In general, there is a dovetailing between experimental work and modeling stud-
ies. Experimental work can sometimes provide the empirical sca%olding a model 
needs to get o% the ground. In return, models can sometimes provide predictions of 
behavior that can then be tested experimentally (e.g. Pearl 2008). In this way, experi-
mental research and modeling research continue to inform each other.

Do’s and don’ts

■ Do read history: Learn from previous models about reasonable estimates of input, al-
gorithms, and measures of output. Consider the strengths and weaknesses of prior 
models when designing your own.

■ Do listen to linguists: Linguists can provide the theoretical basis for the hypothesis 
space, and o!er empirical data to base the model upon. 
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■ Do listen to psychologists: Psychologists will also provide empirical data to ground the 
model.

■ Do listen to computational linguists: Computational linguists will provide learning al-
gorithms that can be implemented and adapted to be psychologically plausible as 
necessary.

■ Don’t model when it is obvious: Models of obvious questions are not informative.
■ Don’t forget the theoretical and empirical grounding: Models that fail to use available 

data (both theoretical and experimental) as checkpoints are not as persuasive.
■ Don’t overlook that this is a model of human language acquisition: Psychological plau-

sibility should be considered.

Acknowledgements

"is chapter was inspired in large part by Charles Yang’s 2007 EMLAR lecture, and I 
am very grateful for his encouragement and insightful descriptions. In addition, I 
would like to thank the editors and two anonymous reviewers for very sensible sug-
gestions. All views expressed in this chapter – insightful, sensible, or otherwise – are 
my own, however.

References

Albright, A. & Hayes, B. 2003. Rules vs. analogy in English past tenses: A computational/experimen-
tal study. Cognition 90: 119–161.

Anderson, J. 1993. Rules of the Mind. Hillsdale NJ: Lawrence Erlbaum Associates.
Boersma, P. 1999. Optimality-"eoretic learning in the PRAAT program. Institute of Phonetic 

Sciences Proceedings 23: 17–35.
Bush, R. R. & Mosteller, F. 1951. A mathematical model for simple learning. Psychological Review 58: 

313–323.
Crain, S. & Nakayama, M. 1987. Structure dependence in grammar formation. Language 63: 522–543.
Dresher, E. 1999. Charting the learning path: Cues to parameter setting. Linguistic Inquiry 30: 27–67.
Dresher, E. & Kaye, J. 1990. A computational learning model for metrical phonology. Cognition 34: 

137–195.
Foraker, S., Regier, T., Khetarpal, A., Perfors, A. & Tenenbaum, J. To appear. Indirect evidence and 

the poverty of the stimulus: "e case of anaphoric ‘one’. Cognitive Science.
Gambell, T. & Yang, C. 2006. Word segmentation: Quick but not dirty. Ms, Yale University.
Gibson, E. & Wexler, K. 1994. Triggers. Linguistic Inquiry 25: 407–454.
Hare, M. & Elman, J. 1995. Learning and morphological change. Cognition 56: 61–98.
Kam, X., Stoyneshka, I., Tornyova, L., Fodor, J. D. & Sakas, W. 2008. Bigrams and the Richness of the 

Stimulus. Cognitive Science 32(4): 771–787.



 Chapter 8. Using computational modeling in language acquisition research 183

Legate, J. & Yang, C. 2002. Empirical re-assessment of stimulus poverty arguments. Linguistic Review 
19: 151–162.

Lightfoot, D. 1991. How to Set Parameters: Arguments from Language Change. Cambridge MA: "e 
MIT Press.

Lightfoot, D. 1999. "e Development of Language: Acquisition, Change, and Evolution. Oxford: 
Blackwell.

MacWhinney, B. 2000. "e CHILDES Project: Tools for Analyzing Talk. Mahwah NJ: Lawrence 
Erlbaum Associates.

Marr, D. 1982. Vision. San Francisco CA: W.H. Freeman.
Mintz, T. 2003. Frequent frames as a cue for grammatical categories in child directed speech. 

Cognition 90: 91–117.
Mintz, T. 2006. Finding the verbs: Distributional cues to categories available to young learners. In 

Action Meets Word: How Children Learn Verbs, K. Hirsh-Pasek & R. Golinko% (eds.), 31–63. 
Oxford: OUP.

Nakisa, R.C., Plunkett, K. & Hahn, U. 2000. Single and dual-route models of in$ectional morphol-
ogy. In Models of Language Acquisition: Inductive and Deductive Approaches, P. Broeder & 
J. Murre (eds), 201–222. Oxford: OUP.

Niyogi, P. & Berwick, R. 1996. A language learning model for &nite parameter spaces. Cognition 
61: 161–193.

Pearl, L. 2008. Putting the emphasis on unambiguous: "e feasibility of data &ltering for learning 
English metrical phonology. In BUCLD 32: Proceedings of the 32nd Annual Boston Conference 
on Child Language Development, H. Chan, H. Jacob & E. Kapia (eds), 390–401. Boston MA: 
Cascadilla Press.

Pearl, L. & Lidz, J. 2009. When domain-general learning fails and when it succeeds: Identifying the 
contribution of domain-speci&city. Language Learning and Development 5(4), 235–265.

Pearl, L. & Weinberg, A. 2007. Input &ltering in syntactic acquisition: Answers from language change 
modeling. Language Learning and Development 3(1): 43–72.

Perfors, A., Tenenbaum, J. & Regier, T. 2006. Poverty of the stimulus? A rational approach. In 28th 
Annual Conference of the Cognitive Science Society. Vancouver BC: Cognitive Science Society.

Plunkett, K. & Juola, P. 1999. A connectionist model of English past tense and plural morphology. 
Cognitive Science 23(4): 463–490.

Plunkett, K. & Marchman, V. 1991. U-shaped learning and frequency e%ects in a multi-layered per-
ceptron: Implications for child language acquisition. Cognition 38: 43–102.

Prasada, S. & Pinker, S. 1993. Similarity-based and rule-based generalizations in in$ectional mor-
phology. Language and Cognitive Processes 8: 1–56.

Reali, F. & Christiansen, M. 2005. Uncovering the richness of the stimulus: Structural dependence 
and indirect statistical evidence. Cognitive Science 29: 1007–1028.

Regier, T. & Gahl, S. 2004. Learning the unlearnable: "e role of missing evidence. Cognition 
93: 147–155.

Rumelhart, D. & McClelland, J. 1986. On learning the past tenses of English verbs. In Parallel 
Distributed Processing: Explorations in the Microstructures of Cognition, Vol.2: Psychological and 
Biological Models, J. McClelland, D. Rumelhart & the PDP Research Group (eds), 216–271. 
Cambridge MA: "e MIT Press.

Sakas, W. & Fodor, J. 2001. "e structural triggers learner. In Language Acquisition and Learnability, 
S. Bertolo (ed.), 172–233. Cambridge: CUP.



184 Lisa Pearl

Vallabha, G., McClelland, J., Pons, F., Werker, J. & Amano, S. 2007. Unsupervised learning of vowel 
categories from infant-directed speech. Proceedings of the National Academy of Sciences of the 
US 104(33): 13273–13278.

Wang, H. & Mintz, T. 2008. A dynamic learning model for categorizing words using frames. In 
BUCLD 32: Proceedings of the 32nd Annual Boston Conference on Child Language Development, 
H. Chan, H. Jacob & E. Kapia (eds), 525–536. Boston MA: Cascadilla Press.

Yang, C. 2002. Knowledge and Learning in Natural Language. Oxford: OUP.
Yang, C. 2005. On productivity. Yearbook of Language Variation 5: 333–370.


