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On productivity*

Charles Yang

Department of Linguistics Yale University

Language learning is a remarkably robust process. The child is incredibly
good at recognizing systematic regularities even when faced with lexically and
contextually restricted exceptions This paper sketches out a preliminary
model that recognizes productive processes and exceptions as such;
accordingly, the learner can proceed to internalize each as different kinds of
linguistic knowledge. We argue that if a linguistic process is conjectured to be
productive, then having exceptions to it can add (surprisingly) significant
cost to its online processing. Empirically, we explore these issues in the
domain of morphology, which leads to finer-grained analyses of a number of
well-known morphological problems. We also briefly discuss how the
methodology and results of this work may generalize to syntactic learning.

Keywords: productivity, exceptions, morphology, psycholinguistics,
language acquisition, computational linguistics, corpus linguistics, English
past tense, German noun pluralization

It is quite obvious that many of the phonological rules of the language will
have certain exceptions which, from the point of view of the synchronic de-
scription, will be quite arbitrary. This is no more surprising than the fact that
there exist strong verbs or irregular plurals. Phonology, being essentially a
finite system, can tolerate some lack of regularity (exceptions can be mem-
orized); being a highly intricate system, resulting (very strikingly, in a lan-
guage like English) from diverse and interwoven historical processes, it is to
be expected that a margin of irregularity will presist in almost every aspect
of the phonological description. Clearly, we must design our linguistic theory
in such a way that the existence of exceptions does not prevent the systematic
formulation of those regularities that remain.

Noam Chomsky & Morris Halle
The Sound Pattern of English (1968:172)
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266 Charles Yang

1. Introduction

As Sapir once famously remarked, all grammars leak (1928:38). In less color-
ful terms, all grammars have exceptions that co-exist with general statements
about the linguistic system. Grammar leaks, as Sapir continued, do not under-
mine what he called “the fact of grammar, a universal trait of language, ... a
generalized expression of the feelings that analogous concepts and relations are
most conveniently symbolized in analogous forms.” (1928:37-38). Despite the
leaks, there is a grammar after all.

Indeed, grammars leak all over the place, and right from the beginning. It
is thus even more remarkable that we somehow steer clear of them and still
attain the systematic grammar in the end. To wit, one of the earliest utter-
ances an American child hears may be “Baa Baa Black Sleep, have you ___ any
wool?”, yet she would not go on to talk as if American English inverted the
main verb in interrogative questions. A serving of General Tso’s Chicken does
not entail that /ts/ is a valid onset consonant clusters for English. And every
English speaker learns that English is not a pronoun or topic drop language
like Italian or Chinese, despite hearing missing subjects in imperatives, recipe
constructions, and dairy drops (“seems good to me”). Viewed this way, the
human language learner is remarkably sensitive to the productivity of linguis-
tics processes. The learner is able to recognize that, in general, English must
fill the subject position, does not raise the main in interrogatives, and cannot
start a syllable with /ts/. The language faculty, then, must have built in a com-
ponent that recognizes the productivity of linguistic processes, and responds
accordingly: the excpetions don’t “count” As the quote from SPE illustrates,
exceptions restricted to specific lexical items and contexts can be memorized,
and systematic regularities are allowed to generalize over novel instances of
language use.

The present paper is an attempt to develop a principled approach to the
classic problem of linguistic producitivity. Our strategy is learning theoretic.
We believe that the formulation of the problem in SPE is essentially correct.
The challenge posed by linguistic processes with various degrees of productiv-
ity may be resolved in the “evaluation measure” (cf., Chomsky 1955; Chomsky
1965), i.e., a theory of language learning. Our long term goal is to articulate a
learning model that learns both productive processes and unproductive excep-
tions. Of the immediate concerns in the present paper is the development of a
decision procedure—dubbed the Tolerance Principle — that recognizes a produc-
tive process when it sees one. If a linguistic process is not productive, i.e., it is
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an exception, the learner can proceed to memorization, which in effect factors
it out in the learning of the core grammatical system.

The empirical domain we have chosen to establish the our model is mor-
phology, where a wide range of linguistic productivity is on full display. The
best known case is perhaps the past tense system in English. English irregular
verbs are no doubt exceptions: they must be learned on the basis of the input
and must be committed to memory on an individual basis. Of courses, not all
English past tenses are idiosyncractic: the regular class is fully productive, as
evidenced by the classic Wug test in which English speakers reliably generalize
the “add -d” rule to novel verbs (Berko 1958). The choice of morphology as
the empirical testing ground is two fold. First, as will be clear, our proposal
draws from the study of real-time morphological processing, and makes exten-
sive use of corpus statistics of word distributions. At the present time, it is not
clear how such studies can be extended to syntactic investigations. Second, we
believe that the problem of learning when faced with exceptions is sufficiently
general: a proposal that works for morphological productivity may shed light
on other learning problems such as syntactic acquisition.

This paper is one long argument. In Section 2, we introduce the problem of
productivity through the case of English past tense. We also present a computa-
tional model for learning morphological rules that serves as the background for
our approach to productivity. Section 3 proposes (a component of) a computa-
tional model of morphological processing along with evidence for its plausibil-
ity. Section 4 discusses the formal properties of the morphological processing
model. One of these consequences is the Tolerance Principle, a decision pro-
cedure that recognizes the productivity of morphological rules. Section 5 puts
the Tolerance Principle to an empirical test with a re-analysis of the well-known
problem of German plural morphology. Section 6 concludes with some brief
remarks on the problem of linguistic productivity in the context of syntactic
learning.

2. Rules and productivity

2.1 English past tense

If anything useful came out of the so-called past tense debate, it is that regular
verbs and irregular verbs are different beasts. This is not the place to review the
extensive literature on this topic (see Pinker & Ullman 2002 for a summary, and
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Yang 2000 for a general assessment of the intellectual merit of the debate). It
suffices for our purposes to state that we agree with the Words and Rules (WAR
for short) model (Pinker 1999; Clahsen 1999, 2005) that the irregular verbs are
exceptions and must be somehow memorized, while regular verbs are inflected
by the use of a productive rule “add -d”.

This is not to say that we agree with the details of the WAR model. In Yang
(2002), I put forward a reanalysis of the past tense learning data (Marcus et
al. 1992) and showed that even the irregulars are inflected by the use of rules
as has been assumed all along in generative grammar. Following a useful term
introduced by Anderson (1974), these irregular rules can be best described as
morpholexical: unlike “add -d”, these rules apply to a fixed list of lexical items
and do not generalize to novel tokens.! For instance, the rule “-t & Rime—/a/”
is morpholexical in the sense that it applies only to a list of words such as think,
catch, bring, buy, teach, and seek, which have no conceivable similarities among
them.? Irregular inflection still requires memorization, but in this approach,
the learner does not memorize the inflected forms directly. Rather, it memo-
rizes the specific list of words to which each morpholexical rule applies. Thus, a
frequency-dependent associative memory still plays an important role in mor-
phological computation: association is established between between words and
rules, not between words and words (stem and past) as in the WAR model. This
alternative view, dubbed “Rules over Words” (ROW), allows us to not only cap-
ture the well-known frequency effects in past tense learning but offer a finer-
grained interpretation of the acquisition data. We will not dwell on that work
here; the interested reader should consult Yang (2002) for empirical evidence
in favor of such an “all rules” approach.

Whichever morphological learning model one assumes, the learner must
solve the productivity problem. In order for the WAR model to work, the
learner must first recognize whether a given verb is regular or not — so it can
slot the verb into the appropriate module (memory or rule). This, of course,
requires the learner to (a) construct the rule “add -d” on the basis of the input
and (b) recognize that the rule “add -d” is actually a productive/default rule. In
order for the ROW model to work, the learner must (a) construct the rules —
“add -d” as well as the morpholexical rules for the irregulars—on the basis of
the input and (b) recognize the “add -d” is productive, while irregular rules
such as “-t & Rime — /a/” are not (i.e., they are morpholexical). In a moment,
we present a rule-learning model that both the WAR and ROW approaches
require.
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Empirically, we know that children are exceptionally adept at the produc-
tivity problem. In past tense acquisition, almost all errors children make are
over-regularizations (such as hold-holded); these make up about 10% of all ir-
regular past tense inflections (Marcus et al. 1992; Yang 2002). By contrast—and
this point is not widely discussed—over-irregularization errors such as “bring-
brang”, where the child over-applies an irregular rule, are exceedingly rare;
these constitute only 0.2% of irregular past tense (Xu & Pinker 1995).> A direct
implication of this finding is that the role of “analogy”, however it should be
properly formulated, is an extremely weak factor in morphological learning.

Children’s acute sense of productivity in past tense accords well with the re-
search on morphological acquisition in general. Crosslinguistically, children’s
morphological errors almost always involve omissions or over-generalizations
of default forms, while the use of incorrect morphological forms (substitu-
tions) are very sparse; see Phillips (1995) and Guasti (2002) for reviews. It is
clear, then, children are very good at learning the appropriate use of rules: they
recognize and generalize productive rules while memorizing the restricted use
of unproductive ones.

The question is, How do they do that?

2.2 Learning and productivity

Children can assess the productivity of rules only after they learn what the rules
are. Hence we sketch out a computational model of rule learning before diving
into the productivity problem.

Twenty years of the past tense debate have produced no shortage of mor-
phological learning models: too many, in fact, for us to give a review here.
Moreover, since we are concerned with the productivity of rules, we will not
discuss models such as connectionist networks that reject the use of rules on a
priori ground.

The question of rule learning arises for models—such as WAR and ROW-
that make explicit use of rule(s). It has been suggested that the default rule “add
-d” can be learned by attending to the process that applies the majority of word
types (Pinker 1999). This idea runs into problems in cases where the default
class is not statistically dominant. An example is the much studied German
noun plural system, which consist of five classes: Kind-er (children), Wind-e
(winds), Frau-en (women), Daumen-@(thumbs), and Auto-s (cars). Marcus et
al. (1995) demonstrate that, despite the numerical minority (about 7% of all
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noun), the -s class is the default; an algorithm that counts type frequencies will
not be able to learn the default status of such a rule.

A most promising approach to rule learning comes from a number of mod-
els developed by computer scientists (Mooney & Califf 1995; Sussman & Yip
1997), following an even earlier approach to learning in Artificial Intelligence
(Mitchell 1982). These models are not well known in linguistics and cognitive
science; we therefore take this opportunity to present an implementation of the
Sussman-Yip model by Molnar (2001). The direct relevance of rule learning to
our study of productivity will be made clear in Section 3.

To begin, we assume that the context of a morphological rule is inductively
determined by the properties of the words it applies to. Stated in the classic
form of generative grammar, rules are of the form:

(1) R:A—>B/C__ D

where A— B is the structural change of R and C___D is the context or structural
description of R. Learning is viewed a search problem that incrementally dis-
covers the commonalities among the properties of structures that form natural
classes. Adapting it to morphological learning, the algorithm seeks the shared
structural descriptions (C___D) among words that undergo the same struc-
tural change (A—B). It does so by making conservative generalizations, an
idea that goes back to at least Chomsky (1955) and has been used in models of
language learning in recent years as the Subset Principle (Berwick 1985). The
learner constructs rules on an item-by-item basis, replacing older and more
specific rules with new and more general ones as more items are processed.
Figure 1 schematically illustrates how the “add -d” rule is learned.

When learning starts, there are no rules. Suppose now the first word walk-
walked comes in. We are assuming, by no means obviously, that the underlying
form and the derived form as well as their relations are available to the learner.
The model identifies the structural change to be “add -d”* No generalization
is possible on a single piece of data, and a trivial rule is learned by rote: IF walk
THEN “add -d”. Suppose the next word is talk-talked. As before, the learner
learns: IF talk THEN “add -d”. Generalization is now possible: the two rules
constructed so far can be collapsed into one as both involve identical structure
change (“add -d”). The learner proceeds to discover the (partial) commonal-
ities between walk and talk: a conservative generalization yields that, for in-
stance, they differ only in the first consonant, which then must not restrict the
applicability of “add -d”. An intermediate rule is formed: IF xalk THEN “add
-d”, where * stands for “irrelevant”, and the previous two separate statements
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Rule #1 Rule #2
for: walk for: talk
do: -d do: -d
Rule #3 Rule #7
for: *alk for: bake
do: -d do: -d
Rule #8 Rule #10
for: *k for: kill
do: -d do: -d
Rule #11
for: *
do: -d

Figure 1. The learning of the regular rule “add -d” based on Molnar (2001).

will be eliminated. As more verbs are learned incrementally, the condition for
the application of “add -d” becomes ever more general. Eventually, the learner
will conclude that “add -d” has no restrictions (x’s all around as in Rule 11 in
Figure 1). This corresponds to the notion of a default rule, which applies with-
out restrictions.In the present learning model, the generality of a rule is directly
related to the diversity of words it applies to.

The Sussman-Yip model has a number of attractive features. First, it is
completely general and is applicable to any inductive inference problem that
can be stated in the form of A—B/C___D. Its use could be extended to mod-
els of word learning, syntactic learning, and other inference reasoning prob-
lems. The implemented models (see Sussman & Yip 1997; Molnar 2001 for
details) learn English morphology with far higher accuracy and efficiency than
any other learning model reported in the literature. They learn the “add -d”
rule in addition to the morpholexical rules for the irregulars as assumed in the
ROW model.

Second, the model does not count any frequencies, and is thus a plau-
sible candidate for solving the minority default problem in German plurals.
As is well known, the “add -s” in German plurals consists of mostly foreign
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words, which are quite heterogeneous in their morpho-phonological proper-
ties. (In Section 5.2, we return to the German noun system in great details.) A
model that identifies the generality of rules with the diversity of its application
is perfectly suited for extracting this pattern.

The Sussman-Yip model is not without problems. Perhaps the most signif-
icant one is the assumption that morphological rules create direct mappings
between the underlying form and the surface form, which closely resembles
the two-level approach to computational morphology (Koskenniemi 1983).
As noted by Barton et al. (1987), Anderson (1988), and recently Karttunen
& Beesley (2003), the two-level approach seems inadequate for morphological
phenomena that require cascades of ordered derivations (cf. Kiparsky 2000),
whose effects can be directly observed in morphological learning (Yang 2002).
We refer the reader to Ristad (1994) for a formalization of how ordered rules
can be acquired, and some related complexity results (in the worst case).

In the rest of the paper, we will simply assume that the learner is capable to
extracting morphological generalizations in the learning data, perhaps along
the lines of the Sussman-Yip model in combination with some currently un-
known mechanism that extracts generalizations over ordered morphological
derivations. It is important to recognize that the learning model produces the
form of rules, but it does not say anything about the productivity of rules. And
productivity is the problem we are after.

2.3 Some terminological remarks

Before we proceed, it is useful to clarify a few terminologies that are essential to
the study of productivity. We would like to call attention to the precise mean-
ings of “default”, “productive”, and “(ir)regular”. In many writings, those terms
are used interchangably, yet we believe that finer distinctions ought to be made.

We take default to mean as a backup option, or “when all fails”. That is,
when more specific rules fail to apply, the default is used. (Note that this def-
inition tacitly assumes the Elsewhere Condition in rule application; more on
this later.) Thus, the default is the maximally general rule possible and its
application has no restrictions.

We take productive to mean “predictable” and “generalizable”. A rule is pro-
ductive if it automatically applies to a set of lexical items characterized by cer-
tain properties, producing predictable derived forms, and can extend to oth-
ers, including novel items that have the same properties. For instance, we may
imagine a rule that says:
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(2) IFaverb endsinavowel, THEN add -n to form past tense.

Rule 2 is productive because one could make up a verb that ends in a vowel,
and a speaker that knows 2 would be able to inflect the nonce word by adding
-n. However, the productivity of rule 2 is more restricted than that of a default
rule: the former applies to a subset of verbs characterized by specific properties
(supposing that some verbs end in a vowel), while the latter applies to the set of
all verbs (i.e., no restrictions on their properties other than being verbs). Thus,
a productive rule needn’t be the default, while the default rule is, by definition,
necessarily productive.

In the case of English past tense, the only productive rule happens to be the
default: the morpholexical rules for irregular verbs do not generalize to novel
items (Pinker & Prasada 1995). But this needn’t be so for languages in general.
One can imagine a morphological system that divides lexical items into several
mutually exclusive subsets, each of which uses a perfectly productive rule-but
there is no default rule that works for all words. Indeed, the Polish genitive case
system has been argued to not have a default (Dabrowska 2001). It appears
that the presence of the default follows from the composition of the linguistic
data: if there is an unrestricted rule in the data, it will be learned, and if there
isn’t, there will be no default. The existence of a default, therefore, does not
appear to be a hard requirement imposed by Universal Grammar: this is also
the implication of the Sussman-Yip model of rule learning. In Yang (2005), we
develop a historical explanation for why languages tend to have default rules in
general.

Neither productive nor default rules need to be exceptionless. The case of
default rules is obvious: “add -d” in English has to put up with some 150 ex-
ceptions. The same is true for productive (but non-default) rule. An example
is the epenthesis rule in English plurals for nouns that end in sibilants (church-
churches, box-boxes). This rule is completely productive as shown by nonce
nouns (beamish-beamishes), and yet it is not 100% reliable: fish, perch and
tooth, for example, must be marked as exceptions and memorized as such.

For the remainder of this paper, we will be using the terms “regular” and
“irregular” to refer to not rules, but words, as in “English irregular verbs”, “Ger-
man regular nouns”, and so on. The current literature on the mental lexicon
regards regulars are those inflected by the regular rule, and irregulars are of-
ten taken to be all the rest, but this is really an unfortunate consequence of the
supposed dichotomy inherent in the WAR model. Such a view is too simplistic,
for it fails to consider the logical possibility that there may be perfectly produc-
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tive rules, whose application does not require explicit memorization but are yet
not as general as the default. In the morphological literature, words that follow
productive but non-default rules have also been called “regular” (Wiese 1996;
Wunderlich 1999), which is a practice that we shall follow. (In this sense, En-
glish nouns that end in sibilants are “regular” as well.) Note that (ir)regularity
of words is dependent on the productivity of rules they fall under: as we un-
derstand the nature of productivity better, words that have been assumed to be
“irregular” in the literature may turn out to be “regular” after all.

Once again, we are interested in productive rules in general, which include,
but are not limited to, default rules. Specifically, we are interested in the prob-
lem that a learner must solve, apparently correctly and rapidly: what makes a
rule productive and what makes it morpholexical?

3. Toward a computational model of productivity

3.1 The cost of exceptions

Imagine a child learning the past tense rules of English, following the schematic
description of Sussman-Yip model in Figure 1. If the child has only learned two
words ring-rang and sing-sang, then she might be tempted to conjecture a rule:
/ing—ang/, which reads “IF /ing/ ending THEN change to /ang/”. This would
be a productive rule, at this point, for it is completely consistent with the data
gathered so far. And, at this point, if the child learns a third word “bring”, she
would say “brang” for past tense. However, as her vocabulary increases, the
/ing—ang/ rule will run into more and more exceptions: e.g., bring-brought,
sting-stung, swing-swung, wing-winged, among others. If she still wishes to
maintain the /ing—ang/ as a productive rule, then “bring”, “sting”, “swing’,
“wing”, and so on must be memorized as exceptions. Now she may decide that
the rule once thought to be productive doesn’t work so well after all: more of-
ten than not, she couldn’t use the rule productively and must resort to lexically
marked exceptions (which are presumably inflected with other rules). Now she
may decide that she’s made a mistake. The rule /ing—ang/ is not productive: it
is morpholexical and applies to a lexically restricted set of sing and ring, period.

By contrast, the rule “add -d” would pay off more handsomely: it works
for a great deal more words than the some 150 exceptions. Making “add -d”
productive only requires a relative small number of exceptions committed to
the memory. Viewed this way, the productivity of a rule hinges on an evaluation
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procedure that does the right kind of cost-benefit analysis on the basis of both
well-behaving items and exceptions for a rule that may be productive.

The general flavor of this problem is not new. There is a large literature,
mostly in psychology and Al, that is dedicated to categorization, inductive
generalization, and decision making under inconsistent data, and a variety of
techniques could in principle be applied to the problem of assessing rule pro-
ductivity. However, as Chomsky (1965) stresses, the choice of the evaluation
procedure for a linguistic theory “is not given a priori ... Rather, an proposal
concerning such a measure is an empirical hypothesis about the nature of lan-
guage.” (p. 37); see also Sober (1975). The present work introduces an evalu-
ation procedure from the perspective of computational complexity but its suit-
ability must be rigorously defended as an empirical hypothesis (as we do in
Section 3.2 and 3.3.)

In general, there are two measures, space and time, that may enter into
complexity calculation. Both metrics are in principle valid, and the choice must
be based on their empirical status. Recently, there has been interest in the in-
duction of linguistic structures, often crouched in the Minimum Description
Length (MDL) framework (de Marcken 1996; Brent & Cartwright 1996; cf.
Clark 2001). This framework views the grammar as a data compression device:
it strives to minimize the structural descriptions of the relevant linguistic data,
an idea that goes back to Chomsky (1955). At some level, this approach seems
correct. A leading idea of generative linguistics is to eliminate redundancies to
arrive at ever more economical representations of the grammar. To the extent
that the ROW model (Yang 2002) is correct, the human learner does appear
to construct space-saving rules rather than direct storage of inflected forms,
even when the saving achieved for the 150 or so irregular verbs is quite lim-
ited. Yet questions remain on the applicability of the MDL approach to gram-
mars, which requires independent motivations. Our approach here, by con-
trast, makes use of time complexity in the evaluation of morphological pro-
ductivity. As we shall see, there is a good deal of empirical evidence that bears
on the data structure and algorithms that may be used by the mental lexicon:
a non-trivial evaluation procedure based on time complexity can be developed
as a result.

Our approach complements but differs from the existing literature on mor-
phological productivity. One could, for instance, conduct a series of Wug-
like tests on specific morphological rules/processes, gather the relevant corpus
statistics, and in some cases, develop a quantitative formula of morphologi-
cal productivity (Aronoff 1976; Baayen & Lieber 1991; Prasada & Pinker 1995;
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Albright 2002; cf. Bauer 2001). While this approach has unearthed many sub-
tleties in the morphological system, it is, at best, a statistical summarization
of data that “accord nicely with [linguist’s] intuitive estimates of productivity”
(Baayen & Lieber 1991:01), rather than an independently motivated theory of
morphological computation. Even if the actual criterion for productivity es-
tablished from empirical tests turns out to be true — e.g., a productive rule can
tolerate 25% of exceptions — we still would like to know why the magic number
is 25%, rather than 18% or 32%.

In the remainder of this section, we shall first develop an algorithmic model
of how rules are applied to form morphologically complex words. This is fol-
lowed by some evidence for the model as a psychologically plausible theory of
morphological processing.

3.2 Morphological knowledge and use

The computation of morphologically derived words involves at least three pro-
cesses (Caramazza 1997; Levelt et al. 1999, etc.):

(3) a. word search: lexical lookup of the stem (e.g., walk)
b. rule selection: search for the appropriate morphological rule(s) for
the stem (e.g., “add -d” for past tense)
c. rule application: use the rule to generate the inflected form (e.g.,
walked)

In principle, these three components are executed independently and sequen-
tially, and in general, they must. To process morphologically complex lan-
guages such as Turkish and Finnish, holistic storage of derived forms, which
numbers in the billions (Hankamer 1989; Niemi, Laine, & Tuominen 1994),
cannot in principle work.

Overall, morphological processing appears to be geared toward real-time
processing efficiency. A telling source of evidence comes from frequency ef-
fects. One of the earliest and most robust findings in lexical processing is
that high-frequency words are recognized faster and more reliably than low-
frequency words (Forster & Chambers 1973; Whaley 1978; Balota & Chumbley
1984). Similar frequency effects also obtain in the selection (3b) and appli-
cation (3c) of morphological rules (Taft 1979; Burani, Salmaso & Caramazza
1984), which can be assessed after the frequency effects from word search (3a)
are neutralized.
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In recent years, gradient effects such as frequency in the lexicon are widely
considered to be problematic for abstract representations of linguistic struc-
tures in generative grammar; see Seidenberg & Gonnerman (2000), Bybee
(2001), Baayen (2003), among others. Like the earlier controversies regard-
ing the “psychological reality” of linguistic theories (Chomsky 1980), these
reactions run the risk of throwing the baby out with the bath water. More
empirically, there are at least two possibilities that may explain the perceived
irrelevance of linguistic theories to linguistic processing.

On the one hand, frequency effects are a hallmark of the mental lexicon—
and a hallmark of human learning and memory in general. I recognize my son’s
face faster than my cousin’s presumably because I see my son far more often,
and it says nothing about how faces are represented and recognized, or how
I can recognize a face, any face, in the first place. Similarly, frequency effects
in morphology say nothing about the linguistic representation of morphol-
ogy unless one can tease apart the linguistic representation of morphologi-
cal knowledge from the general, and frequency-sensitive principles of memory
and learning that may be implicated in linguistic performance. For example,
the ROW model is a theory that amends the classic conception of morpho-
phonological rules (and parameters in syntax) with a stochastic component of
probabilistic learning that may be independent of language (Yang 2002, 2004).°
On the other hand, perhaps one needs to look harder at the morphological
theory from the perspective of morphological processing. It is possible, as this
paper contends, that a performance theory of morphology directly follow from
a competence theory of morphology; cf. Miller & Chomsky (1963), Berwick &
Weinberg (1984), Fodor & Crain (1985).

I propose to follow the time-honored tradition of Lexical Search Theory
in morphological processing (Rubenstein, Garfield, & Millikan 1970; Forster
1976, etc.). The Lexical Search Theory takes the strong position of viewing lex-
ical processes as information retrieval algorithms which, as we show in this
paper, are amendable to formal analysis. More specifically, we follow Forster
(1976) in suggesting that lexical processing involves serial search that is sen-
sitive to the token frequency of words.” In the simplest form, a list of words
that is arranged in decreasing frequency straightforwardly accounts for lexical
frequency effects; see the Appendix for a more precise formulation. Moreover,
and crucial to the present work, we suggest that the rule selection component
(3b) of morphological processing also follows a search search algorithm.

Traditionally, linguists hold that the organization of morphology — and
perhaps other arenas of linguistic representations and processes — is governed
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by the Elsewhere Condition (Anderson 1969; Kiparsky 1973; Halle 1990; Halle
& Marantz 1993), an insight that dates back to Panini. The Elsewhere Condi-
tion provides a mechanism for representing exceptions along with a productive
rule. For example, suppose a rule R is defined over a set of N words V, and out
of these, a subset M = {wy,ws,...,wy} of M words are exceptions that do
not follow R. The Elsewhere Condition directly translates into a serial search
algorithm for inflecting word w € A/

(4) Elsewhere Condition Serial Search (ECSS):

IFw=w; THEN ...
ELSE IF w = w, THEN ...

ELSE IF w = w); THEN ...
ELSE /apply R

This is how the ECSS model works. If w € M, then one of the M exception
clauses will be matched, and w will be inflected accordingly (i.e., not with R).
If w is not one of the exceptions, rule R will be triggered but only after all
the exception clauses have been evaluated (and rejected). Whenever a match is
found, the search halts.

Suppose now that the exception clauses in the ECSS model are ordered
with respect to the frequencies of their access (as measured by their token fre-
quencies). Our proposal, then, is very similar to the “bin” model of lexical ac-
cess (Forster 1976, 1992). For Forster, the bins correspond to a set of words
with specific orthographic properties; for us, a bin is defined by a rule, which
is also defined over a set of words (characterized by certain structural proper-
ties). A productive rule defines a bin like 4, which contains words with specific
properties, some of which may be exceptions the rule.

3.3 Evidence for serial search

There is several strands of evidence that suggests the ECSS model is on the right
track.

First, the serial search model predicts that the lexical access time is corre-
lated with the ranks of words, i.e., their positions on the search list. Rank is of
course related to frequency but it is a relative notion rather than an absolute
one. These two notions are rather difficult to distinguish and have not been
explored extensively but recent evidence (Murray & Forster 2004) suggests that
rank provides a better fit with reaction time data in lexical decision than fre-
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quency. Although ranking a list by frequency in a strictly decreasing, and thus
optimal, order appears to be computationally taxing, there are a number of
so-called randomized algorithms that are computationally trivial yet guaran-
tee near optimality of the sorted list. So far as we know, the connection between
these algorithms and psycholinguistic modeling has never been explored; see
the Appendix for some observations and suggestions.

Second, a serial search model such as 4 predicts frequency effects in the in-
flection of the exceptional forms. Note that the proper test for this prediction
must hold the stem-cluster frequencies of words constant:'* this neutralizes
the influence from the frequency effects in the word search process (3a). In-
deed, frequency effects among the exceptions — e.g., English irregular verbs —
are among the most relibale foundings in morphological processing (Prasada
etal. 1990; Seidenberg 1992; Ullman 1999). This has typically been taken as ev-
idence for a frequency-sensitive memory retrieval process responsible for the
storage of irregulars (Pinker 1999), but it is clearly also compatible with the
serial search model suggested here.

A final claim of the ECSS model in 4, and an important one, is that dur-
ing the rule search procedure, words that follow R will not be accessed until all
rule-defying exceptions are examined and rejected. In this sense, the present
model remains true to Forster’s bin search model, in which non-words are
not recognized until all actual words in the bin are evaluated and rejected.
On this matter, it seems that the jury is still out. The prediction is difficult to
evaluate directly. Note that we do not predict, for example, regulars are neces-
sarly processed slower than irregulars. To inflect a word, as 3 (repeated below)
illustrates, requires three distinct stages:

(5) a. word search: lexical lookup of the stem (e.g., “walk”)
b. rule selection: search for the appropriate morphological rule(s) for
the stem (e.g., “add -d” for past tense)
c. rule application: use the rule to generate the inflected form (e.g.,
“walked”)

The ECSS model is only concerned with step (5b), the selection of the appro-
priate morphological rule. While the effect of word search can be controlled via
stem-cluster frequency, we still end up with reaction time data that are com-
posite of rule selection (5b) and rule application (5¢). Only after we factor out
the time course of rule application can we accurately test the predictions of the
ECSS model regarding rule selection.
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There are a number of studies suggesting that regular inflections are pro-
duced somewhat faster than irregulars (Prasada et al. 1990; Seidenberg 1992),!!
which seem to contradict the claim of the present model. However, following
the discussion immediately above, the faster processing time of the regulars
may be due to the speedup in the application of the default rule “add -d”,
which has a greater presence (via token frequency) than any specific irregu-
lar rules. Although irregulars altogether make up for over 60% of past tense
tokens (Grabowski & Mindt 1995), no single irregular class can match the 40%
probability mass of the “add -d” rule. Thus, regulars would seem to have an
advantage over irregular verbs in the rule application stage of inflection.

The claim that rule application is frequency dependent is supported
by evidence from both language acquisition and processing. As shown in
Yang (2002), children produce more errors when learning the rule “-0 &
Rime—>/u/> (blow, fly, draw) than learning the equally arbitrary rule “-&
Rime—/a/” (think, catch, buy). Some children do better at vowel-shortening
irregulars such as bite-bit and shoot-shot than even go-went: the latter surely
ranks among the most frequent irregular verbs. These disparities are attributed
to rule frequencies. For example, the “-t & Rime—/a/” rule is used by verbs
with higher frequencies, and the vowel-shortening verbs take advantage of,
well, vowel-shortening, a robust process in the English language (Myers 1987;
Halle 1997). These factors contribute to the success of irregular past tense
inflection in language learning.

On the processing side, Sereno & Jongman (1997) find that English nouns
are generally inflected faster than verbs. This is argued to derive from the fact
that there are more tokens of plural nouns than past tense verbs, and thus
speakers of English have “more” experience with the “add -s” rule than with
the “add -d” rule and can use the former faster than the latter.!? If so, more
frequent rules are faster in online application than less frequent ones.

Thus, to test the time course of rule selection in the ECSS model, one must
eliminate the confounding factor of rule frequency. We are not aware of any
study that directly address this issue: much of the recent literature on morpho-
logical processing has focused on the rule vs. memory dichotomy postulated by
the WAR model, and no serious attention has been paid to the possibility that
irregulars may be inflected by rules of a more limited kind. However, a poten-
tially relevant experiment is a production latency study by Clahsen et al. (2004)
on the inflection of German past participles. They found that, at least for high
frequency verbs, irregular past participles are formed slightly faster than regu-
lars. Irregulars (-t) and and regulars (-n) in German participles are imperfectly
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but reasonably well matched in frequencies (Clahsen 1999): at least they are
not as lopsided as in the case of English past tense. Therefore, the influence
from the rule application stage would be more or less neutralized in the case of
German participles, and Clahsen et al’s (2004) study constitutes suggestive ev-
idence for the ECSS model.' Future research needs to identify the appropriate
empirical domains where rule frequency can be controlled for and to further
investigate the time course of rule selection under the ECSS model.

In sum, we believe that the ECSS model 4 is a reasonable approach to real-
time morphological processing. But the Elsewhere Condition, when used to
implement productive rules, may come at a considerable cost. If a rule is pro-
ductive, and it happens to have too many exceptions, then significant complex-
ity may incur as the exceptions must be searched and rejected before the com-
putation of the rule-following items. The next section gives a precise model of
how many is “too many”.

4. The tolerance principle
Suppose the learner has observed a generalization in a set of N words N

R=IFXTHENY

X is the structural description of NV, some properties, whatever they are, that
hold for all words in V, e.g., all end in /ing/, all are verbs, or all are feminine
nouns. Y is the structural change, whatever it is, that results from matching
X, e.g, “-t & Rime —/u/”, “add -d”, add a prefix followed by vowel harmony.
However, the learner notes that A/ contains some exceptions, namely, a subset
M C N with the cardinality of M, the members of which do not follow R. In
other words, M are the exceptions to the rule. If the learner wishes to make
R productive, then the words in M must be explicitly committed to memory,
as depicted in 4. Alternatively, if M is too large, then the learner may decide
R is not productive after all and proceed to store all words in " as exceptions.
Therefore, the learner has two ways of storing and processing words in A/ with
respect to R:

(6) a. Risaproductive (w; € M)
IF w; THEN ...
ELSEIF w, THEN ...
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ELSEIF wy; THEN ...
ELSE APPLY R
b. Risa morpholexical (i.e., unproductive) rule (w; € )
IF w; THEN ...
ELSE IF w, THEN ...

ELSEIF wy THEN ...

Let T(N, M) be the expected time of using (6a) where M exceptions co-exist

with (N—-M) rule-following items. On the one hand, if R is morpholexical, then

all N items must be listed explictly as if all are exceptions, in which the expected

time complexity would be T(N, N) (i.e., M = N, all words are exceptions).
We conjecture:

(7) Tolerance Principle (TP)
a. IfT(N,N) < T(N, M) then R is morpholexical (A will all be explic-
itly stored, as if they have nothing in common).
b. Otherwise, N is computed by a productive rule R plus a list of M
exceptions.

Note that the Tolerance Principle is an optimization procedure for online pro-
cessing of words. It takes into account for both token and type frequencies. To-
ken frequency optimization is reflected in the ECSS model that ranks clauses
by frequency. The Tolerance Principle itself, however, is directly expressed as a
function of type frequencies (T(N, N) and T(N, M); see Aronoft (1976), Bybee
(1995), Bauer (2001) for similar views on productivity.

The Tolerance Principle suggests that if there are too many exceptions (e.g.,
M is large relative to N), then the cumulative cost of finding R for words in N —
M becomes prohibitive because the ECSS model must reject the words in M
first. At this point, the learner may decide against making R into a productive
rule. Under reasonable assumptions about word frequency distributions, the
threshold value M, at which a rule becomes or ceases to be productive can be
calculated as a function of N. This is achieved by solving for M in T(N,N) =
T(N, M). Some of the mathematical details, and a number of algorithms that
can rank a list of rules by frequency, are presented in the Appendix. We simply
give the analytic result below:

(8) Theorem: M. ~ N/InN

Figure 2 shows the special case of N = 100 and where M, = 22.
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Figure 2. The cost of storing M exceptions and the rest as a productive rule (T(N, M)),
compared with storing all words as irregulars (T(N, N)), where N = 100. The analytic
approximation of M, in Theorem 8 is compared compared with simulations average
over 10,000 trials.

In Figure 2, the cost of storing all 100 words as exceptions is represented by
the straightline T(N, N). This constitutes the baseline against which T(N, M)
is compared. When M is small, it is clearly cheaper to have a rule. However,
once M crosses the critical threshold M, (22 for N = 100), it becomes more
expensive to have a productive rule now that 78 words have to wait for the 22
time units before the selection of the productive rule. At this point, the eco-
nomical solution actually is to store everything as exceptions. As the number of
exceptions approaching 100, the cost of T(N, M) becomes closer and closer to
T(N,N), and they eventually meet again when M=N.

Perhaps a surprising consequence of these calculations is that it doesn’t
take a lot of exceptions to derail a potentially productive rule: M, = N/InN
is in fact sub-linear, whose effects become more dramatic when N is large. (In
natural languages, however, N is the size of a subset of the vocabulary and is
unlikely to be very large). In other words, the postulation of a productive rule
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requires it to actually apply to a great majority of words that it could apply to.
For example, a rule like “add -d”, which is in principle applicable to all English
verbs, can be productive only if the number of irregulars—those that do not add
“-d”—is relatively small compared to the English verb vocabulary. English has
about 150 irregular verbs, the theorem 8 implies that there need to at least 1000
verbs algother to ensure the productivity of “add -d” is safe. This requirement
is easily met in the English language.

We turn to some empirical consequences of the Tolerance Principle in
Section 5.

5. Tolerance principle in action

How do children use the Tolerance Principle in language acquisition? It goes
like this. The learner first identifies a generalization, or a rule R based on the
input data, perhaps using something like the Sussman-Yip learning model. She
then notes that in the vocabulary she has acquired so far, R should work for
N words but actually works for (N — M) words, i.e., there are M exceptions.
The learner proceeds to use the Tolerance Principle to calculate whether M has
crossed the threshold value under N. If so, R is not productive and all N words
are memorized explicitly. Otherwise, R is productive: M exceptions are mem-
orized, and the (N — M) rule-following items are handled by R automatically.
Note that the productivity of R depends on N and M, which in turn depends on
the composition of the vocabulary. As the vocabulary changes, the productivity
of rules may change as well. We address these issues presently.

51 Tolerance and learning

The (low) tolerance of exceptions leads one to make some immediate predic-
tions on child language learning in subtle connections with word frequency
distributions. By the time a productive rule is recognized as such, it must be the
case that the learner has accumulated a good deal more rule-following items
than exceptions.

Consider now the case of past tense learning in English. If we take the first
instance of over-regularization as evidence for the successful acquisition of the
regular rule, then at that stage there must be considerably more regular verbs
than irregulars in the child’s vocabulary as predicted by the Tolerance Princi-
ple. Although it is very difficult to get precise estimates of the child’s vocabulary

© 2005. John Benjamins Publishing Company
All rights reserved



On productivity 285

at any stage of acquisition, Marcus et al. (1992) made a useful attempt. Their
estimates of the regular vocabulary size were based on the verbs attested in
children’s speech. As they noted, this invariably underestimated the vocabulary
size, as children do not use always say all the words they know. In addition, reg-
ular verbs are more affected by under-sampling than irregular verbs, the latter
of which tend to have higher token frequencies, at least in English. Neverthe-
less, Marcus et al.’s (1992) counts lend general support to our model. Based on
attested verb use, the three children in Brown’s (1973) study had 63% (Adam),
55% (Eve), and 56% (Sarah) of regular verbs respectively at the first instance
of over-regularization. By using the so-called Jackknife estimate from biostatis-
tics, the percentages of regular verbs are 62% (Adam) and 64% (Sarah), where
Eve’s files did not yield sufficient data for extrapolation. These numbers are
lower than what the theorem M, &~ N/InN predicts, which we tentatively at-
tribute to the under-sampling of regular verbs. Significantly, though, there are
considerably more regulars than irregulars when the “add -d” rule becomes
productive, which is consistent with the general directions of our theoretical
proposal. result.

A related prediction concerns the status of the U-shape curve in language
learning. For some children, past tense acquisition starts with a period of cor-
rect inflections (of both regulars and irregulars).'* This is followed by over-
regularization as the regular rule emerges (see above). Given the specific word
frequency distributions in English, this pattern is natural under the Tolerance
Principle. Because irregular verbs occupy the majority of token frequencies in
English, they are likely to be the earliest verbs a child acquires. Consequently,
there will be relatively few regular verbs. Even so, just a few regular verbs could
in fact lead to the emergence of the “add -d” rule. Recall the Sussman-Yip
model of morphological learning, under which the structural description of
a rule are given by the diversity of words it applies to: in implementation, the
“add -d” rule can usually be learned on the basis of 20-30 regular verbs (Suss-
man & Yip 1997; Molnar 2001). The interesting point is that, even after “add
-d” rule is induced, the child may not be able to use it productively. At the
early stage of word learning, the significant proportion of irregulars in her verb
vocabulary may push M above the critical threshold. The child, then, has no
choice but to memorize regularly inflected verbs as if they were unrelated. It is
only after more regular verbs are acquired — M drops below M, = N/In N —did
the child realize that the “add -d” rule is productive after all: overregularization
would follow as a result. Note that we do not predict the U-shape curve as
a universal phenomenon of language or morphological learning: its existence
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or absence depends on the specific values of M and N for each child, whose
vocabularies may vary considerably.

Note that token frequency of words directly affects the composition of early
vocabulary, but it is the type frequency of words within the early vocabulary
that directly influences the productivity of rules, as formulated by the Tolerance
Principle. The emergence of productive rules may well differ in morphological
domains where word type distributions may differ. Consider the English noun
pluralization, where the regular rule is “add -s”, and there are a few dozen ir-
regulars scattered around. However, unlike the case of English irregular verbs,
the irregular nouns are not heavily concentrated in the uppermost echelon of
noun frequency. This means that among the first plural nouns that children
learn, only very few are going to be irregulars. The Tolerance Principle then
predicts that the “add -s” rule become productive very quickly—faster than the
“add -d” rule, for instance. As far as we know, this prediction is empirically
true (Brown 1973), nor do we observe any longitudinal evidence for a U-shape
learning curve (Falco & Yang 2005)

5.2 Tolerance and productivity

The Tolerance Principle makes sharp predictions about morphological pro-
ductivity. In general, there are three kinds of evidence that directly bear on the
validity of our proposal.

First, one may design artificial language learning experiments where the
distributions of regulars and (unpredictable) irregulars are carefully controlled.
We can then observe how children generalize when faced with inconsistent pat-
terns. Kam & Newport (2005) is a recent example though the learning data
there consists of grammatical constructions rather than morphological pat-
terns. They discovered that children could tolerate a certain level of exceptions
and impose systematicity on the learning data, while adults are far more hesi-
tant (and appear to be probability matching as in the parameter setting model
of Yang 2002). It would be interesting to see whether the level of inconsistency
tolerated by children in such and similar studies can be predicted by our the-
oretical calculations. Furthermore, we speculate that the Tolerance Principle
may be correlated with the “critical period” in language acquisition, and is thus
active in young children and inert in adults.

Second, there is potentially a wealth of evidence to test the model in his-
torical change. Over time, words have shifted morphological classes. For ex-
ample, cleave-clove-cloven is now cleave-cleaved-cleaved, and for many speak-
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ers, strive-strove-striven has become strive-strived-strived; this kind of change is
called “analogical leveling” where an irregular word got regularized. There are
also cases of “analogical extension” where a regular got irregularized: the past
tense of wear was werede, which would have been regular had it survived, but
in fact it took on the bear-bore and swear-swore class and is now wear-wore.
If something like the current proposal is correct, then the morphological rule
that had just picked up a new word must have been productive at that particu-
lar period of time in history. Moreover, productivity under the present model
is a categorical one, a position held by morphologists such as Bauer (2001) and
Anderson (1992): either M is below the critical threshold or not. This would
lead to a reformulation of the notion of “analogy” in historical morphology.
We can examine the relevant historical corpus to find the corresponding values
of N and M at the time when a given word shifted classes. See Yang (2005) for
a preliminary investigation along this direction.

Finally, one may carry out corpus analysis of synchronic morphological
systems and find the relevant sets of V' and M. The model would make pre-
dictions about the regularities within N\, which can be then checked against
the Wug test and other benchmarks for productivity (though see Schiitze 2005
for methodological issues associated with such tasks). The relative ease of this
approach will constitute the bulk of research in our producitivity study and
will take us to revisit some of the traditional discussions in morphological pro-
ductivity such as the English affix problem (Aronoff 1976). For the moment,
we turn our attention to some mysteries and intricacies in the German noun
system.

5.3 Regular “irregular” nouns

I once thought that the German irregular nouns were individually memorized
for plurals: not directly as in the WAR model, but still sorted to their respective
rules by repeated exposure, just like English irregular verbs in the ROW model.
This is what [ wrote a few years ago:

(A) quick glance at German shows that the four irregular classes of plural show
no systematic similarity whatever. The horrors of German are real: one must
sort each irregular noun into its proper class, as in the traditional rule-based
view. (Yang 2000)

The problem is, the horrors of German are foo real. There are a lot of irreg-
ulars to slot under their respective irregular classes. According to the CELEX
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database, the default class (“add -s”) consists of only 7% of nouns (by type): it
means that 93% of the nouns would have to be memorized by brute force.'® It
didn’t feel quite right back then, and now I think this statement is completely
mistaken. At least one of the four “irregular” classes of German nouns, the
feminine nouns to be specific, is actually pluralized by a productive rule: add
-(e)n. No memorization for feminine nouns is necessary, save for a few dozens
of feminine nouns that do not add -(e)n and thus must be treated separately as
exceptions.

To begin with, every German textbook, while quick to point out the excep-
tional cases, do not deny that the reliable generalizations exists in the plural-
ization of nouns. And these generalization usually concern the correlation be-
tween gender (and sometimes phonological properties) and plural inflection.
It has been noted that masculine and neuter nouns whose final syllables con-
tain a schwa usually add nothing, polysyllabic feminine nouns add -n, feminine
nouns never add -er, and so on.

In the empirical literature, there have been some problematic findings
for the simplistic regular vs. irregular division of the German nouns. These
findings, by contrast, suggest that some “irregular” nouns actually form plu-
rals highly productive ways—at least as productive as the “add -d” rule in En-
glish past tense. First, acquisition studies. German children overregularize their
nouns about 10% of the time (Veit 1986; cited in Clahsen et al. 1992) and it has
been known since Park (1978) that the -n suffix, an irregular one according to
the WAR model, is in fact the most frequently overused suffix in children’s nat-
ural production. Moreover, Clahsen et al. (1996) find in an elicitation study of
low frequency nouns that that German children use wrong plural forms 18.5%
of time overall, and 7.6% if overregularizations involving -s are excluded. These
error rates are far greater than those with which English children misuse irregu-
lar past tense form: recall that over-irregularization errors make up only 0.2%
of English children’s past tense (Xu & Pinker 1995). On this basis alone, we
must conclude that at least some of German “irregular” rules are as regular as
the English regular past tense rule.

A highly predictable class seems to be that of feminine nouns, most of
which, according to descriptions of German grammar, add -(e)n in plurals.
There are also feminine nouns that do not add -(e)n: this is German after
all! Thus, it is interesting to assess, on purely mathematical basis a la the Tol-
erance Principle, whether the following rule is productive in German plural
formation:'®
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(9) IF feminine THEN add -(e)n

Here we have a straightforward application of the theorem 8. On the one hand,
we count the total number of feminine nouns, namely, N: those are the candi-
dates for adding -e(n) in plurals if rule 9 is productive. On the other, we count
the number of the feminine nouns that do not add -(e)n, namely, M.!” These
would be the exceptions to rule 9, if that rule is productive. First, let’s find
the exceptions (see Footnote 17). Some feminine nouns do Umlaut: Axt (ax),
Bank (bench), Braut (bride), Brust (breast), Faust (fist), Hand (hand), Mutter
(mother)... Wand (wall), Wurst (sausage). A few, all monosyllabic, simply add
-e: Tann (wood), Trupp (troop), etc. Some feminine nouns add -s: those are
loan words: Kamera (camera), Restaurant (restaurant), etc. And at least one
adds -¢: die Mark (Deutsche Mark, the currency). Overall, we have found M
= 80 exceptions. The Tolerance Principle tells us that there needs to be at least
500 feminine nouns altogether—or 420 that do add -(e)n—to support a produc-
tive rule 9. This is easily met: there are in fact at least 9,500 feminine nouns in
German based on the CELEX corpus (3600 if excluding compounds). The Tol-
erance Principle, then, predicts a productive rule of feminine noun inflection,
while the some eighty exceptions must be explicitly memorized as exceptions.

Our conclusion that German feminine nouns follow a productive rule is
not a novel one. A number of German morphology scholars (Wiese 1996;
Dressler 1999; Wunderlich 1999) have regarded the WAR model to be too
coarse-grained to capture the considerable regularities within the “irregulars”.
Indeed, a rule like 9 has been proposed to account for the feminine-(e)n cor-
relation. The significant aspect of the present work is that the existence of a
productive rule is predictable on purely mathematical basis—one doesn’t even
have to know German to do that.

The most direct evidence bearing on the feminine noun rule comes from
a study of plural formation in both aphasic and unimpaired German speakers
(Penke & Krause 2002). In an elicitation study, aphasic patients showed no fre-
quency effect in error rate for feminine nouns that add -(e)n in plurals. More-
over, unimpaired subjects show no frequency effect for -(e)n feminine nouns
in reaction time during a lexical decision task. The lack of frequency effect is
generally a hallmark for productive rule, as has been demonstrated for the “add
-s” noun class in German (Clahsen et al. 1997; Clahsen 1999).

The present discussion of feminine nouns leads to a more articulated pic-
ture of the German noun plural system. We will not discuss the noun cases that
add -e, -er, and -9: some of these classes may turn out to be productive, and
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irregulars

IF feminine
THEN add -(e)n

igs

’ add -s ‘

Figure 3. The inflection of German noun plurals: only the “IF feminine THEN add
-(e)n” class is depicted.

they await future investigations along the lines sketched here. German noun
plurals appear to be handled by a nested structure of rules, as illustrated in
Figure 3.

The inflection of nouns goes through a cascade of rules. A feminine noun
is first fed through the feminine rule as in 9. If it’s one of the exceptions to
the rule, then some special form will be used for plurals. Otherwise, -(e)n will
be added. The “add -s” rule is the waste basket that takes over when the more
specific rules—productive or otherwise—fail to apply. We note that this structure
is roughly equivalent to the inheritance tree model proposed by Wunderlich
(1999) in a different theoretical framework.

6. Conclusions

This paper can be viewed as an extrapolation from a set of known facts of
morphological theory, processing, and acquisition. The point is not whether
M, = N/InN is ultimately right or wrong. Rather, it is that this kind of work
can be done: productivity can be studied rigorously in a formal framework that
is empirically motivated.

The logic of the Tolerance Principle extends to syntactic learning as well,
as illustrated in Figure 4.

As in morphology, where exceptions are individually listed and accessed
prior to the rule-following items, a phrasal construction can be preceded by a
set of idiomatic expressions, a core parameter value can be preceded by a set of
constructions that use the opposite value (such as the range of facts regarding
subject use in Englsh shown in Figure 4). For instance, suppose that an English
child, guided by UG and perhaps general learning principles, has acquired a
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specific

imperative
diary drop

general | Obligatory subject

irregulars

Figure 4. Elsewhere Condition in morphology and syntax.

set of verbs with some common characteristics (e.g., motion verbs). She notes
that some of these verbs allow post-verbal subject (as in the case of locative or
expletive inversions), while others do not. Now we have on hand the very situ-
ation as in the Tolerance Principle for morphology: N now corresponds to the
total number of verbs in this class, and M is the number of verbs that do not
trigger inversion. She can then use the Tolerance Principle to see whether inver-
sion is a productive process by checking whether M falls below the threshold
of N/1In N. If so, then all these verbs trigger inversion save those M that do not:
the child has learned a productive process despite the inconsistent data in the
input. On the offer is of course a thought experiment, but these are research
topics that one may pursue under the methodologies and results of the present
work.

I understand that not everyone is interested in grammar learning under
exceptions, be it morphological or syntactic. And that is just as well. Assuming
that the problem of productivity and exceptions can be handled by a principled
theory of learning, as we have tried to develop in the present paper, linguists
can stay focused on the core problem of systematic regularities in language;
that is, the part of the grammar that doesn’t leak.

Appendix

Consider T(N, N): the expected time to find the appropriate rule for a word
in a list ranked by frequency of access.'® Assume, as in standard in corpus-
based linguistic modeling, that the frequencies of words in NV follow a Zipfian
distribution with the exponent of 1. That is,

1
Vi,VViG/\/’, Pi:._;
1H,
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where

N

1
Hy = Z —, the Nth Harmony Number

" 1
=1

We make the Zipfian assumption because, for whatever (uninteresting)
reason, it appears to give a good fit for actual word frequencies, and it makes
the calculation easy. In an optimal listing of AV, the time it takes to access the
ith clause is its rank r; nr, which is i. Thus, the optimal time complexity of a list
of N items is

T(N,N) = N/Hy

The naive algorithm for realizing N/Hy is computationally expensive, for it
requires the learner to keep track of the frequencies of the exceptions and then
rank them accordingly. Fortunately, there is a class of randomized, or “on-line”,
algorithms designed expressly for optimizing frequency-sensitive computation.
One simple instantiation is the MOVE-TO-FRONT algorithm: whenever an ex-
ception is encountered, the corresponding clause is promoted to the beginning
of the list. Another is the MOVE-UP algorithm (Rivest 1976), which swaps a
clause just encountered with the one preceding it. Both algorithms are compu-
tationally trivial and both are known to be only worse than the optimal algo-
rithm by a (small) linear factor (Sleator & Tarjan 1985a). Hence, it is reasonable
to assume that a human learner is capable to constructing a near optimal list
of irregulars."

Consider now T(N, M). Recall M is the set of exceptions. According to the
ECSS model 4, we consider two cases for each word w;:

N
T(N,M) = ZP;‘G;
-1

where

C = E[Kim], ifw; € M, and K; 4 is its rank in M
e M, ifWi ¢M

Assume M is a random subset of A/, and w € N has a uniform probability
of 1/N being an irregular. (We turn to the justification of this assumption after
presenting the theoretical results below.) It is easy to show that the probability
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of a word being chosen as an exception is x = M/N. We have:

N
T(N, M)= _ pilxE[Ki ] + (1 - x)M]

i=1

N
=x ZP:’E[KLM] +(1-x)M
n=1

For our purposes, T(N, M) can be further simplified as:
T(N,M) = xT(M,M) + (1 —x)M, where x = M/N

This is made on the assumption that a random and independent sample
from a Zipfian distribution is still largely a Zipfian distribution (with fewer
items). Simulation results suggest that this is sound.

M, can be obtained by solving for M in T(N, N) = T(N, M). By approxi-
mating Hy with In N, it is not difficult to show, we have

M N
x— +(1-x)M = —

InN InN
It follows that
1 1
e+ (l-x)x= ——
X InN +Inx (1-x)x InN
Let
1 1
Y [
flx) = x InN +1Inx (1-x)x InN

We now solve f(x) = 0.
Note that

f 1) (I/InN)> e 1 1 1
InN/) InN+InlnN InN/) InN InN
1 \? 1 InN
= ()
InN InN" InN+InlnN

1 2
= ()
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Moreover,

) 2x(lnN+1nx)—x2(}c) S
= —2x+
fix (InN + Inx)? x

And

1 1
" — )= 1forx=——
f(lnN) TN

Hence, 1/1In N is a good approximation to the root of f(x) = 0

_ N
InN

c

The figure below shows the approximation of M, for N = 1 to 5000, in
comparison to the results obtained by numerical simulations: N/In N is a very
good approximation.

700 T T T T T T T

T . T
simulation

600

500 -

400+ .

M_C

300 _
200 7 ]

100 - .

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
N

Remarks. In the calculation of T(N, M), we made the assumption that words
in V have uniform probabilities of being in the exception subset M. This may
strike one as unwarranted as it is often said that irregulars are among the most
(token) frequent items for a given class (Bybee 1985; Pinker 1999). But there
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are a number of reasons for challenging this, which consequently preserves our
assumption.

First, the tacit assumption under irregulars-are-frequent is that irregular-
ity can only be sustained by high frequency, as held in the WAR model. A look
at the English verb distributions certainly gives one that impression, and chil-
dren do, in general, learn high-frequency irregulars faster and better. How-
ever, as noted in the text (Section 3.3), relatively low frequency verbs can be
learned well if they piggyback on more frequent or systematic rules in the lan-
guage. These verbs, then, will have good staying power as irregulars. Thus, high
frequency is not the exclusive means of maintaining irregularity.

Second, the claim that irregulars are frequent does not always generalize
to other cases. An obvious example is the English noun system where the ir-
regulars are not as heavily concentrated in the high-frequency region. Another
example is the German noun system discussed in the text. Under the WAR
model, the -s class is computed by a rule while all other nouns—the vast major-
ity in German-—are irregulars and thus memorized by association. But here lies
a contradiction. The irregulars must include many very low frequency nouns:
if irregularity is maintained by high frequency, then these low frequency irreg-
ular nouns will be on a massive exodus to the default/regular -s class. But this
has not happened in German. Again, irregularity can—and must, in this case—be
maintained by means other than token frequency. One possibility is that these
nouns are not irregular, but are handled by productive rules which applies to
words regardless of their frequencies. We discuss this issue further in Section
5.3.

Finally, the current model is a procedure for the child learner to determine
the productivity of rules. Children’s acquisition of morphology, as reviewed
in Section 2, shows that such decisions are almost always made correctly, and
remarkably early. Hence, the determination of productivity via the Tolerance
Principle is made on a relative small vocabulary, which contains mostly of high
frequency words. Hence, even if the concentration of irregulars is mostly in the
high frequency region of the entire lexicon, as in the case of English but not
necessarily in all languages, it will become less pronounced in a young child’s
vocabulary, a sample of high frequency words that include both regulars and
irregulars. See footnote 13 for additional discussions.
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Notes

* Much of this paper derives from a 2002 manuscript (A principle for word storage) and has
benefited from Morris Halle’s suggestions and advice. Portions of this work were presented
at University of Maryland, Massachusetts Institute of Technology, University of Pennsylvania
University of Southern California, University of Illinois at Urbana-Champagne, and CUNY
Graduate Center; I thank the audiences there, in particular Mark Liberman and Janet Dean
Fodor, for questions and discussions. Bill Idsardi, Julie Anne Legate, Lisa Pearl and Sarah Van
Wagenen made useful comments on a draft version of this paper though they’d be crazy to
believe everything I say here. I thank Sam Gutmann for helping out with the mathematics.
Finally, I am grateful to an anonymous reviewer whose suggestions improved this paper
considerably.

1. In the Optimality Theory literature, one may find similar notions such as morpheme-
specific constraint rankings (Anttila 2000).

>

2. There could be regularities among words that a morpholexical rule applies too: “ing—ang’
applies to verbs that end in “ing” as in sing and ring: it just doesn’t apply to all verbs that
end in ing.

3. Of these, “bring-brang” alone makes up almost half of over-irregularization errors. If
dialectal variations are taken into account—brang is acceptable in some parts of the United
States—the error rate would be even lower.

4. Intheactual implementation, words are represented as phonological feature bundles, and
the change would be “add -t”. We continue to use “add -d” for convenience of exposition.

5. Logically, there needn’t be any productive rules in language either. As far as I know, this
situation does not arise in any language—such a language would not be very useful, as its
generative capacities would be finite. However, it is perfectly possible for a child learner,
at particular stage of language learning, to have no productive rules: consider a child that
knows only one word.

6. See Lewis et al. (2005) for a recent attempt that attributes a class of sentence process-
ing phenomenon to an independently motivated theory of working memory (Anderson &
Lebiere 1998).

7. We do not deny additional contextual factors in lexical access, though the lexical search
theory, which makes precise claims about specific psychological mechanisms, is a theory
with strong predictive power. It has remained an important and fruitful research topic and
produced findings that are difficult to capture under alternative models. For a cogent defense
of this perspective, see Forster (1989) and Murray & Forster (2004).

8. We leave open the possibility that the M exceptions are organized in some structural
ways as well, and needn’t be gone through exhaustively. See Footnote 17 for discussions
with specific reference to an empirical case.

9. This results in the application of some rule (other than R), if one follows the ROW model.
On the other hand, the WAR model would say that a direct memory retrieval of the derived
form follows the THEN statement. However, this detail needn’t concern us in the present
context.
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10. Stem-cluster frequency is the sum of the frequencies of all forms of a word. For example,
the stem-cluster frequency of the verb arrive is the sum of the frequencies of arrive, arrives,
arrived and arriving. By contrast, the lexeme frequency refers to the frequency of a specific
form of interest, e.g., arrived.

11. Jaeger et al. (1996) report that regulars are much faster than irregulars, but that result
was obtained through the use of a flawed experimental design; see Seidenberg & Hoeffner
(1998) for details.

12. Sereno & Jongman’s framework has some similarities with the ROW model: both rec-
ognize, though in different theoretical terms, the frequency of rules in the morphological
computation in addition to the frequency of words.

13. The reverse pattern appears to be true for low frequency verbs, where regulars are faster
than irregulars. This is not the place for what might account for this curious phenomenon.
It suffices for our purposes that the results on high frequency verbs may be all that the ECSS
model needs. When children solve the productivity problem—and they solve it fairly early
on, as noted in Section 2.1-they do so on the basis of a relatively small vocabulary, which in
general consists of words in the high frequency region. As long as the rule search predictions
hold for high frequency words, the ECSS model serves its purpose as the motivation for a
principled decision procedure on productivity.

14. When they do inflect the verbs. Sometimes the verb may be left in the stem/infinitive
form.

15. If I were right in Yang (2000), and if “add -s” is completely unrestricted, we have a situa-
tion that blatantly violates the Tolerance Principle. Simply, there are far too many exceptions
for the “add -s” rule to be productive. However, German scholars have regarded the “add -s”
class as a reservoir for “untypical” nouns (Wunderlich 1999), including proper names, ono-
matopoetics, truncated forms, loan words, and so on. In an informal Wug test conducted
with the help of Marianne Pouplier and Tanja Kupisch, we found that when presented with
nonce nouns that obeyed German phonotactic constraints, none of the German speakers we
consulted formed plurals by adding -s, but used the -(e)n and -e suffixes instead, sometimes
Umlauting as well. Our results suggest two conclusions. First, German speakers have a na-
tive sense of what counts as an “untypical” noun and reserve “-s” for its inflection: Marcus
et al. (1995) were able to elicit “add -s” forms with foreign sounding nonce nouns. Second,
it suggests that at least some “irregular” classes are in fact productive, as they apply to novel
nouns. Unfortunately, we did not present the speakers with the gender of the nonce nouns
to locate more precisely the connection between gender and pluralization.

16. There are non-feminine nouns that add -(e)n also, but those are obviously irrelevant to
the rule 9 under consideration.

17. Note that this would be the most inclusive estimate of M, as we treat the set M, i.e.,
feminine nouns that do not add -(e)n, to be completely unsystematic. In fact, it has been
pointed that M may contain regularities within. Wunderlich (1999), for example, notes that
umlaunt nouns regardless of gender, have certain phonological properties. Moreover, mono-
syllabic feminine nouns tend to add -e. These generalizations need to be put through tests
to determine their productivity. If they are productive, the execution of 9 involves searching
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through a list of rules, each of which defines a set of nouns with certain properties (and may
have to explicit list their own exceptions). The net effect of these productive sub-rules may
shorten the rule search time for nouns that do follow 9. For instance, suppose “IF monosyl-
labic feminine THEN add -e” is productive. This sub-rule may speed up the rule selection
process for a disyllabic feminine noun, because monosyllabic sub-rule needn’t be searched
through at all. In other words, if the sub-rules within M turn out to be productive, then we
would in effect have a smaller number of M than we are currently estimating. These issues
are quite complex and require further studies, and we have chosen the maximum value of
M to carry out the productivity calculation of rule 9.

18. I thank Sam Gutmann for his help in finding an analytical solution for M¢c ~ N/InN.

19. Similar algorithms with more sophisticated data structures may be used for a finer-
grained model of morphological processing. For instance, it may be interesting to incorpo-
rate the Cohort effects (Marslen-Wilson 1987) in lexical lookup by the use of lexicographic
tree search algorithms (Sleator & Tarjan 1985b). We are currently investigating this direction
of research.
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