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Abstract

We examine the influence of inferring interlocutors’ referential intentions from their body move-
ments at the early stage of lexical acquisition. By testing human participants and comparing their perfor-
mances in different learning conditions, we find that those embodied intentions facilitate both word dis-
covery and word-meaning association. In light of empirical findings, the main part of this article
presents a computational model that can identify the sound patterns of individual words from continuous
speech, using nonlinguistic contextual information, and employ body movements as deictic references
to discover word-meaning associations. To our knowledge, this work is the first model of word learning
that not only learns lexical items from raw multisensory signals to closely resemble infant language de-
velopment from natural environments, but also explores the computational role of social cognitive skills
in lexical acquisition.

Keywords: Language acquisition; Computational model; Machine learning; Embodied cognition;
Cognitive development

1. Introduction

Children solve many complex learning problems during their first years of life. Perhaps the
most remarkable and challenging of these tasks is learning language, which occurs both
quickly and effortlessly. Language, of course, is a multileveled system of perception, produc-
tion, and representation. This article focuses on three of the earliest problems that children
need to solve as they acquire their native language: (a) segmenting the speech signal into lexi-
cal units, (b) identifying the meanings of words from their perceptual input, and (c) associating
these meanings with lexical units.
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The first problem is very difficult if attempted using only acoustic information. Before chil-
dren can begin to map acoustic word forms onto objects in the world, they must determine
which sound sequences are words. To do so, they must uncover at least some of the units that
belong to their native language from a largely continuous stream of sounds. However, spoken
language lacks the acoustic analog of blank spaces of written text, which makes the problem of
discovering word boundaries in continuous speech quite challenging. In particular, if we as-
sume that children start out with little or no knowledge of the inventory of words, the problem
becomes much harder because segmentation of unknown stretches of speech cannot be
achieved by first identifying known lexical items embedded in that speech.

Second, words usually refer to categories rather than single entities (the common noun,
proper noun distinction). Therefore, young children must not only extract and recognize the
possible meanings of words from their nonlinguistic perceptual input, but they must do so
given the partially correlated cues that are present but which do not serve to define the category.
Theories in which mental representations (concepts) must be acquired in advance of the labels
that stand for them are well established in early word learning (Slobin, 1985). Those theories
are generally accepted, although recent work shows that children can use linguistic labels to
further constrain the category structure (Booth & Waxman, 2002; Sloutsky & Lo, 1999). Nev-
ertheless, children have often formed rich conceptual categories prior to the development of
language. For instance, children must have some understanding that a dog is furry and has four
legs and two eyes, even if they do not know the linguistic labels of those concepts, such as dog,
leg, and eye. Children’s sensorimotor experiences are continually building up these embodied,
prelinguistic concepts. If we assume that this conceptual machinery is already well established
by the time the child’s first words are learned, the word acquisition problem is simplified by di-
rectly associating a linguistic label with a category of sensorimotor experience that has already
been established. For example, the appearances of objects could be obtained from visual per-
ception and used to extract visual features of objects. Those visual features are then stored in
the brain as the grounded meanings of object names and are ready to be associated with lin-
guistic labels. This assumption has been supported by recent studies using a human simulation
paradigm (Gillette, Gleitman, Gleitman, & Lederer, 1999; Gleitman, Cassidy, Nappa,
Papafragou, & Trueswell, 2005; Snedeker & Gleitman, 2004) that is designed to investigate ef-
fects of linguistic input on the learning function by using adults (undergraduates) to model in-
fants. The main finding from these studies suggests that the primary limiting factor on early vo-
cabulary growth resides in the difficulty of solving the mapping problem (the third task
described next) rather than in limitations in the early conceptual repertoire.

Third, young children need to associate sound patterns of words with meanings or concepts.
Learning a word involves mapping a phonological form to a conceptual representation, such as
associating the sound “dog” to the concept of dog. Quine (1960) pointed out that there is a po-
tential infinity of referents when a word is heard, which is termed reference uncertainty. For in-
stance, when a young child sees a dog and hears an isolated word “dog,” the spoken word could
refer to the whole dog, the dog and the ground it is on, a part of the dog, its color, shape, size,
and so on. It might even refer to something that is not relevant to the dog at all (e.g., the bright-
ness of the surroundings). In natural environments, infants hear spoken utterances that contain
multiple words and are sensitive to aspects of the environment that have more than one possi-
ble target referent. They must determine which co-occurrences are relevant from a multitude of
potential co-occurrences between words and things in the world.
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In this work, we present an implemented computational model of embodied word learning,
which is able to associate spoken words with their perceptually grounded meanings in a com-
pletely unsupervised mode. The model not only addresses all three problems described previ-
ously but also collects and processes multisensory data to closely resemble the natural environ-
ments of infant language development. One of the central ideas is to make use of nonspeech
contextual information to facilitate word spotting; the other is to use inference of speakers’refer-
ential intentions from their body movements, which we term embodied intention (Yu & Ballard,
2003; Yu, Ballard, & Aslin, 2003). Nonspeech contextual information and embodied intention
can then be used as deictic references to discover temporal correlations of data in different mo-
dalities fromwhich tobuild lexical items.The ideaofembodied intention isderivedfromembod-
ied cognition (Clark, 1997), and the theory of mind reading (Baron-Cohen, 1995).We argue that
socialcognitiveskillscanbegroundedinsensorimotor-levelbehaviors (e.g.,gazeandbodyposi-
tion). In the context of language learning, we show that language learners are able to use others’
intentional body movements in real-time natural interactions to facilitate word learning.

The remainder of this article is organized as follows. Section 2 gives a short overview of pre-
vious studies of infant language acquisition in both cognitive studies and computational mod-
eling. Then we provide a framework for the theoretical arguments of embodied intention in
Section 3. Section 4 describes an empirical study of the role of embodied intentions in learning
by human participants (adults). In light of the findings from empirical studies, Section 5 pres-
ents both the theoretical model on which our studies are based and the implementation of the
model. This model provides not only the machinery of early word learning but also a platform
to investigate various kinds of cues that enable learning. The experimental setup and the results
of a comparative study are reported in this section. In Section 6, we discuss several issues in
word learning based on the results of empirical and computational studies. Section 7 concludes
with a discussion of our future work.

Overall, our work renders the ideas of embodied intention as a formal model and measures its
effectiveness for learning word meanings, using both experimental and computational ap-
proaches, suggesting that embodied intention plays an important role in both speech segmenta-
tion (the first task) and word-learning association (the third task). Note that we are not claiming
that young children employ the exact method presented in this article. However, as a computa-
tional model, this work provides an existence proof for a machine learning technique that solves
the lexical acquisition task. Furthermore, from empirical and computational studies, we provide
a set of quantitative predictions for determining the role of infants’ sensitivities to social cues
conveyed through others’intentional body movements in early word learning. It leaves open for
further empirical study the question of what techniques young children actually use to solve the
problem. We hope that this work not only provides a computational account to supplement the
existing related theories of language acquisition but also gives some useful hints for future re-
search.

2. Related work

In the last 10 years, there has been tremendous progress in understanding infants’abilities to
segment continuous speech, discover words, and learn their meanings. This section provides a
brief overview of both empirical studies and computational modeling.
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2.1. Experimental investigations

English-learning infants first display some ability to segment words at about 7.5 months
(Jusczyk & Aslin, 1995). By 24 months, the speed and accuracy with which infants identify
words in fluent speech is similar to that of native adult listeners. A number of relevant cues
have been found that are correlated with the presence of word boundaries and can potentially
signal word boundaries in continuous speech (see Jusczyk, 1997, for a review). Cutler and
Butterfield (1992) argued that English-speaking infants appear to use prosodic cues, such as
strong or weak stress, syllable units, and subsyllabic units, to parse continuous acoustic signals
into words. Studies by Jusczyk and colleagues using streams of nonsense words (Johnson &
Jusczyk, 2001) and fluent English sentences (Jusczyk, Hohne, & Bauman, 1999) suggest that
prosodic cues (e.g., first-syllable stress) play an important role in word segmentation. There is
also evidence that by 9 months of age, English learners have begun to determine the way that
phonotactic sequences line up with word boundaries in their native language (Mattys &
Jusczyk, 2001). Phonotactics refers to the constraints on the possible ordering of phoneme
segments within morphemes, syllables, and words of a language. Similarly, different phoneme
variants (allophones) of the same phoneme are often restricted in terms of the positions where
they can appear within a word. Therefore, knowledge of the contexts in which such allophones
appear could provide listeners with a clue to the location of word boundaries in fluent speech
(Church, 1987). Another possible source of information for speech segmentation is the distri-
butional statistics of phonemes or syllables. Saffran, Aslin, and Newport (1996) demonstrated
that 8-month-old infants are able to find word boundaries in an artificial language based only
on statistical regularities. And Thiessen and Saffran (2003) showed that statistical cues ini-
tially outweigh prosodic cues until 10 months of age. However, it still remains an open ques-
tion as to how these constraints are actually applied by infant learners as they acquire their na-
tive language.

Once infants have segmented auditory word forms from fluent speech, they must map those
sounds onto meanings. One explanation of how infants discover one-to-one correspondences
between multiple spoken words and their meanings, termed cross-situational learning, has
been proposed by many authors, such as Pinker (1989) and Gleitman (1990). This scheme sug-
gests that when a child hears a word, he or she can hypothesize all the potential meanings for
that word from the nonlinguistic context of the utterance containing that word. On hearing that
word in several different utterances, each of which is in a different context, he or she can inter-
sect the corresponding sets to find those meanings that are consistent across the different oc-
currences of that word. Presumably, hearing words in enough different situations would enable
the child to rule out all incorrect hypotheses and uniquely determine word meanings. However,
as mentioned earlier, the precise mapping of sounds to meanings is complicated by the fact that
many properties of the context could be shared (e.g., the presence of a white rabbit on a hard
surface), despite many differences across contexts. In the absence of a single unique property
across all contexts, it is not clear how infants disambiguate the meaning of a word (i.e., does
rabbit refer to the rabbit or to the hard surface?).

A further challenge for the infant is to learn the meanings of verbs. There is an over-
whelming preponderance of concrete nouns in children’s early speech, not only in English
but in most other languages, such as Italian (Caselli, Casadio, & Bates, 2000). Gentner
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(1982) proposed a rationale that concrete nouns must precede verbs in early language devel-
opment because of the conceptual limitations of young children. Nouns are easy to grasp
based on relatively simple perceptual categorization of similar objects, whereas verbs reflect
complex concepts, such as relations, events, or actions, which are harder to perceive. As the
child develops, verbs are learned by mapping complex concepts that are easily perceived to
those words that express them. However, recent cross-linguistic studies showed that children
who learn Korean (Gopnik & Choi, 1995) and Mandarin Chinese (Tardif, 1996) do not dis-
play the early bias toward nouns like English learners. Tardif claimed that verbs may actu-
ally predominate statistically over nouns in many Chinese children. Gillette et al. (1999) of-
fered a compelling explanation to account for which words (nouns or verbs) are acquired
first. They provided strong evidence that learnability of a word is not primarily based on its
lexical class but on the word’s imageability or concreteness. The nouns are learned before
most of the verbs because nouns are more observable than verbs. The imageability of a word
is more important than the lexical class, and the most observable verbs are learned before
the least observable nouns.

In summary, infants begin from a state at 4 months of age where they only appear to recog-
nize highly frequent auditory word forms, such as their name (Mandel, Jusczyk, & Pisoni,
1995), and these word forms are often presented in isolation. By 6 months they begin to use
statistical cues to extract candidate words from fluent speech, and this ability is quite robust by
8 months of age. By 9 months of age they have a bias to attend to the prototypical prosodic
structure of their native language. And by 10 months they can use their sensitivity to lan-
guage-specific phonotactics to assist in the word-segmentation task. Once the infant has ex-
tracted a small number of candidate word forms, these sounds are rapidly attached to mean-
ings, and there is a strong bias to acquire the meanings of nouns before verbs because many
nouns are more concrete and observable than verbs.

2.2. Computational modeling

The foregoing experimental studies have yielded important insights into the linguistic abili-
ties of infants and young children and have provided informative constraints for building com-
putational models of language acquisition. On the other hand, modeling language acquisition
can provide a quantitative computational account of the behavioral profile of language learners
and test hypotheses quickly (i.e., without requiring the collection of new data). Therefore,
computational investigations of language acquisition have recently received considerable at-
tention. Generally, to simplify the problems that must be addressed, models of language acqui-
sition are divided into several subtasks. For instance, Siskind (1996, 1999) presented a formal
version of language acquisition by modeling it as involving three subtasks: (a) identifying the
sequence of words in an utterance; (b) identifying a set of likely interpretations of the utterance
based on the nonlinguistic context when the utterance is produced; and (c) inferring the mean-
ings of words, given the results of the first two subtasks. Until now, most computational studies
of how children learn their native language address only one particular subtask. This section
gives an overview of modeling speech segmentation (the first subtask) and lexical acquisition
(the third subtask). The studies of perceptual learning and categorization, reviewed in Section
1, focus on the second subtask and will be discussed in detail in Section 3.
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2.2.1. Speech segmentation
To explore how young children discover the words embedded in a mostly continuous speech

stream, several computational models of speech segmentation have begun to consider the
learning problem from the point of view of the statistical properties of language and how this
information might be stored and computed in the human brain. Saffran, Newport, and Aslin
(1996) suggested that infants might compute the transitional probabilities between sounds in a
language and use the relative strengths of these probabilities to hypothesize word boundaries.
The method they developed treats syllables rather than phonemes as the fundamental units of
input and calculates the probability of each syllable in the language conditioned on its prede-
cessor. They argued that infants might segment utterances at low points of the transitional
probabilities between adjacent syllables. Aslin,Woodward, LaMendola, and Bever (1996) pro-
posed that infants learn the metrical and phonotactic properties of word boundaries by general-
izing from utterance boundaries, which are then used to segment words within utterances.
They introduced a connectionist model that successfully implemented this segmentation
strategy. Christiansen, Allen, and Seidenberg (1998) employed a similar connectionist model
and showed that using multiple cues (i.e., statistics and prosody) results in superior
word-segmentation performance than one cue alone. Brent and Cartwright (1996) encoded in-
formation about the distributional regularity and phonotactic constraints in their computa-
tional model. Distributional regularity means that sound sequences occurring frequently and in
a variety of contexts are better candidates for the lexicon than those that occur rarely or in few
contexts. The phonotactic constraints include both the requirement that every word must have
a vowel and the observation that languages impose constraints on word-initial and word-final
consonant clusters. More recently, Brent (1997, 1999a) proposed a model called incremental
distributional regularity optimization (INCDROP). INCDROP asserts that the process of seg-
menting utterances and inferring new wordlike units is driven by the recognition of familiar
units within an utterance. It posits a single mechanism that can discover new units by recogniz-
ing familiar units in an utterance, extracting those units, and treating the remaining contiguous
stretches of the utterance as novel units. When an utterance contains no familiar units, the
whole utterance is treated as a single novel unit, so there is no need to assume a special boot-
strapping device that discovers the first units. A good survey of the related computational stud-
ies of speech segmentation can be found in (Brent, 1999b), in which several methods are ex-
plained, their performances in computer simulations are summarized, and behavioral evidence
bearing on them is discussed. Most of these studies, however, use phoneme transcriptions of
text as input and do not deal with raw speech. Transcriptions do not show the acoustic variabil-
ity of spoken words in different contexts and by various talkers and, thus, do not capture all the
difficulties that young children face with natural speech input.

2.2.2. Lexical learning
Compared with the studies on speech segmentation, relatively few computational learning

methods of lexical acquisition have been proposed and implemented. Among them,
MacWhinney (1989) applied the competition theory to build an associative network that was
configured to learn which word among all possible candidates refers to a particular object.
Plunkett, Sinha, Miller, and Strandsby (1992) built a connectionist model of word learning in
which a process termed autoassociation maps preprocessed images with linguistic labels. The
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linguistic behavior of the network exhibited nonlinear vocabulary growth (vocabulary spurt)
that was similar to the pattern observed in young children. Siskind (1996) developed a mathe-
matical model based on cross-situational learning and the principle of contrast, which learns
word-meaning associations when presented with paired sequences of presegmented tokens
and semantic representations. Regier’s work focused on grounding lexical items that describe
spatial relations in visual perception (Regier, 1996). Bailey (1997) proposed a computational
model that can not only learn to produce verb labels for actions but also carry out actions speci-
fied by verbs that it has learned. Tenenbaum and Xu (2000) developed a computational model
based on Bayesian inference, which can infer meanings from one or a few examples without
encoding the constraint of mutual exclusion. Li, Farkas, and MacWhinney (2004) proposed a
developmental model based on self-organized networks, which learns topographically orga-
nized representations for linguistic categories over time.

Different from the symbolic models of vocabulary acquisition described previously, Steels
(1997) reported experiments in which autonomous visually grounded agents bootstrap mean-
ings through adaptive language games. He argued that language is an autonomous evolving
adaptive system maintained by a group of distributed agents without central control, thereby
enabling the lexicon to cope with new meanings as they arise. Roy and Pentland (2002) imple-
mented a model of early language learning that learns words and their semantics from raw sen-
sory input. They used the temporal correlation of speech and vision to associate spoken utter-
ances with a corresponding object’s visual appearance. However, the audiovisual corpora were
collected separately in Roy’s system. Specifically, audio data were gathered from infant–care-
giver interactions, whereas visual data were captured by a charge-coupled device (CCD) cam-
era on a robot. Thus, to simplify the problem, audio and visual inputs were manually correlated
based on two assumptions: temporal co-occurrences of words and their meanings, and the
uniqueness of the semantic representation of each utterance. Whereas this work was ground-
breaking, the simplifying assumptions do not represent the natural case. The second assump-
tion is obviously not true in most cases including infant-directed speech. We will show in the
next section that the first assumption is also not reliable for modeling language acquisition.

To summarize, recent computational models suggest an associative basis of word learning
and use general-purpose learning mechanisms, such as rational inference and associative
learning, to tackle the inductive problem in word learning with success. However, two ques-
tions are left open and seem well worth pursuing. The first question is about social cognitive
skills in language acquisition. Empirical findings (Baldwin, 1993; Tomasello, 2001) have
demonstrated that young language learners seem to rely on their interpretations of the gaze and
pointing behaviors of others to infer others’ mental states and then guide their word learning.
There is no corresponding computational model to provide a mechanism for how social cues
are used in word learning and to answer the question of whether social cues and associative
learning can be integrated together. The second question concerns the role of embodiment in
language learning. As pointed out earlier, most models simplify the learning problem by using
synthesized or artificial data instead of raw multisensory data collected in natural contexts.
First of all, these artificial data do not capture all the difficulties that young children face with
natural speech input. Moreover, we argue that many useful constraints are encoded at the
sensorimotor level and can be inferred from the interactions between brain, body, and environ-
ment. Symbolic modeling is not able to extract and use those constraints.
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3. The role of embodied intention

A common conjecture in models of lexical learning is that children map sounds to meanings
by seeing an object while hearing an auditory word form. The most popular computational
mechanism of this word-learning process is associationism, which assumes that language ac-
quisition is solely based on statistical learning of co-occurring data from the linguistic modal-
ity and nonlinguistic context (see a review by Plunkett, 1997). Richards and Goldfarb (1986)
proposed that children come to know the meaning of a word through repeatedly associating the
verbal label with their experience at the time that the label is used. Smith (2000) argued that
word learning is initially a process in which children’s attention is captured by objects or ac-
tions that are the most salient in their environment, and then they associate it with some acous-
tic pattern spoken by an adult. Studies in intermodal perception (e.g., Bahrick, Lickliter, &
Flom, 2004; Gogate,Walker-Andrews, & Bahrick, 2001; Slater, Quinn, Brown, & Hayes,
1999) have also shown that infants are able to learn intermodal relations, suggesting that
intermodal temporal synchrony is an important cue to pair objects and sounds. Despite the
merit of this idea, associationism is unlikely to be the whole story because it is based on the as-
sumption that words are always uttered when their referents are perceived. Bloom (2000) ar-
gued that around 30% to 50% of the time, when young language learners hear a word, they are
not attending to the object referred to by the speech. Therefore, if children hear a word and as-
sociate it with whatever is perceived at the time that the word is used, they will make lots of
mismappings. But in fact, children rarely make mistakes of this type in word learning.

In addition to spatiotemporal contiguity of visual context and auditory input, recent studies
(e.g., Baldwin, 1993; Baldwin et al., 1996; Bloom, 2000; Tomasello, 2000, 2001; Woodward
& Guajardo, 2002) have shown that another major source of constraints in language acquisi-
tion is in the area of social cognitive skills, such as children’s ability to infer the intentions of
adults during face-to-face discourse. This kind of social cognition was called mind reading by
Baron-Cohen (1995) or more generally, theory of mind (Wellman & Liu, 2004). Butterworth
(1991) showed that even by 6 months of age, infants demonstrate sensitivities to social cues,
such as monitoring and following another’s gaze, although infants’understanding of the impli-
cations of gaze or pointing does not emerge until approximately 12 months of age. Based on
this evidence, Bloom (2000) suggested that children’s word learning in the 2nd year of life ac-
tually draws extensively on their understanding of the thoughts of speakers. His claim has been
supported by experiments in which young children were able to figure out what adults were in-
tending to refer to by speech based on social cues. Baldwin et al. (1996) proposed that
13-month-old infants give special weight to the cues of indexing the speaker’s gaze when de-
termining the reference of a novel label. Their experiments showed that infants established a
stable link between the novel label and the target toy only when that label was uttered by an
adult who concurrently directed their attention (as indexed by gaze) toward the target. Such a
stable mapping was not established when the label was uttered by a speaker who showed no
signs of attention to the target toy, even if the object appeared at the same time that the label
was uttered and the speaker was touching the object. Similarly, Tomasello (2000) showed that
infants are able to determine adults’referential intentions in complex interactive situations, and
he concluded that the understanding of intentions, as a key social cognitive skill, is the very
foundation on which language acquisition is built.
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The problem with the hypothesis that infants and young children use social cognitive cues in
word learning is that the empirical evidence is based on macrolevel behaviors (e.g., head orienta-
tion or pointing) in constrained contexts (e.g., Baldwin, 1993), rather than on microlevel behav-
iors (e.g., gaze and body position) that unfold in real time during natural contexts. The studies at
the macrolevel demonstrated many intelligent behaviors in infant word learning, but they cannot
provide a formal account of the underlying mechanisms. Thus, one wants to know not only what
learners can do using social cues but also how they make use of those cues. To answer the second
question, one needs to tackle the problem at the microlevel and study real-time sensitivities to
body cues in natural contexts. Recent studies of adults performing visual–motor tasks in natural
contexts have suggested that the detailed physical properties of the human body convey ex-
tremely important information(Ballard,Hayhoe,Pook,&Rao,1997).Theyproposedamodelof
“embodied cognition” that operates at a timescale of approximately one third of a second and
uses subtle orienting movements of the body during a variety of cognitive tasks as input to a com-
putationalmodel.At this“embodiment” level, theconstraintsof thebodydetermine thenatureof
cognitive operations, and the body’s pointing movements are used as deictic references to bind
objects in the physical environment to variables in cognitive programs of the brain. Also, in stud-
iesof languageproduction, recentwork(e.g.,Griffin&Bock,2000;Meyer,Sleiderink,&Levelt,
1998) has shown that speakers have a strong tendency to look toward objects referred to by
speech.Meyeretal. found that thespeakers’eyemovementsare tightly linked to their speechout-
put. They found that when speakers were asked to describe a set of objects from a picture, they
usually looked at each new object before mentioning it, and their gaze remained on the object un-
til they were about to say the last word about it. Note that these body movements operate on a
timescale that ismuchmorerapid than the typicalheadandhandmovementsused instudiesof in-
fant sensitivity to an adult speaker’s intentions.

The goal of this study is to combine the foregoing perspectives on language development,
embodied cognition, and speech production to create a computational model of the three key
tasks of early lexical development reviewed in Section 1.We propose that speakers’ body
movements, such as eye movements, head movements, and hand movements, can reveal their
referential intents in verbal utterances, and in turn may play a significant role in early language
development (Yu & Ballard, 2003; Yu et al., 2003). A plausible starting point for learning the
meanings of words is the deployment of speakers’ intentional body movements to infer their
referential intentions. To support this idea, we provide a first formal account of how the inten-
tions derived from body movements, which we term embodied intention, facilitate the early
stage of vocabulary acquisition. We argue that infants learn words through their sensitivity to
others’ intentional body movements. They use temporal synchrony between speech and refer-
ential body movements to infer referents in speech. Our work takes some first steps in that di-
rection by examining the problem through both empirical research and computational model-
ing. In the next section, we present the methods and results of experiments with adult language
learners who are exposed to a second language, to study the role of embodied intention in a
context that mimics some of the features of infant language acquisition. In the following sec-
tion, we then propose a computational model of word learning to simulate the early stage of in-
fant vocabulary learning. Our implemented model is able to build semantic representations
grounded in multisensory input, using the principles of embodied intention. The essential
structure of the model is that it assigns an important computational role for making inferences
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about the speakers’ referential intentions, by using body movements as deictic references
(Ballard et al., 1997), thereby employing nonlinguistic information as constraints on statistical
learning of linguistic data.

4. Simulations using human adults

To study the role of extralinguistic factors in lexical development, such as sensitivity to at-
tention cued by eye gaze, we conducted a first experiment using adults. The purpose of this ex-
periment was to establish a “proof of concept” that our hypotheses about the role of embodied
intention in the early stage of language learning had merit. Using adults, of course, is only an
indirect way to explore infant language learning. The adults being exposed to a new language
have explicit knowledge about English grammar that is unavailable to infants, but these adults
may not have the same level of plasticity as infant learners. Nonetheless, previous language
learning studies have shown similar findings for adults exposed to an artificial language
(Saffran, Newport, et al., 1996), and for children (Saffran, Newport, Aslin, Tunick, &
Barrueco, 1997) or even infants exposed to the same types of language materials (Saffran,
Aslin, et al., 1996). This suggests that certain mechanisms involved in language learning are
available to humans regardless of age. Lakoff and Johnson (1999) argued that children have al-
ready built up prelinguistic concepts (internal representations of the world) in their brains prior
to the development of the lexicon. Thus, if we assume that those concepts are already estab-
lished, the lexical learning problem would mainly deal with how to find a sound pattern from
continuous speech and associate this linguistic label with a concept previously established
nonlinguistically. Furthermore, Gillette et al. (1999), Snedeker and Gleitman (2004), and
Gleitman et al. (2005) designed the Human Simulation Paradigm in which they used adults to
model the target population (infants). The argument is that although adults have different per-
ceptual, cognitive, and memory systems, and the representations of concepts held by adults
may differ from those of young children, a considerable part of vocabulary learning is not lim-
ited by immaturities in early conceptual development, but rather by solving the word-to-world
mapping problem. Therefore, there should be little difference between adults and children with
regard to acquiring simple words as long as they are provided with the same information. In
light of these considerations, our first experiment was conducted with monolingual adults ex-
posed to a second language to shed light on the role of embodied intention at the earliest stage
of infant language learning. The experiment consisted of two phases. In the training phase, par-
ticipants were asked to watch a video and try to identify which sound sequences were words in
the language and associate them with their meanings. In the testing phase, they were given tests
to assess both speech segmentation and lexical learning.

4.1. Methods

4.1.1. Participants
Twenty-seven monolingual English-speaking students at the University of Rochester partic-

ipated in this study and were paid $10 for their participation. Participants were randomly as-
signed to three experimental conditions, with 9 participants in each condition.
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4.1.2. Stimuli
Participants were exposed to non-native language materials by watching a videotape with

a sound track in Mandarin Chinese. In the video, a native speaker of Mandarin described in
his own words the story shown in a picture book entitled, I Went Walking (Williams &
Vivas, 1989). The book is for 1- to 3-year-old children, and the story is about a young child
who goes for a walk and encounters several familiar friendly animals. The speaker was in-
structed to narrate the story in the same way that a caregiver would speak to a child. For
each page of the book, the speaker saw a picture and uttered verbal descriptions. The study
included two video clips and one audio clip that were recorded simultaneously when the
speaker was narrating the story. These materials provided three different learning conditions
for the adult participants, all of whom were native speakers of English who had no familiar-
ity with Mandarin: audio-only, audiovisual, and intention-cued conditions. In the audio-only
condition, the only information participants received was the auditory signal. In the audiovi-
sual condition, the video was recorded from a fixed camera behind the speaker to capture a
view of the picture book while the auditory signal was also presented. In the intention-cued
condition, the video was recorded from a head-mounted camera to provide a dynamic
first-person view. Furthermore, an eye tracker was used to track the time course of the
speaker’s eye movements and gaze positions. These gaze positions were indicated by a cur-
sor that was superimposed on the video of the book to indicate where the speaker was at-
tending from moment to moment. Specifically, the speaker’s monocular eye position was
monitored with an Applied Science Laboratories (ASL; Bedford, Massachusetts) eye
tracker. The eye position signal was sampled at 60 Hz and had a time delay of 50 msec. The
accuracy of the eye-in-head signal was approximately 1° over a central 40° field. Both pupil
and first Purkinje image centroids were recorded, and horizontal and vertical eye-in-head
positions were calculated, based on the vector difference between the two centroids. This
technique reduces artifacts due to any movement of the headband with respect to the head.
The ASL headband held a miniature “scene camera” to the left of the speaker’s head, aimed
at the scene (the picture book). The tracker creates a cursor, indicating eye-in-head position,
which is merged with the video from the scene camera, thereby providing a video record of
the scene from the speaker’s perspective, with the cursor indicating the intersection of the
participant’s gaze with the picture book. Because the scene camera moves with the head, the
eye-in-head signal indicates the gaze position with respect to the world. Fig. 1 shows snap-
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Fig. 1. The snapshots when the speaker uttered “The cow is looking at the little boy” in Mandarin. Left: No
nonspeech information in audio-only condition. Center: A snapshot from the fixed camera. Right: A snapshot from
a head-mounted camera with the current gaze position (the white cross).



shots from two video clips. Auditory information was the same in all three conditions, and
the total length of the story was 216 sec. Some samples of verbal descriptions are translated
into English, as shown in Table 1.

4.1.3. Procedure
Participants were divided into three groups: audiovisual, intention-cued, and audio-only.

The first two groups were shown video clips on a computer monitor and asked to try to identify
both the sound patterns that corresponded to individual words and their meanings. They
watched the same video five times before being tested and were given the opportunity to take a
break in the middle of each session, but few did. The audio-only group was provided with the
audio recording and then tested after listening to it five times. Thus, all three groups received
the same audio information but different levels of visual information.

4.1.4. Test
The participants in the audiovisual and intention-cued conditions were given two written

multiple-choice tests: a speech-segmentation test and a word-learning test. The participants in
the audio-only condition were just given the first test. There were 18 questions in each test. For
every question in the first test, participants heard two sounds and were asked to select one that
they thought was a word but not a multiword phrase or some subset of a word. They were given
as much time as they wanted to answer each question. There are two types of distractors. One
type just randomly removed a syllable at either the beginning or the end of a word. For exam-
ple, the positive instance “ya zi” (duck) was paired with a distractor “ya.” The other type was
built by extracting some phrases that consist of more than one word. For instance, the positive
instance “nan hai” (boy) was paired with “na hai zou” (boy + walk). The second test was used
to evaluate their knowledge of lexical items learned from the video (thus the audio-only group
was excluded from this test). The images of 12 objects in the picture book were displayed on a
computer monitor at the same time. Participants heard one isolated spoken word for each ques-
tion and were asked to select an answer from 13 choices (12 objects and also an option for none
of the previously mentioned).

4.2. Results

Fig. 2 shows the average percentage correct on the two tests. In the speech-segmentation
test, a single-factor analysis of variance revealed a significant main effect of the three condi-
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Table 1
The translation of verbal descriptions in English

– A little boy gets up and goes to walk
– so first of all he finds a black cat
– the boy is giving the cat a hug on his neck
– and the little boy is taking the black cat
– then the little boy and the cat walk along
– the cat is following the little boy
– then he sees something that looks like a horse’s tail



tions, F(2, 24) = 23.52, p < .001. Post hoc tests showed that participants gave significantly
more correct answers in the intention-cued condition, M = 80.6%, SD = 8.3%, than in the au-
diovisual condition, M = 65.4%, SD = 6.6%, t(16) = 4.89, p < .001. Performance in the au-
dio-only condition did not differ from chance, M = 51.1%, SD = 11.7%. Participants in this
condition reported that they just guessed because they did not acquire any linguistic knowledge
of Mandarin Chinese by listening to the fluent speech for 15 min without any visual context.
Therefore, they were not asked to do the second test. For the word-learning test, performance
in the intention-cued condition was much better than in the audiovisual condition, t(16) = 8.11,
p < .0001. Note also that performance in the audiovisual condition was above chance, t(8) =
3.49, p < .005, one-sample t tests.

4.3. Discussion

The results of this study of word learning in adults exposed to a second language provide
substantial evidence in support of the hypothesis that embodied intention plays an important
role in language acquisition by suggesting that language learners are sensitive to gaze cues
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Fig. 2. The mean percentages of correct answers in tests.



in real-time interaction. This finding goes beyond the claims by Baldwin (1993) and
Tomasello (2001) that referential intent as evidenced in gaze affects word learning. Our re-
sults suggest that social cues not only play a role in high-level learning and cognition but
also influence the learning and the computation at the sensory level. However, the precise
linkage between the visual cues available in the intention-cued and audiovisual conditions
has not been specified.

To establish a formal model that explores the computational role of embodied intention in
lexical development, a more fine-grained analysis of the information available to the learn-
ers in each condition is needed. To quantitatively evaluate the difference between the infor-
mation available in the audiovisual and intention-cued conditions, the intention-cued video
record was analyzed on a frame-by-frame basis to obtain the time of initiation and termina-
tion of each eye movement, the location of the fixations, and the beginning and the end of
spoken words. These detailed records formed the basis of the summary statistics described
later. The total number of eye fixations was 612. Among them, 506 eye fixations were di-
rected to the objects referred to in the speech stream (84.3% of all the fixations). Thus, the
speaker looked almost exclusively at the objects that were being talked about while reading
from the picture book. The speaker uttered 1,019 spoken words, and 116 of them were ob-
ject names of pictures in the book. A straightforward hypothesis about the difference in in-
formation between the intention-cued and audiovisual conditions is that participants had ac-
cess to the fact that spoken words and eye movements are closely locked in time. If this
temporal synchrony between words and body movements (eye gaze) were present in the in-
tention-cued condition (but not the audiovisual condition), it could explain the superior per-
formance on both tests in the intention-cued condition. For instance, if the onset of spoken
words was always 300 msec after a saccade, then participants could simply find the words
based on this delay interval. To analyze this possible correlation, we examined the time rela-
tion of eye fixation and speech production. We first spotted the keywords (object names)
from transcripts and labeled the start times of these spoken words in the video record. Next,
the eye fixations of the corresponding objects, which are closest in time to the onsets of
those words, were found. Then for each word, we computed the time difference between the
onset of each eye fixation and the start of the word. A histogram of this temporal relation is
plotted to illustrate the level of synchrony between gaze on the target object and speech pro-
duction. As shown in Fig. 3, most eye movements preceded the corresponding onset of the
word in the speech production, and occasionally (around 7%) the onset of the closest eye
fixations occurred after speech production. Also, 9% of object names were produced when
the speaker was not fixating on the corresponding objects. From this analysis, we conclude
that in this kind of natural task, eye movements and speech production are not perfectly time
locked. However, the vast majority of eye movements to objects are made within 900 msec
prior to the spoken word that refers to that object. Thus, if the learner is sensitive to this pre-
dictive role for gaze-contingent co-occurrence between visual object and speech sound, it
could account for the superior performance by participants in the intention-cued condition
on tests of both speech segmentation and word-meaning association. In the next section, we
describe a computational model of embodied intention that is also able to use the informa-
tion encoded by this dynamic synchrony to learn words.
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5. The computational model

The foregoing lexical-learning experiment in Mandarin Chinese suggests that online infor-
mation about eye gaze facilitates the acquisition of new vocabulary items in a novel sec-
ond-language context. However, the precise mechanism by which the adults in our study seg-
mented words from fluent speech and mapped these sounds onto meanings remains unclear.
Moreover, as pointed out earlier, studies of adults learning a second language may not reflect
the same underlying mechanisms used by infants and young children as they learn their first
language. Thus, in this section, which represents the bulk of this research program, we build a
computational model that learns lexical items from raw multisensory signals to more closely
resemble the difficulties infants face during the early phase of language acquisition. In our
model, we attempt to show how social cues exhibited by the speaker (e.g., the mother) can play
a crucial constraining role in the process of discovering words from the raw audio stream and
associating them with their perceptually grounded meanings. By implementing the specific
mechanisms that derive from our underlying theories in explicit computer simulations, we can
not only test the plausibility of the theories but also gain insights about both the nature of the
model’s limitations and possible solutions to these problems.

To simulate how infants ground their semantic knowledge, our model of infant language
learning needs to be embodied in the physical environment and sense this environment as a
young child. To provide realistic inputs to the model, we attached multiple sensors to adult par-
ticipants who were asked to act as caregivers and perform some everyday activities, one of
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Fig. 3. The level of synchrony between eye movement and speech production. Most spoken object names were pro-
duced after eye fixations, and some of them were uttered before eye fixations. Occasionally, the speaker did not look
at the objects at all when he referred to them in speech. Thus, there is no perfect synchrony between eye movement
and speech production.



which was narrating the picture book (used in the preceding experiment) in English for a
young child, thereby simulating natural infant–caregiver interactions. As shown in Fig. 4,
those sensors included a head-mounted CCD camera to capture visual information about the
physical environment, a microphone to sense acoustic signals, an eye tracker to monitor the
course of the speaker’s eye movements, and position sensors attached to the head and hands of
the caregiver. In this way, our computational model, as a young language learner, has access to
multisensory data from the same visual environment as the caregiver, hears infant-directed
speech uttered by the caregiver, and observes the body movements, such as eye and head move-
ments, which can be used to infer the caregiver’s referential intentions. In sum, the model we
are building is essentially an ideal observer; if the simulated infant learner can acquire from re-
alistic multisensory input, under plausible conditions, the kinds of information we know in-
fants actually acquire in the natural environment, then we can use this model to further explore
language acquisition as a simulation, rather than relying solely on empirical findings from the
literature on infants and young children. Such a model is useful not only as a description of un-
derlying mechanisms of language learning, but also as a tool for making predictions about as-
pects of language development that have not been studied empirically or that would be difficult
to study in the natural environment.

To learn words from caregivers’ spoken descriptions (shown in Fig. 5), three fundamental
problems need to be addressed: (a) object categorization to identify grounded meanings of
words from nonlinguistic contextual information, (b) speech segmentation and word spotting
to extract the sound patterns of the individual words that might have grounded meanings, and
(c) association between spoken words and their meanings. To address those problems, our
model consists of the following components as shown in Fig. 6:

• Attention detection finds where and when a caregiver looks at the objects in the visual
scene based on his or her gaze and head movements. The speaker’s referential intentions
can be directly inferred from their visual attention.

• Visual processing extracts perceptual representations of the objects that the speaker is at-
tending to at attentional points in time and categorizes them into groups.
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Fig. 4. The computational model shares multisensory information like a human language learner. This allows the
association of coincident signals in different modalities.
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Fig. 5. The problems in word learning. The raw speech is first converted into phoneme sequences. The goal of our
method is to discover phoneme substrings that correspond to the sound patterns of words and then infer the mean-
ings of those words from nonlinguistic modalities.

Fig. 6. The overview of the system. The system first estimates participants’ focus of attention, then uses
spatiotemporal correlations of multisensory input at attentional points in time to associate spoken words with their
perceptually grounded meanings.



• Speech processing includes two parts. One is to convert acoustic signals into discrete pho-
neme representations. The other part deals with the comparison of phoneme sequences to
find similar substrings and to cluster those subsequences.

• Word learning is the crucial step in which information from different modalities is inte-
grated to discover words from fluent speech and map them to their grounded meanings
extracted from visual perception.

5.1. Attention detection

Our primary measure of attention is where and when the speaker directs gaze (via eye and
head movements) to objects in the visual scene. Although there are several different types of
eye movements, the two most important ones for interpreting the gaze of another person are
saccades and fixations. Saccades are rapid eye movements that move the fovea to view a differ-
ent portion of the visual scene. Fixations are stable gaze positions that follow a saccade and en-
able information about objects in the scene to be acquired. Our overall goal, therefore, is to de-
termine the locations and timing of fixations from a continuous data stream of eye movements.
Current fixation-finding methods (Salvucci & Goldberg, 2000) can be categorized into three
types: velocity based, dispersion based, and region based. Velocity-based methods find fixa-
tions according to the velocities between consecutive samples of eye-position data. Disper-
sion-based methods identify fixations as clusters of eye-position samples, under the assump-
tion that fixation points generally occur near one another. Region-based methods identify
fixation points as falling within a fixed area of interest within the visual scene.

We developed a velocity-based method to model eye movements using a Hidden Markov
Model (HMM)representation thathasbeenwidelyused inspeechrecognitionwithgreat success
(Rabiner & Juang, 1989). A hidden Markov model consists of a set of N states S = {s1, s2, s3, … ,
sN}, the transition probability matrix A = aij, where aij is the transition probability of taking the
transition from state si to state sj, prior probabilities for the initial state πi, and output probabilities
of each state bi(o(t)) = P{o(t)|s(t) = si}. Salvucci and Anderson (1998) first proposed a
HMM-based fixation identification method that uses probabilistic analysis to determine the
most likely identifications foragivenprotocol.Ourapproach isdifferent fromtheirs in twoways.
First,weuse trainingdata toestimate the transitionprobabilities insteadofsettingpredetermined
values. Second, we noticed that head movements provide valuable cues to model the focus of at-
tention. This is because participants almost always orient their heads toward the object of inter-
est, thereby keeping their eye-position with respect to the head in the center of their visual field.
Therefore, head position was integrated with eye position as the input to the HMM.

A two-state HMM was used in our system for eye-fixation finding. One state corresponds to
the saccade and the other represents the fixation. The observations of the HMM are two-di-
mensional vectors consisting of the magnitudes of the velocities of head rotations in three di-
mensions and the magnitudes of velocities of eye movements. We model the probability densi-
ties of the observations using a two-dimensional Gaussian. The parameters of the HMMs that
need to be estimated comprise the observation and transition probabilities. Specifically, we
need to compute the means (µj1, µj2) and variances (σj1, σj2) of two-dimensional Gaussians
(four parameters) for each state and the transition probabilities (two parameters) between two
states. The estimation problem concerns how to adjust the model λ to maximize P(O|λ), given
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an observation sequence O of eye and head motions. We can initialize the model with flat prob-
abilities, and then the forward–backward algorithm (Rabiner & Juang, 1989) allows us to eval-
uate the probabilities. Using the actual evidence from the training data, a new estimate for the
respective output probability can be assigned:

and

where γt(j) is defined as the posterior probability of being in state sj at time t, given the observa-
tion sequence and the model.

As a result, the saccade state contains an observation distribution centered around high ve-
locities, and the fixation state represents the data whose distribution is centered around low ve-
locities. The transition probabilities for each state represent the likelihood of remaining in that
state or making a transition to another state. An example of the results from this eye-data analy-
sis is shown in Fig. 7.

5.2. Visual processing

The attention-detection information, based on gaze information from eye and head move-
ments, must be linked to the objects contained in the visual scene. Thus, there must be a mech-
anism to define what an object is and where it is located in the scene on a moment-to-moment
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Fig. 7. Eye-fixation finding. The top plot: the velocity profile of the head. The middle plot: point-to-point velocities
of eye movements. The bottom plot: a temporal state sequence of HMM (the fixation label indicates the fixation
state and the movement label represents the saccade state).



basis as the participant is shifting visual attention. The visual data provided by the
head-mounted camera (the scene) and by gaze information form the contexts in which spoken
utterances are produced. Thus, the possible referents of spoken words are encoded in those
contexts, and we need to extract those perceptually grounded meanings (i.e., the objects that
serve as the referents of the words) from raw sensory inputs. As a result, we will obtain a tem-
poral sequence of possible referents depicted by the box labeled intentional contexts in Fig. 9
on p. 983. Our method first uses eye and head movements as cues to estimate the participant’s
focus of attention as described in the previous section. Attention, as represented by eye fixa-
tion, is then used for spotting the objects of the participant’s interest.

Specifically, at every attentional point in time, we make use of eye gaze as a seed to find the
attentional object from all the objects in a scene, and then we extract a perceptual representa-
tion based on the visual appearance of the object. In this way, the referential intentions can be
directly inferred from attentional objects. This approach consists of two steps: attentional ob-
ject spotting and object categorization.

5.2.1. Attentional object spotting
Object spotting detects the visual objects fixated by speakers at critical points as speech out-

put unfolds in real time, which provides perceptually grounded meanings in word learning.
Knowing attentional states allows for automatic object spotting by integrating visual informa-
tion with eye gaze data, which consists of two steps. First, the snapshots of the scene are seg-
mented into blobs using low-level image features (Wang & Siskind, 2003). The result of image
segmentation is illustrated in Fig. 8(b), and only blobs larger than a threshold are used. Next,
we group those blobs into semantic objects. Our approach starts with a segmented image, uses
gaze positions as seeds, and repeatedly merges the most similar regions to form new groups un-
til all the blobs are labeled. Eye gaze in each attentional time is then used as a cue to extract the
object of speaker interest from all the detected objects.

5.2.1.1. Similarity measurement
We use color as the similarity feature for merging regions. L * a * b color space is adopted to

overcome undesirable effects caused by varied lighting conditions and achieve more robust il-
lumination–invariant segmentation. L * a * b color consists of a luminance or lightness compo-
nent (L*) and two chromatic components: the a* component (from green to red) and the b*
component (from blue to yellow). To this effect, we compute the similarity distance between
two blobs in the L* a * b color space by employing the histogram intersection method pro-
posed by Swain and Ballard (1991). If CA and CB denote the color histograms of two regions A
and B, their histogram intersection is defined as:

where n is the number of the bin in the color histogram, and 0 < h(A, B) < 0.5. Two neighboring
regions are merged into a new region if the histogram intersection h(A, B) is between a thresh-
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old tc(0 < tc < 0.5) and 0.5. Although this similarity measure is fairly simple, it is remarkably ef-
fective in determining color similarity between regions of multicolored objects.

5.2.2. Merging process
The approach of merging blobs is based on a set of regions selected by speakers’ gaze fixa-

tions, termed seed regions. We start with a number of seed regions S1, S2, … , Sn, in which n is
the number of regions that participants were attending to. Given those seed regions, the merg-
ing process then finds a grouping of the blobs into semantic objects with the constraint that the
regions of visual objects are chosen to be as homogeneous as possible. The process evolves
iteratively from the seed regions. Each step of the algorithm involves the addition of one blob
to one of the seed regions and the merging of neighboring regions based on their similarities.

Our method is implemented using a sequentially sorted list (Adams & Bischof, 1994),
which is a linked list of blobs ordered according to some attribute. In each step, we consider the
blob at the beginning of the list. When adding a new blob to the list, we place it according to its
value of the ordering attribute so that the list is always sorted, based on the attribute. Let N(A)
be the set of immediate neighbors of the blob A, which are seed regions. For all the regions
N(A)1, N(A)2, … , N(A)n, the seed region that is closest to A is defined as:

where h[A, N(A)i] is the histogram function measuring the similarity distance between region A
and N(A)i, based on the selected similarity feature. The ordering attribute of region A is then
defined as h(A, B). The merging procedure is illustrated in Appendix A. Fig. 8 shows how these
steps are combined.

5.2.3. Clustering visually grounded meanings
The extracted objects are represented by a model that contains color, shape, and texture fea-

tures (Yu & Ballard, 2004). Based on the work of Mel (1997), we construct the visual features
of objects that are large in number, invariant to different viewpoints, and driven by multiple vi-
sual cues. Specifically, 64-dimensional color features are extracted by a color indexing method
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(Swain & Ballard, 1991), and 48-dimensional shape features are represented by calculating
histograms of local shape properties (Schiele & Crowley, 2000). Gabor filters with three scales
and five orientations are applied to the segmented image. It is assumed that the local texture re-
gions are spatially homogeneous, and the mean and the standard deviation of the magnitude of
the transform coefficients are used to represent an object in a 48-dimensional texture feature
vector. Thus, feature representations consisting of a total of 160 dimensions are formed by
combining color, shape, and texture features, which provide fundamental advantages for fast,
inexpensive recognition.

Most classification algorithms, however, do not work efficiently in high dimensional spaces
because of the inherent sparsity of the data. This problem has been traditionally referred to as
the curse of dimensionality. In our system, we reduced the 160-dimensional feature vectors
into 15 vectors by using principle component analysis (Aggarwal & Yu, 2000), which repre-
sents the data in a lower dimensional subspace by pruning away those dimensions that result in
the least loss of information. Next, because the feature vectors extracted from visual appear-
ances of attentional objects do not occupy a discrete space, we vector quantize them into clus-
ters by applying a hierarchical agglomerative clustering algorithm (Hartigan, 1975). Finally,
we select a centroid (a feature vector in the visual space) of each cluster as the perceptually
grounded representation of word meanings.

5.3. Speech processing

Infants begin to organize their phoneme categories in an adultlike manner by the age of 6
months (Jusczyk, 1997). Therefore, our computational model first converts acoustic signals
into phoneme strings to simulate this capability. Then we need a method to compare phoneme
strings and identify words embedded in continuous speech. The methods of phoneme recogni-
tion and phoneme string comparison, which provide a basis for building word-meaning associ-
ations, are described in this subsection (Ballard & Yu, 2003).

5.3.1. Phoneme recognition
We implemented an endpoint detection algorithm to segment the speech stream into spoken

utterances. Each spoken utterance contains one or more spoken words. Then the
speaker-independent phoneme-recognition system developed by Robinson (1994) is em-
ployed to convert spoken utterances into phoneme sequences. The method is based on recur-
rent neural networks (RNN) that perform the mapping from a sequence of the acoustic features
extracted from raw speech to a sequence of phonemes. The training data of RNN are from the
TIMIT database—phonetically transcribed American English speech—which consists of read
sentences spoken by 630 speakers from eight dialect regions of the United States. To train the
networks, each sentence is presented to the recurrent back-propagation procedure. The target
outputs are set using the phoneme transcriptions provided in the TIMIT database. Once
trained, a dynamic programming match (Kruskal, 1999) is made to find the most probable pho-
neme sequence of a spoken utterance—for example, the boxes labeled phoneme strings in Fig.
9. The output consists of 61 phonemic and phonetic symbols used in the TIMIT lexicon and in
the phonetic transcriptions.
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Fig. 9. Overview of the method for word learning. Spoken utterances are categorized into several bins that corre-
spond to temporally co-occurring attentional objects. Then we compare any pair of spoken utterances in each bin to
find the similar subsequences that are treated as wordlike units. Next, those wordlike units in each bin are clustered,
based on the similarities of their phoneme strings. The expectation maximization (EM) algorithm is applied to find
lexical items from hypothesized word-meaning pairs.



5.3.2. Comparing phoneme sequences
In our model, the comparison of phoneme sequences has two purposes: One is to find the

longest similar substrings of two phoneme sequences (wordlike unit spotting described in Sub-
section 5.4.1), and the other is to cluster segmented wordlike units represented by phoneme se-
quences into groups (wordlike unit clustering presented in Subsection 5.4.2). In both cases, an
algorithm for the alignment of phoneme sequences is a necessary step. Given raw speech input,
the specific requirement here is to cope with the acoustic variability of spoken words in differ-
ent contexts and by various speakers. Due to this variation, the outputs of the phoneme
recognizer previously described are noisy phoneme strings that are different from phoneme
transcriptions of text. In this context, the goal of phoneme string matching is to identify se-
quences that might be different actual strings, but have similar pronunciations.

5.3.2.1. Similarity between individual phonemes. To align phoneme sequences, we first need
a metric for measuring distances between phonemes. We represent a phoneme by a
12-dimensional binary vector in which every entry stands for a single articulatory feature
called a distinctive feature. Those distinctive features are indispensable attributes of a pho-
neme that are required to differentiate one phoneme from another in English. Based on
Ladefoged (1993), the features we selected are consonantal, vocalic, continuant, nasal, ante-
rior, coronal, high, low, back, voicing, strident, and sonorant. Each feature vector is binary, that
is, the number 1 represents the presence of a feature in a phoneme and zero represents the ab-
sence of that feature. When two phonemes differ by only one distinctive feature, they are
known as being minimally distinct from each other. For instance, phonemes /p/ and /b/ are min-
imally distinct because the only feature that distinguishes them is “voicing.” We compute the
distance d(i, j) between two individual phonemes i and j as the Hamming distance, which sums
up all value differences for each of the 12 features in two vectors. The underlying assumption
of this metric is that the number of binary features in which two given sounds differ is a good
indication of their proximity. Moreover, phonological rules can often be expressed as a modifi-
cation of a limited number of feature values. Therefore, sounds that differ in a small number of
features are more likely to be related. We compute the similarity matrix, which consists of n × n
elements, where n is the number of phonemes. Each element is assigned a score that represents
the similarity of two phonemes. The diagonal elements are set to be zeros, and the other ele-
ments in the matrix are assigned negative values [–d(i, j)] that correspond to the Hamming dis-
tance of distinctive features between two phonemes. In addition, a positive value is set as the
reward of two matching phonemes in two strings.

5.3.2.2. Alignment of two phoneme sequences. The outputs of the phoneme recognizer are
phoneme strings with the time stamps of the beginning and the end of each phoneme. We
subsample the phoneme strings so that symbols in the resulting strings contain the same dura-
tion. We then apply the concept of similarity to compare phoneme strings. A similarity scoring
scheme assigns positive scores to pairs of matching segments and negative scores to pairs of
dissimilar segments. The optimal alignment is the one that maximizes the overall score. Fun-
damental to the algorithm is the notion of string-changing operations of dynamic program-
ming (Kruskal, 1999). To determine the extent to which two phoneme strings differ from each
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other, we define a set of primitive string operations. By applying several string operations, one
phoneme string can be aligned with the other. The measurement of the similarity of two pho-
neme strings then corresponds to the sum of both the cost of individual string operations in
alignment and the reward of matching symbols. To identify the phoneme strings that may be of
similar pronunciation, the method needs to consider not only the similarity of phonemes but
also their durations.

Thus, each phoneme string is subject to variations in speed (the duration of the phoneme
being uttered). Such variations can be considered as compression and expansion of the pho-
neme with respect to the time axis. In addition, additive random error may also be intro-
duced by interpolating or deleting original sounds. One step toward dealing with such addi-
tional difficulties is to perform the comparison in a way that allows for deletion–insertion as
well as compression–expansion operations. In the case of an extraneous sound that does not
delay the normal speech but merely conceals a bit of it, deletion–insertion operations permit
the concealed bit to be deleted and the extraneous sound to be inserted, which is a more real-
istic and perhaps more desirable explanation than that permitted by additive random error.
The detailed technical descriptions of our phoneme comparison method can be found in Ap-
pendix B.

5.4. Word learning

We now describe our approach to integrating multimodal data for word acquisition (Yu &
Ballard, 2004). Fig. 9 illustrates our method for spotting words and establishing word-meaning
associations.

5.4.1. Wordlike unit spotting
The central idea of spotting wordlike units is to use nonspeech contextual information to

identify a “chunk” of speech as a candidate “word.” The reason for using wordlike units is that
some objects are verbally described by noun phrases (e.g., “little boy”) but not by single object
names. The inputs shown in Fig. 9 are phoneme sequences (u1, u2, u3, u4) and possible mean-
ings of words (attentional objects) extracted from nonspeech perceptual input. Those phoneme
utterances are categorized into several bins, based on their possible associated meanings. For
each meaning, we find the corresponding phoneme sequences uttered in temporal proximity
and then categorize them into the same bin labeled by that meaning. For instance, u1 and u3 are
temporally correlated with the object “cat,” so they are grouped in the same bin labeled by the
object “cat.” Note that, because one utterance could be temporally correlated with multiple
meanings in a perceptual context, it is possible that an utterance is selected and classified in
multiple bins. For example, the utterance u2 “the little boy gives the horse a hug” is produced
while a participant is looking at both the object “little boy” and the object “horse.” In this case,
the utterance is put into two bins: one corresponding to the object “little boy” and the other la-
beled by the object “horse.” Next, based on the method described in Subsection 5.3.2, we com-
pute the similar substrings between any two phoneme sequences in each bin to obtain wordlike
units. Fig. 10 shows an example of extracting wordlike units from the utterances u2 and u3 that
are in the bin of the object “horse.”
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5.4.2. Wordlike unit clustering
As shown in Fig. 9, the extracted phoneme substrings of wordlike units are clustered by a hi-

erarchical agglomerative clustering algorithm that is implemented based on the comparison
method described in Subsection 5.3.2. The centroid of each cluster is then found and adopted
as a prototype to represent this cluster. Those prototype strings are associated with their possi-
ble grounded meanings to build hypothesized lexical items. Among them, some are correct,
such as /kcl k ae tcl t/ (cat)1 associated with the object of “cat,” and some are not relevant to the
attentional objects. Now that we have hypothesized word-meaning pairs, the next step is to se-
lect reliable and correct lexical items.

5.4.3. Multimodal integration
In the final step, the co-occurrence of multimodal data selects meaningful semantics that as-

sociate visual representations of objects with spoken words, which are illustrated in Fig. 11.
We take a novel view of this problem as being analogous to the word alignment problem in ma-
chine translation. For that problem, given texts in two languages (e.g., English and French),
computational linguistic techniques can estimate the probability that an English word will be
translated into any particular French word and then align the words in an English sentence with
the words in its French translation. Similarly, for our problem, if different meanings can be
looked at as elements of a “meaning language,” associating meanings with object names can be
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Fig. 10. An example of wordlike unit spotting. The similar substrings of two sequences are /hh ao aw r z/ (horse)
and /hh ao r z/ (horse).

Fig. 11. Word meaning association. The wordlike units in each spoken utterance and co-occurring meanings are
temporally associated to build possible lexical items.



viewed as the problem of identifying word correspondences between English and “meaning
language.” Thus, a technique from machine translation can address this problem. The proba-
bility of each word is modeled as a combination of the association probabilities of each word
with its possible meanings. In this way, an EM algorithm can find the reliable associations of
spoken words and their grounded meanings. Informally, we first derive the likelihood function
of observing the data set. The EM algorithm starts with randomly assigned values of associa-
tion probabilities and then iteratively alternates two steps: the expectation step (E-step) and the
maximization step (M-step). In the E-step, it computes the expected likelihood of generating
observation data, given these estimates of association probabilities. In the M-step, it
reestimates those probabilities by maximizing the likelihood function. Once we have a new set
of estimates, we can repeat the E-step and M-step. This process continues until the likelihood
function converges.

The general setting is as follows: Suppose we have a word set X = {w1, w2, … , wN} and a
meaning set Y = {m1, m2, … , mM}, where N is the number of wordlike units and M is the num-
ber of perceptually grounded meanings. Let S be the number of spoken utterances. All data are
in a set , where each spoken utterance S w

s( ) consists of r words wu(1),
wu(2), … , wu(r), and u(i) can be selected from 1 to N. Similarly, the corresponding contextual in-
formation S m

s( ) includes l possible meanings mv(1), mv(2), … , mv(l), and the value of v(j) is from 1
to M. We assume that every word wn can be associated with a meaning mm. Given a data set X,
we want to maximize the likelihood of generating the “meaning” corpus, given English de-
scriptions:

The independence assumption is satisfied reasonably well because it is less likely that a word
in a spoken utterance refers to a visual object not occurring in this context but in other contexts.
We use the method similar to that of Brown, Pietra, Pietra, and Mercer (1993). The joint likeli-
hood of a meaning string given a spoken utterance:

where the alignment av(j), 1 ≤ j ≤ l can take any value from 0 to r that indicates which word is
aligned with the jth meaning. The term p(mv(j)|wu(i)) is the association probability for a
word-meaning pair, and ε is a small constant. In this way, the joint likelihood function of mean-
ing strings given paired word strings can be expressed in terms of those word-meaning associa-
tion probabilities.
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We wish to find the association probabilities so as to maximize subject to the
constraints that for each word wn:

The assumption here is that a word refers to one meaning in a specific context. Note that multi-
ple words could potentially refer to the same meaning. For instance, both the word dog and the
word doggie refer to the object “dog.” On the other hand, the model does not accommodate
homonyms. Thus, multiple meanings compete with each other to obtain one linguistic label,
and they could not be assigned to the same word. We believe that learning homonyms involves
many exposures to a word in different contexts and through multiple sessions. Because the data
in this study are collected from reading a single picture book, the issue of learning homonyms
is beyond the goals of this model.

Next, we introduce Lagrange multipliers λn and seek an unconstrained maximization:

We then compute derivatives of the previously described objective function with respect to the
multipliers λn and the unknown parameters p(mm|wn) and set them to be zeros. As a result, we
obtain that:

where

The intuition behind the numerator in Equation 11 is that the more often a word and a meaning
co-occur, the more likely that they are to be mutual translations. The denominator indicates
that the co-occurrence count of a word and a meaning should be discounted to the degree that
the meaning also correlates with other words in the same pair. The EM-based algorithm sets an
initial p(mm|wn) to be a flat distribution and performs the E-step and the M-step successively
until convergence. In the E-step, we compute by Equation 11. In the
M-step, we reestimate both the Lagrange multipliers and the association probabilities using
Equations 9 and 10. When the association probabilities converge, we obtain a set of p(mm|wn)
and need to select the correct lexical items from many possible word-meaning associations.

988 C. Yu, D. H. Ballard, R. N. Aslin/Cognitive Science 29 (2005)

( ) ( )

1 1

( ) (9)
M S

s s
n m n m w

m s

c m w S S
� �

� � � ���λ

( ) ( )( )s s
m n m wc m w S S� � �

( ) ( )

(1) ( )

1 1

( )
( )

( ) ( )

( ( )) ( ( )) (11)

m ns s
m n m w

m u m u r

l r

m n

j i

p m w
c m w S S

p m w p m w

m v j w u i
� �

�
� � � � �

� �			� �

� �� �δ δ

( ) ( )1

1

( ) ( ) (10)
S

s s
m n n m n m w

s

p m w c m w S S�

�

� � � � ��λ

( ) ( )

1 1 1

( ) ( ) ( ) 1 (8)
S N M

s s
m w n m n

s n m

h t p S S p m w
� � �

� �� �� � � � � �� �� ���� �
� � �λ λ

1

( ) 1 (7)
M

m n

m

p m w
�

� ��

( ) ( )( )s s
m wp S S�



Compared with the training corpus in machine translation, our experimental data are sparse
and consequently cause some words to have inappropriately high probabilities to associate
with the meanings. This is because those words occur very infrequently and are in a few spe-
cific contexts. We therefore use two constraints for selection. First, only words that occur more
than a predefined number of times are considered. Moreover, for each meaning mm, the system
selects all the words with the probability p(mm|wn) greater than a predefined threshold. In this
way, one meaning can be associated with multiple words. This is because people may use dif-
ferent names to refer to the same object, and the spoken form of an object name can be ex-
pressed differently. For instance, the phoneme strings of both “dog” and “doggie” correspond
to the object “dog.” Therefore, the system is constrained to learn all the spoken words that have
high probabilities in association with a particular meaning.

5.5. Experimental setup

APolhemus3Dtracker (Polhemus,Colchester,Vermont)wasused toacquire6-DOF(Degree
of Freedom) head positions at 40 Hz. A participant wore a head-mounted video-based, infrared
reflection eye tracker from ASL. The headband of the ASL held a miniature scene camera to the
left of the participant’s head, which provided the video of the scene. The video signals were sam-
pled at the resolution of 320 columns × 240 rows of pixels at the frequency of 15 Hz. The gaze po-
sitions on the image plane were provided at a frequency of 60 Hz and had a real-time delay of 50
msec. The acoustic signals were recorded using a headset microphone at a rate of 16 kHz with
16-bit resolution. Six participants, all native speakers of English, took part in the experiment.

They were asked to narrate the picture book, I Went Walking (used in the previous experi-
ment), in English. They were also instructed to pretend that they were telling this story to a
child so that they should keep verbal descriptions of pictures as simple and clear as possible.
We collected multisensory data when they performed the task, which were used as training
data for our computational model. The model was designed to learn spoken words of object
names that were referred to by speech, such as dog, duck, horse, and pig. For evaluation pur-
poses, we manually annotated the speech data and calculated the frequencies of words. We col-
lected approximately 660 spoken utterances, and on average, a spoken utterance contained six
words, which illustrates the necessity of word segmentation from connected speech. Among
all these words, only approximately 15% of them are object names that we want to spot and as-
sociate with their grounded meanings. This statistic further demonstrates the difficulty of
learning lexical items from naturally co-occurring data. It is important to note that these
hand-coded annotations were only used for evaluation purposes; our model did not use these
data as extra information to constrain the learning process.

5.6. Results and discussions

To evaluate the results of the experiments, we defined the following four measures for seg-
menting wordlike units and building grounded lexical items.

• Semantic accuracy measures the categorization accuracy of clustering visual feature vec-
tors of attentional objects into semantic groups. Each category corresponds to one percep-
tually grounded representation of word meaning.
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• Speech-segmentation accuracy measures whether the beginning and the end of phoneme
strings of wordlike units are word boundaries. For example, the string /kcl k ae tcl t/ is a
positive instance corresponding to the word cat, whereas the string /kcl k ae tcl t i/ is nega-
tive. The phrases with correct boundaries are also treated as position instances for two
reasons. One is that those phrases are consistent with some word boundaries but combine
some words together. The other reason is that some phrases correspond to concrete
grounded meanings, which are exactly the spoken units we want to extract (e.g., “little
boy”).

• Word-meaning association accuracy (precision) measures the percentage of successfully
segmented words that are correctly associated with their meanings.

• Lexical spotting accuracy (recall) measures the percentage of word-meaning pairs that
are spotted by the model. This measure provides a quantitative indication about how
much lexical knowledge can be acquired, based on a certain amount of exposure.

Table 2 shows the results for the four measures. The mean semantic accuracy of categoriz-
ing visual objects is 80.6%, which provides a good basis for the subsequent speech segmenta-
tion and word-meaning association metrics. It is important to note that the recognition rate of
the phoneme recognizer we used is 75%. This rather poor performance is because it does not
encode any language model or word model. Thus, the accuracy of the speech input to the
model has a ceiling of 75%. Based on this constraint, the overall accuracy of speech segmenta-
tion of 70.6% is quite good. Naturally, an improved phoneme recognizer based on a language
model would improve the overall results, but the intent here is to study the developmental
learning procedure without pretrained models. The measure of word-meaning association,
88.2%, is also impressive, with most of the errors caused by a few words (e.g., happy and look)
that frequently occur in some contexts but do not have visually grounded meanings. The over-
all accuracy of lexical spotting is 73.1%, which demonstrates that by inferring speakers’ refer-
ential intentions, the stable links between words and meanings could be easily spotted and es-
tablished. Considering that the system processes raw sensory data, and our learning method
works in an unsupervised mode without manually encoding any linguistic information, the ac-
curacies for both speech segmentation and word-meaning association are impressive.
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Table 2
Results of word acquisition

Subjects
(%)

Semantics
(%)

Speech
Segmentation
(%)

Word-Meaning
Association
(%)

Lexical
Spotting
(%)

1 80.3 72.6 91.3 70.3
2 83.6 73.3 92.6 73.2
3 79.2 71.9 86.9 76.5
4 81.6 69.8 89.2 72.9
5 82.9 69.6 86.2 72.6
6 76.6 66.2 83.1 72.8
Average 80.6 70.6 88.2 73.1



To more directly demonstrate the role of embodied intention in language learning, we pro-
cessed the data by another method in which the inputs of eye gaze and head movements were
removed, and only audiovisual data were used for learning (e.g., Roy & Pentland, 2002).
Clearly, this approach reduces the amount of information available to the learner, and it forces
the model to classify spoken utterances into the bins of all the objects in the scene instead of
just the bins of attentional objects. In all other respects, this approach shares the same imple-
mented components with the intention-cued approach. Fig. 12 shows the comparison of these
two methods.

The intention-cued approach outperforms the audiovisual approach in both speech segmen-
tation, t(5) = 6.94, p < .0001, and word-meaning association, t(5) = 23.2, p < .0001. The signifi-
cant difference lies in the fact that there exist a multitude of co-occurring word–object pairs in
natural environments that infants are situated in, and the inference of referential intentions
through body movements plays a key role in discovering which co-occurrences are relevant. In
addition, the results obtained from this comparative study are very much in line with the results
obtained from human participants, suggesting that not only is our model cognitively plausible,
but the role of embodied intention can be appreciated by both human learners and by the com-
putational model.

6. General discussion

6.1. The embodiment of word learning

Computational models of development and cognition have changed radically in recent
years. Many cognitive scientists have recognized that models that incorporate constraints from
embodiment—that is, how mental and behavioral development depends on complex interac-
tions among brain, body, and environment (Clark, 1997)—are more successful than models
that ignore these factors. Language represents perhaps the most sophisticated cognitive system
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acquired by human learners, and it clearly involves complex interactions between a child’s in-
nate capacities and the social, cognitive, and linguistic information provided by the environ-
ment (Gleitman & Newport, 1995). The model outlined in this study focuses on the initial
stages of language acquisition, using the embodied cognition perspective—how are words ex-
tracted from fluent speech and attached to meanings? Most existing models of language acqui-
sition have been evaluated by artificially derived data of speech and semantics (Bailey, Chang,
Feldman, & Narayanan, 1998; Brent & Cartwright, 1996; Cohen, Oates, Adams, & Beal,
2001; Siskind, 1996). In those models, speech is represented by text or phonetic transcriptions,
and word meanings are usually encoded as symbols or data structures. In contrast, our model
proved successful by taking advantage of recent advances in machine learning, speech pro-
cessing, and computer vision and by suggesting that modeling word learning at the sensory
level is not impossible and that embodiment has some advantages over symbolic simulations
by closely resembling the natural environment in which infants develop. In both empirical and
computational studies, we use storybook reading—a natural interaction between children and
caregivers—to simulate the word learning in everyday life. Multisensory data (materials used
by the model) are real and natural. To our knowledge, in the literature of language acquisition
modeling, this experimental setup is the closest to the natural environment of early word learn-
ing that has been achieved.

Our model emphasizes the importance of embodied learning for two main reasons. First,
the motivation behind this work is that language is grounded in sensorimotor experiences
with the physical world. Thus, a fundamental aspect of language acquisition is that the
learner can rely on associations between the movements of the body and the context in
which words are spoken (Arbib, 2005; Lakoff & Johnson, 1980). Second, because infants
learn words by sensing the environment with their perceptual systems, they need to cope
with several practical problems, such as the variability of spoken words in different contexts
and by different talkers. To closely simulate infant vocabulary development, therefore, a
computational model must have the ability to remove noise from raw signals and extract du-
rable and generalizable representations instead of simplifying the problem by using consis-
tent symbolic representations (e.g., text or phonetic transcriptions). Furthermore, our com-
putational model addresses the problem of speech segmentation, meaning identification, and
word-meaning mapping in a general framework. It shows the possible underlying mecha-
nism by which linguistic processing, perceptual learning, and social communication interact
with each other in early word learning.

6.2. The role of social cues

Children do not hear spoken utterances in isolation. They hear them in a context.
Ervin-Tripp (1973) found that normal children with deaf parents, who could access English
only from radio or television, did not learn any speech. Macnamara (1982) argued that it is very
difficult for a child to figure out what the silent actors in interactive materials (such as a video
or a TV program) are talking about. By interacting with live human speakers, who tend to talk
about things that are present in a shared context with children, the child can more effectively
infer what the speaker might have meant. More recently, Kuhl, Tsao, and Liu (2003) showed
that American 9-month-old infants exposed to Mandarin Chinese under audio-videotape or au-
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ditory-only conditions did not show phoneme learning. Both studies indicate that learning is
influenced by the presence of a live person generating social cues to attract infant attention and
motivate learning. As reviewed in Section 3, recent experimental studies confirmed this idea
and suggested that the existence of a theory of mind could play a central role in how children
learn the meanings of certain words (Baldwin, 1993; Markson & Bloom, 1997; Tomasello,
2001; Tomasello & Farrar, 1986).

In this article, we focused on the ability of the young language learner to infer interlocu-
tors’ referential intentions by observing their body movements, which may significantly fa-
cilitate early word learning. Clearly, this is the earliest and perhaps the lowest level of a the-
ory of mind and may not (at least for infants) involve any conscious knowledge that the
speaker who is providing body-movement cues has explicit intentions. Nevertheless, if in-
fants are sensitive to some of these body-movement cues, that may constrain the
word-learning process sufficiently to enable it to function effectively and efficiently in early
lexical development. Different from most other studies, our work explores the dynamic na-
ture of social cues in language acquisition by closely resembling the natural environment of
infant–caregiver interaction.

In our preliminary experiment that simulated word learning using human adults, the experi-
menter narrated the story shown in the picture book naturally by using infant-directed speech.
The adult learners were therefore presented with continuous speech and visual information as
well as the dynamic movements of the speaker’s gaze and head. Similarly, in our computer
simulation, the computational model we built of a young language learner received continuous
sensory data from multiple modalities. As we pointed out in both of these situations (adult
learning and model learning), the timing of speech productions and eye movements were not
perfectly aligned in these complex natural contexts. Nevertheless, the results of empirical stud-
ies showed that adult language learners exposed to a second language in the intention-cued
condition outperformed participants in the audiovisual condition in both word discovery (seg-
mentation) and word-meaning tests, indicating that human participants can use dynamic infor-
mation encoded in the continuous body movements of the speaker to improve the learning re-
sults. How do adults take advantage of the partial, imperfect temporal synchrony between
sounds and object-directed gaze? Our computational model answered this question by simulat-
ing the underlying mechanism of using social cues.

Social cues are referential in nature. In the computational model described in the previous
section, a speaker’s referential intentions are estimated and used to facilitate word learning in
two ways. First, the possible referential objects defined by gaze changes in real-time provide
constraints for word spotting from a continuous speech stream. Second, a difficult task of word
learning is to figure out which entities specific words refer to from a multitude of
co-occurrences between words and things in the world. This is accomplished in our model by
using speakers’ intentional body movements as deictic references to establish associations be-
tween words and their visually grounded meanings. These two mechanisms not only provide a
formal account of the role of embodied intentions in word learning, but also suggest an expla-
nation of the experimental results obtained from adult learners of a second language in our hu-
man simulation. Furthermore, the combination of human simulation and computational mod-
eling shows conclusively that embodied intention serves to facilitate, and may in fact be a
necessary feature of, learning the vocabulary in a new language.
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6.3. The integration of social cues and statistical learning

Most computational models of word learning are based on associative mechanisms (see
Regier, 2003, for a review). Probabilistic techniques, such as connectionist models, Bayesian
inference, and latent semantic analysis, have been applied to model word learning. Many of
these approaches use spatiotemporal contiguity to determine the referent of a word. However,
parents do not carefully and explicitly name objects for their children in many cultures. Thus,
words are not typically used at the moment their referents are perceived. For instance,
Gleitman (1990) showed that most of the time the child does not observe something being
opened when the verb “open” is used. Nevertheless, children have no difficulty in learning
such words. Associative learning, without some further constraints or additional information,
cannot explain this observation.

Our computational model demonstrates that intentional cues can be directly used to dis-
cover what objects in the world should get mapped to words. Thus, social cues are useful to ad-
dress the spatial ambiguity in word learning by selecting correct lexical items from multiple
co-occurring word-meaning pairs. The success of this model suggests that social cues could
also be one of the driving forces to deal with the problem of temporal contiguity described pre-
viously. We propose that social cues could filter out irrelevant information and make the model
focus on specific moments in time selected by social-object correlations. If the model just
“zooms in” on those critical moments, it may find that words and meanings are most often tem-
porally co-occurring. Therefore, the model does not need to process a large amount of irrele-
vant data, but concentrates on multisensory input at those critical moments. This mechanism
suggests that in early word learning, although infants perceive multisensory input, the brain
might refuse to process those data until the referential intentions of a speaker have been de-
tected from social cues, such as the speaker’s gaze. Then the brain only needs to process sen-
sory data captured at those moments to learn words. In this way, social cues provide a gating
mechanism that determines whether co-occurring data are relevant or not. This strategy seems
to be more efficient compared with a purely statistical learning mechanism that needs to deal
with a large amount of irrelevant data in calculating the statistical properties of the
co-occurrences that are relevant from multimodal data.

The implementation of our computational model shows how the constraints of social cues and
statistical learning can be integrated naturally. We compared the performance of our approach
with the one based solely on associative learning, and the results demonstrated that our model
outperformed the associative one in both speech segmentation and word-meaning association.
However, we cannot claim that this social spotlight is an indispensable part of early word learn-
ing. Even though the results of associative learning are not as good as the intention-cued ap-
proach in both human experiments and computational modeling, associative mechanisms alone
can nevertheless learn some correct word-meaning pairs. Previous work (e.g., MacWhinney,
1989;Plunkett et al., 1992;Regieretal., 2001;Roy&Pentland,2002;Siskind,1996;Tenenbaum
& Xu, 2000) also showed that purely statistical or associative learning models can accomplish
the word-learning task, based on multiple- or even one-trial exposures.

To sum up this discussion, our work shows that social cues could be seamlessly inte-
grated into the framework of statistical learning in modeling early word learning. We also
provide quantitative results on the effect of considering social cues. Based on our results and
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previous work on infant word learning by Baldwin (1993) and Tomasello (2001), it seems
clear that social cues are helpful in early language acquisition. From the perspective of ma-
chine learning, it is possible that one can build an associative model based on statistical
learning and obtain very good results. Although that model can provide the machinery to
learn language for machine intelligence, it might not be sufficient to simulate natural intelli-
gence and infant development without including social cues. One extension of this work is
to ask whether statistical learning is sufficient for word learning or whether social cues are
necessary. To answer this type of question, we need to set up a word-learning experiment
similar to the one used in studying speech segmentation (Aslin et al., 1996) in which all the
other cues are removed, and only distributional information remains. Then we can gradually
add different kinds of social cues to identify to what degree infants use social cues and under
what situations.

6.4. Fast mapping

One striking fact about early language acquisition is fast mapping, the rapid learning of a
new word based on only a few exposures (Carey & Bartlett, 1978; Markson & Bloom,
1997). Our experiments do not try to explain the mechanism of fast mapping. However, the
general principles of our computational model show great potential for solving this problem.
Computationally, a key issue in modeling fast mapping is to find a referent of a word from
the sea of ambiguity. A common scenario is a language learner who is faced with multiple
words on the one hand and multiple referents on the other hand. The learner must filter out
irrelevant information and discover the one-to-one mapping from many-to-many possible
word-to-world associations. For example, an adult may say, “This is a car,” while there is a
toy car in the environment. On the language side, all the spoken words (this, is, a, and car,
etc.) could refer to a toy car. Infants have to determine which word is the object’s name. The
EM algorithm in our computational model can address this issue. Besides providing a rela-
tively limited number of the most probable lexical items, the EM algorithm also generates a
large number of word-meaning pairs with uncertainty (low probabilities). This indicates that
infants may potentially accumulate valuable information about many word–semantic associ-
ations long before these associations are unique. For example, they hear “this” numerous
times in quite different contexts. Then the model already has multiple possible meanings
linked to the word this, with very low probabilities due to the constraint in Equation 7 or
syntactic knowledge. On the other hand, the new word car may just be perceived once or a
very few times, but always in the context of the visual object “car.” Again, based on Equa-
tion 7, the only possible meaning that could be assigned to the word car is the visual object
“car.” By simultaneously reducing the hypotheses in word and meaning spaces, a few expo-
sures might be enough for the model to find the correct word from multiple candidates and
the relevant meaning from the context.

On the semantics side, infants need to select a correct meaning from multiple referents in a
natural environment. Markman (1995) proposed a set of particular constraints infants might
use to map words onto meanings. These constraints include the whole-object assumption, mu-
tual exclusivity, and the taxonomic assumption. In addition to those constraints, our computa-
tional model is able to observe a speaker’s intentional body movements to figure out the

C. Yu, D. H. Ballard, R. N. Aslin/Cognitive Science 29 (2005) 995



speaker’s referential intentions in speech. Compared with models based on associative learn-
ing, this is a big step in addressing and partially solving the problem of referential indetermi-
nacy (Quine, 1960). This model shows that body cues can be directly used to find the referent
of the spoken name. However, it does not address the problem of what meaning is derived from
that referent. In the previous example, the sound could refer to the object name, its position, its
color, or any other possible meaning. This leaves an interesting question for future research:
How deep can infants read the intent of the adult and use it to disambiguate the possible mean-
ings of words?

6.5. Word discovery using visual context and joint attention

Most studies of speech segmentation and word discovery focus on the role of linguistic
information as a central constraint. Previous experiments involving human participants have
found several linguistic cues that infants may use to detect words from connected speech,
such as transitional probabilities (Saffran, Aslin, et al., 1996), utterance boundaries (Aslin et
al., 1996), stress patterns of syllables (Jusczyk, Houston, & Newsome, 1999), and
allophonic and phonotactic cues (Jusczyk, Hohne, et al., 1999). Inspired by empirical stud-
ies, computational modelers have proposed and developed several algorithms to simulate
lexical segmentation in infancy (see a brief review in Section 3). However, both empirical
and computational studies do not consider the role of nonlinguistic information in speech
segmentation. A child does not learn language by closing his or her eyes and just hearing
acoustic signals. Rather, the child is situated in a natural environment and learns language in
this rich context. In our work, we propose that in addition to linguistic cues, nonlinguistic
contextual cues could also play an important role in speech segmentation. This idea has
been confirmed in both experimental and computational studies reported in this article. In
our human simulation studies, we provided three learning environments for language learn-
ers: intention-cued, audiovisual, and audio-only conditions. The results from the audio-only
condition, in which participants just listened to the same 216-sec audio recording five times,
were close to chance. Participants told us that after listening to fluent speech in Mandarin
for about 15 min, they could not get any information about what constitutes a word or what
those words might mean (in the absence of a referential context). The superior performance
in the intention-cued over the audiovisual condition showed that the more specific the con-
text is, the more effective language learners can use it for speech segmentation. We propose
that visual attention to an object that may be referred to by ongoing speech helps language
learners to segment words from fluent speech. To support this idea, our computational
model provides a formal account of the role of nonlinguistic cues in word discovery. We
showed that the sound patterns frequently appearing in the same context are likely to have
grounded meanings related to this context. Thus, by finding the frequently uttered sound
patterns in a specific context (e.g., an object that speakers intentionally attend to), the model
discovers wordlike sound units as candidates for building lexical items.

Because all objects in the scene are potential referents for any word that may appear, and the
segmentation method is based on matching sound sequences in one context with those in an-
other, without social spotlights the model needs to collect many more pairs of sound sequences
for consideration. However, most of these pairs are not relevant and lead to false string
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matches. This results in the performance difference between the intention-cued approach and
the audiovisual approach.

6.6. Perceptually grounded word meanings

There is evidence that from an early age infants are able to form perceptually based category
representations (Quinn, Eimas, & Rosenkrantz, 1993). Those categories are highlighted by the
use of common words to refer to them. Thus, the meaning of the word dog corresponds to the
category of dogs, which is initially a nonlinguistic mental representation in the brain. Further-
more, Schyns and Rodet (1997) argued that the representations of object categories emerge
from the features that are perceptually learned from visual input during the developmental
course of object recognition and categorization. In this way, object naming by young children
is essentially about mapping words to selected perceptual properties.

Most researchers agree that infants generalize names to new instances on the basis of some
similarity, but there are many debates about the nature of what defines similarity (see a review
in Landau, Smith, & Jones, 1998). It has been shown that shape is generally attended to for
solid rigid objects, and children attend to other specific properties, such as texture, size, or
color for objects that have eyes or are not rigid (Smith, Jones, & Landau, 1996). In light of the
perceptual nature of infant categorization, our model represents object meanings as perceptual
features consisting of shape, color, and texture extracted from the visual appearances of ob-
jects. The categories of objects are formed by clustering those perceptual features into groups.
Our model then chooses the centroid of each category in the perceptual feature space as a rep-
resentation of the meaning of this category and associates this feature representation with lin-
guistic labels. As a result, when the model, as a young language learner, perceives a novel ex-
emplar, it will be able to find the corresponding category of this instance by comparing the
similarities between the perceptual feature of the exemplar and the perceptual representations
of categories that it has previously learned.

One interesting question in object naming is how does word learning during infancy influ-
ence the formation of categories to which those words refer? Waxman and Hall (1993) showed
that linguistic labels may facilitate the formation of a category by infants at 16 to 21 months of
age. Because adults create features to subserve the representations and categorizations of ob-
jects (Schyns, Goldstone, & Thibaut, 1998), the formation of categories in the presence of au-
ditory input is possibly based on the similarities of perceptual features and linguistic labels.
Our current model provides a framework to further investigate this question and offers a formal
account of how linguistic, perceptual, and conceptual advances are linked (Landau, 2004;
Roberts & Jacob, 1991; Waxman, 2004).

6.7. The interaction between word discovery and word-meaning mapping

Instead of performing a complete segmentation of any given utterance (or corpus), our
model focuses on spotting specific kinds of sound patterns that have visually grounded mean-
ings and therefore are necessary to build an early vocabulary. Here we do not claim that lan-
guage learners just spot key words instead of the complete segmentation of speech. Actually,
many studies (e.g., Saffran, Aslin, et al., 1996) have shown that infants do have the ability to

C. Yu, D. H. Ballard, R. N. Aslin/Cognitive Science 29 (2005) 997



solve much of the speech-segmentation problem. However, we argue that it is unlikely that in-
fants only begin to build their vocabulary once their ability to segment speech is fully devel-
oped.

Our model provides another cognitively plausible explanation that nonlinguistic context can
also play an important role in word discovery. This is done by categorizing spoken utterances
based on their contexts and extracting frequently uttered sound patterns from a specific context
to form hypothesized wordlike units. Thus, our model suggests that there exists an interaction
between speech segmentation and the mapping of words to their meanings. Specifically, the
model addresses word discovery and word-meaning mapping problems simultaneously and in-
tegrates perceptual information from different modalities at the early stages of sensory pro-
cessing. This approach is quite different from typical methods of multimodal integration,
which first extract symbolic representations from sensory data and then merge those symbolic
representations from different modalities to find correlations between symbols. Our work sug-
gests that infants’ initial perceptual, linguistic, cognitive, and social capabilities may be based
on a general system in which those subsystems interact with one another and provide useful in-
formation to facilitate the development of other components.

6.8. Assumptions and limitations of the model

The range of problems we need to address in modeling lexical acquisition in a purely unsu-
pervised manner and from raw multimodal data is substantial. In our effort to make concrete
progress, we made some assumptions to simplify the modeling task and to allow us to focus on
the most fundamental problems in lexical acquisition. First, the model mainly deals with how
to associate visual representations of objects with their spoken object names. This is based on
the finding that a predominant proportion of infants’early vocabulary consists of nouns, which
has been confirmed in various languages and under varying child-rearing conditions (Caselli et
al., 2000). Also, the model is able to learn only object names that are grounded in visual per-
ception but not other nouns that represent other unseen meanings or abstract notions, such as
the word “yesterday.” We believe that those initial and imageable words directly grounded in
the physical environment serve as a foundation for the acquisition of abstract words that be-
come indirectly grounded through their relations to those grounded words. Thus, we believe
that the development of word hierarchies and category hierarchies, which happens at later
stages of lexical development, is based on this learning process of grounding object names in
visual perception and, therefore, is beyond the scope of this article.

Second, the model is not designed to simulate the development of infants’ initial capabilities
to recognize phonemes from acoustic input. By the age of 6 months, infants start to distinguish
phonetic differences, but ignore other noncontrastive differences, and begin to organize their
phoneme categories in an adult-like manner (see Jusczyk, 1997, for a review). Therefore, we
assume that a language learner has knowledge of the phonemic structure of the language prior
to lexical development. However, it is still an open question as to whether children have the in-
nate capability to segment a speech stream into discrete alphabetic sound units like phonemes.
However, to closely resemble natural environments that infants live in, our model does deal
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with sound variation in spoken words as a function of phonetic context, speaking rate, and
talker differences (see details in Subsection 6.1).

Third, in natural conditions, a language learner observes the body movements of an interloc-
utor and infers referential objects by means of monitoring the speaker’s gaze direction. Due to
the difficult logistical problem of tracking the speaker’s gaze direction and head movement
from the perspective of the listener (viewer) who is attempting to pick up on cues to learn the
meanings of words, both our empirical study of adults and our computational model used in-
formation from an eye tracker and position sensors as input to the learner. This presumes that
the actual infant learner has access to similar information in a natural context, and that question
must await further experimental studies. Specifically, we would like to answer the following
questions in future work: (a) If listeners receive less spatially precise information about gaze
than we provided in this experiment, where a fixation cross was visible continuously, to what
degree do they use gaze cues? (b) If listeners are provided with temporally dense gaze informa-
tion, as in this experiment, but as a result they are not always looking at the speaker, to what de-
gree do they make use of these gaze cues?

7. Conclusion

This work demonstrates a significant role of embodied intention in infant word learning
through both simulation studies of adults learning a second language and a computational
model. In both cases, regardless of whether the language learner is a human participant or a
computational model, the intention-cued approach outperformed the audiovisual approach.
We conclude that a purely statistical learning approach to language acquisition will be less effi-
cient and may, in fact, fail because of the inherent ambiguity in natural learning environments.
The inference of embodied intention, as one of infants’ social cognitive skills, provides con-
straints to avoid the large number of irrelevant computations and can be directly applied as
deictic references to associate words with visually grounded referents. In future work, we plan
to apply the computational mechanism outlined in this model to actual infant data to further
evaluate our proposal for the role of embodied intention in language acquisition.

Notes

1. We used the TIMIT phoneme set that consists of 61 symbols.
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Appendix A

Fig. 13 describes the approach of semantic object spotting.

Appendix B

Given two phoneme sequences a1, a2, … , am and b1, b2, … , bn, of length m and n, respec-
tively, to find the optimal alignment of two sequences using dynamic programming, we con-
struct an m-by-n matrix where the (ith, jth) element of the matrix contains the similarity score
S(ai, bj) that corresponds to the shortest possible time warping between the initial subsequenc-
es of a and b containing i and j elements, respectively. S(ai, bj) can be recurrently calculated in
an ascending order with respect to coordinates i and j, starting from the initial condition at (1,
1) up to (m, n). One additional restriction is applied on the warping process:

j – r ≤ i ≤ j + r

where r is an appropriate positive integer called window length. This adjustment window con-
dition avoids undesirable alignment caused by a too-excessive timing difference.

Let w be the metric of the similarity score and wdel[ai] = min(w[ai, ai – 1]; w[ai, ai + 1]) and
wins[bj] = min(w[bj, bj – 1], w[bj, bj + 1]). Fig. 14 contains the modified dynamic programming
algorithm to compute the similarity score of two phoneme strings.
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Fig. 13. The algorithm for merging blobs.

Fig. 14. The algorithm for computing the similarity of two phoneme strings.


