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Cognitive and psychological research provides useful theoretical perspectives for understanding what is 
happening inside the mind of an individual in tasks such as memory recall, judgment and decision 
making, and problem solving – including meta-cognitive tasks, when an individual is reflecting on their 
own or other people’s performance. Understanding these processes within individuals can help us 
understand under what conditions collective intelligence might form for a group and how we might 
optimize that group’s collective performance. Each of these components alone, or in concert, can be 
understood to form the basic building blocks of group collective intelligence. 

Consider the classic estimation task where a group of individuals must determine the number of marbles 
in jar. In the simplest conceptualization of this task, each individual independently provides an estimate 
and a statistical average of the estimates is taken as the crowd’s answer. The statistical aggregate over 
individuals can often lead to a better answer than that of most of the individuals. This has come to be 
known as the wisdom of crowds effect (Ariely et al, 2000; Davis-Stober, Budescu, & Broomell, in press; 
Surowiecki, 2004; Wallsten, Budescu, Erev, & Diederich, 1997). Given simple, idealized tasks, it would 
appear that extracting the collective intelligence from a group of individuals merely requires choosing a 
suitable statistical aggregation procedure – no psychology or understanding of the underlying cognitive 
processes is necessary. If we start to make more realistic assumptions about the estimation task or 
change it to make it more like complex, real-world situations however, it may quickly become obvious 
how psychological factors can come into play. Suppose for example that individuals give judgments that 
are systematically biased (e.g., people might overestimate the number of marbles due to the 
comparative difference in size). How can we know what the potential biases are, and how to correct for 
them? Suppose that a given individual is better at the task than others, doesn’t understand the task, or 
isn’t even paying attention. How do we identify the judgments that are more accurate? What are the 
measures that we can use to identify experts? If individuals share information about their judgments 
and reasoning, how does this information sharing affect the results? To fully understand how collective 
intelligence arises from a group of individuals, and how to improve the group’s collective wisdom, it is 
critical to consider what is going on inside the human mind.  

In this chapter, we will review the cognitive and psychological research related to collective intelligence. 
We will begin by exploring how cognitive biases can affect collective behavior, both in individuals and in 
groups. Next, we will discuss the issue of expertise, and discuss how more knowledgeable individuals 
may behave differently, and how they can be identified. We will also review some recent research on 
consensus-based models and meta-cognitive models such as the Bayesian truth serum that identify 
knowledgeable individuals in the absence of any ground truth. We will then look at how information 
sharing between individuals affects the collective performance, and review a number of studies that 



manipulate how that information is shared. Finally, we will look at collective intelligence within a single 
mind.  

Identifying and Correcting for Biases 
The literature has many examples of cognitive biases that can systematically distort individual human 
judgment (Hogarth, 1975; Kahneman, Slovic, Tversky, 1982). For example, human probabilistic 
judgments can be over-confident about reported probabilities, neglect the event’s base rate or be 
biased by the desirability of the outcomes (Kahneman & Tversky, 2000; Gilovich, Griffin & Kahneman, 
2002; Massey, Simmons, & Armor, 2011). Conversely, individuals may often be sensitive to extraneous 
information that can be irrelevant to the judgment task at hand (Goldstein & Gigerenzer, 2002). 
Systematic distortions that affect individual judgments can also affect group performance. Although 
uncorrelated errors at the level of individual judgments can be expected to average out in the group 
average, systematic biases and distortions cannot be averaged out by using standard statistical 
averaging approaches (Simmons et al., 2011; Steyvers, Wallsten, Merkle, Turner, 2014).  

It has been shown that by training individuals in the potential biases of estimation, it is possible to get 
subjects to debias their own estimates, at least to a certain degree (Mellers et al., 2014). Alternatively, 
by understanding what these cognitive biases are, it is possible to correct them before performing 
statistical aggregation. In some domains, such as predicting the likelihood of low-probability events, 
subjects are systematically overconfident (Christensen-Szalanski & Bushyhead, 1981). In judging other 
events that occur more frequently, such as in weather forecasting, experts have more opportunity to 
properly calibrate their responses (Wallsten & Budescu, 1983). When expert judgments are tracked over 
a period of time, it is possible to learn and correct for systematic biases. Turner et al. (2013) used 
hierarchical Bayesian models to learn a recalibration function for each forecaster. The calibrated 
individual estimates were then combined using traditional statistical methods, and the resulting 
aggregation was found to be more accurate than aggregates of non-calibrated judgments. Satopää et al. 
(2014) have proposed similar recalibration methods that shift the final group estimates, using either a 
weighted or unweighted aggregation of the individual responses. 

Human judgment can also be error-prone and inconsistent when information between interrelated 
events needs to be connected. For example, when people judge the likelihood of events that are 
dependent upon each other, the result can lead to incoherent probability judgments that do not follow 
the rules of probability theory (Wang, Kulkarni, Poor, & Osherson, 2011). Probabilities for interrelated 
events are coherent when they satisfy the axioms of probability theory. For example, the probability of a 
conjunction of events (A and B) has to be equal to or less than the probability of the individual events (A 
or B). However, people might not always connect these interrelations in logical ways and might fail to 
produce coherent probability judgments. Failure of coherence can occur at the individual level (e.g. 
Mandel, 2005), but also at the aggregate level in prediction markets (Lee, Grothe, Steyvers, 2009).  
Similarly, probability judgments that are incoherent at the individual level cannot be expected to 
become coherent by averaging across individuals (Wang et al., 2011). Incoherence might persist even in 
the presence of financial incentives (Lee, Grothe, & Steyvers, 2009). Wang et al. (2011) proposed a 



weighted coherentization approach that combines credibility weighting with coherentization, such that 
the aggregate judgments are guaranteed to obey the rules of probability.  For instance, they asked 
participants to forecast 2008 US Presidential election outcomes and included questions of elementary 
events, but also involved negations, conditionals, disjunctions, and conjunctions (e.g. “What is the 
probability that Obama wins Vermont and McCain wins Texas?").  

Sometimes humans make errors in their estimates when the demands of the task require it. In a 
competitive environment with information sharing, there may be an advantage to not giving one’s best 
estimates to others. Ottaviani and Sørensen (2006) studied professional financial forecasters and found 
that the incentive to distinguish oneself from fellow forecasters outweighed the traditional goal of 
minimizing estimation error. Depending on the nature of the competition, fairly complex cognitive 
strategies can be employed to generate answers that are biased from individuals’ true estimates. On the 
game show The Price is Right, contestants bid in sequential order on the price of an item, where the 
winner is the closest without going over. Contestants often give estimates that are quite far from the 
actual price (and presumably their own beliefs), in order to increase their odds of winning the 
competition against their peers. Aggregation approaches that model the strategic considerations of 
these competitive environments and attempt to aggregate over inferred beliefs outperform standard 
aggregation methods (Lee, Zhang & Shi, 2011). When competition is employed,  a winner-take all format 
with minimal information may be best suited to get the most useful estimates from individuals; there is 
reason to believe that people will be more likely to employ any unique information they might have to 
make riskier but more informative estimates for aggregation (Lichtendahl et al., 2013). 

Identifying Expert Judgments 
The ability to identify and use experts is an important application in a wide range of real-world settings. 
Society expects experts to provide more qualified and accurate judgments within their domain of 
expertise (Burgman et al., 2011). In some domains, such as weather forecasting, self-proclaimed experts 
are highly accurate (e.g, Wallsten & Budescu, 1983). However, self-identified or peer-assessed expertise 
might not always be a reliable cue for performance (Tetlock, 2005; Burgman et al. 2011). Expertise is not 
always easy to identify because it can be defined in a number of ways, including experience, 
qualifications, knowledge tests, and behavioral characteristics (Shanteau, Weiss, Thomas & Pounds, 
2002). Procedures to identify experts can lead to mathematical combination approaches that favor 
better, wiser, more expert judgments when judgments from multiple experts are available (French, 
1985, 2011; Budescu & Rantilla, 2000; Aspinall, 2010; Wang, Kulkarni, Poor & Osherson, 2011). Below, 
we discuss a number of general approaches that have been developed to assess the relative expertise in 
weighted averages and model-based aggregation procedures.  

Performance weighting 
A classic approach to aggregate expert opinions is based on Cooke’s method (Cooke, 1991; Bedford & 
Cooke, 2001; Aspinal, 2010). Cooke’s method requires an independent stand-alone set of seed questions 
(sometimes referred to as calibration or control questions) with answers known to the aggregator but 
unknown to the experts. On the basis of performance on these seed questions, weights are derived that 



can be used to up- or down-weight the opinions on the remaining questions that don’t have known 
answers (at least at time of the experiment). Aspinal (2010) gives several real-world examples of Cooke’s 
method, such as estimating failure times for dams exposed to leaks. Previous evaluations of Cooke’s 
method might have led to overly optimistic results because the same set of seed questions used to 
calculate the performance weights were also used to evaluate model performance (Lin & Chen, 2009). 
Using a cross-validation procedure, Lin and Chen (2009) showed that the performance-weighted 
average and an unweighted linear opinion pool in which all experts are equally weighted performed 
about the same. They concluded that it is unclear whether the cost of generating and evaluating seed 
questions is justifiable. Recently, Qiang, Steyvers, and Ihler (in press) performed a theoretical analysis in 
a scenario where the total number of questions that can be asked of judges is limited (e.g., each judge 
can only estimate 50 quantities). Therefore, any introduction of seed questions necessarily cuts down on 
the number of questions with unknown ground truth (the questions of ultimate interest). They found 
that under some conditions, a small number of seed questions are sufficient to evaluate the relative 
expertise of judges and measure any systematic response biases.  

In a recent performance-weighting approach, Budescu and Chen (under review) developed the 
contribution weighted model. In this approach, the goal is to weight individuals by their contribution to 
the crowd in terms of the difference of the predictive accuracy of the crowd’s aggregate estimate with, 
and without the judge’s estimate in a series of forecasting questions. Therefore, individuals with a high 
contribution are those for which group performance will suffer if their judgment is omitted from the 
group average.  

Generally, performance-based methods have a disadvantage in that it can take time to construct seed 
questions with a known answer. As Shanteau et al. (2002) argued, experts might be needed in exactly 
those situations where correct answers are not readily available. In forecasting situations, an obvious 
choice for seed questions is the use of forecasting questions that resolve during the time period that the 
judge is evaluated. However, such procedures require an extended time commitment from judges that 
might not be practical in some scenarios. 

Subjective Confidence 
Another approach is to weight judgments by the subjective confidence expressed by the judges. In many 
domains, subjective confidence often demonstrates relatively low correlation with performance and 
accuracy (e.g.  Tversky and Kahneman, 1974; Mabe and West, 1982; Stankov & Crawford, 1997; Lee, 
Steyvers, Young & Miller, 2012). However, a judge’s confidence can in some cases be a valid predictor of 
accuracy. For example, in a group involving two people, a simple strategy of selecting the judgment of 
the person with the highest confidence (Koriat, 2012) leads to better performance than relying on any of 
the individual judgments. Koriat argues that subjective confidence might be driven more by common 
knowledge as opposed to the correctness of the answer. It is possible to set up tasks where the popular 
answer, typically associated with high confidence, is also the incorrect answer (Prelec & Seung, 2006). 
Overall, performance from confidence weighted judgments will strongly depend on the nature of the 
task and the degree to which the task is a representative sample (Hertwig, 2012). 



Coherence and Consistency 
Coherence in probability judgments can be taken as a plausible measure of a judge's competence in 
probability and logic. Wang et al. (2011) and Olson and Karvetski (2013) showed that downweighting 
judgments of individuals associated with less coherent judgments (across questions) was effective in 
forecasting election outcomes.  A related idea is that experts should produce judgments that are 
consistent over time such that similar responses are given to similar stimuli (Einhorn, 1972, 1974). The 
within-person reliability or consistency can be used as a proxy for expertise, especially when combined 
with other cues for expertise such as discrimination (Shanteau, Weiss, Thomas, & Pounds, 2002; Weiss & 
Shanteau, 2003; Weiss, Brennan, Thomas, Kirlik, & Miller, 2009). One potential problem is that 
consistency is often assessed over short time intervals and using stimuli that are relatively easy to 
remember. In these cases, memory retrieval strategies might limit the usefulness of consistency 
measures. Miller and Steyvers (submitted) studied cases involving judgments that are difficult to 
remember explicitly. They showed that consistency across repeated problems was strongly correlated 
with accuracy and that a consistency-weighted average of judgments was an effective aggregation 
strategy that outperformed the unweighted average.  

Consensus-based Models 
The idea behind consensus-based models is that in many tasks, the central tendency of a group leads to 
accurate answers and this group answer can be used as a proxy of the true answer to score individual 
group members - individuals who produce judgments that are closer to the group’s central tendency 
(across several questions) can be assumed to be more knowledgeable. Consensus-based models can 
therefore be used to estimate the knowledgeability of individuals in the absence of a known ground 
truth. 

Consensus measures have been used in weighted averages where the judgments from consensus-
agreeing individuals are upweighted (Shanteau et al. 2002; Wang et al. 2011). Comprehensive 
probabilistic models for consensus-based aggregation were developed in the context of cultural 
consensus theory (Romney, Batchelder, & Weller, 1987; Batchelder & Romney, 1988) as well as 
observer-error models (Dawid & Skene, 1979). To understand the basic approach, consider a scenario 
where an observer has to figure out how to grade a multiple-choice test for which the answer key is 
missing. A consensus model posits a generative process in which each test-taker, for each question, 
gives an answer which is a sample taken from a distribution where the mean is centered on the latent 
answer key and the variance is treated as a variable that relates (inversely) to the latent ability of the 
observer. Probabilistic inference can be used to simultaneously infer the answer key as well as the 
abilities of each individual. Test-takers with high ability are closer to the answer key on average, and 
test-takers with a lower ability tend to deviate more from the answer key, and their higher-ability 
compatriots.  

This consensus-based approach is not limited to problems where responses are discrete – it can also be 
used to estimate group responses over a continuous range of potential answers (Batchelder & Anders, 
2012). Consensus-based models are also able to account for variations in the difficulty and challenges of 



the questions themselves. Consensus-based methods have led to many statistical models for crowd-
sourcing applications, where workers provide subjective labels for simple stimuli such as images (e.g. 
Smyth, Fayyad, Burl, Perona, & Baldi, 1995; Karger, Oh, & Shah, 2011). Hierarchical Bayesian extensions 
have been proposed by Lipscomb, Parmigiani, and Hasselblad (1998) and Albert, Donnet, Guihenneuc-
Jouyaux, Low-Choy, Mengersen, and Rousseau (2012).  

Recently, consensus-based aggregation models have been applied to more complex decision tasks, such 
as ranking data (Lee, Steyvers, de Young & Miller, 2012; Lee, Steyvers, & Miller, in press). For example, 
individuals ranked a number of U.S. Presidents in chronological order, or cities by their number of 
inhabitants. A simple generative model was proposed where the observed ranking was based on the 
ordering of samples from distributions centered on the true answer but with variances determined by 
latent expertise levels. Lee et al. (2012) showed that the expertise levels inferred by the model were 
better correlated with actual performance than subjective confidence ratings provided by the 
participants.     

Generally, consensus-based methods perform well in tasks where people do reasonably well (Weiss et 
al., 2009). One potential problem with consensus-based methods is that it is vulnerable to cases where 
agreement arises for reasons other than expertise. This can occur in challenging tasks where the 
majority of individuals adopt heuristics to produce an answer. For example, when predicting the 
outcome of sports tournaments, individuals who do not closely follow these tournaments might adopt 
heuristic strategies based on the familiarity of the teams (e.g. Goldstein & Gigerenzer, 2002). Another 
potential problem is that in some cases it might be inappropriate to assume a single latent answer or 
opinion for the whole group – there might be multiple clusters of individuals with divergent beliefs. In 
this case, consensus-based models need to be extended to infer multiple groups with multiple answer 
keys; there has been preliminary work that shows that this may indeed be feasible (Anders & 
Batchelder, 2012).  

Role of Meta Cognition  
The Bayesian Truth Serum (BTS; Prelec, 2004) is a recent idea that incorporates metaknowledge, the 
knowledge of other's judgments in aggregation. The BTS method was designed as an incentive 
mechanism to encourage truthful reporting. It can elicit honest probabilistic judgments even in 
situations where the objective truth is intrinsically unknowable or difficult to obtain. It has been used to 
encourage people to answer truthfully in survey research (Weaver & Prelec, 2013) and to estimate the 
prevalence of questionable research practices (John, Loewenstein, Prelec, 2012). However, the method 
has also been tested in preliminary experiments on general knowledge questions (Prelec & Seung, 2006) 
where the performance of the method can be assessed objectively. In one example question, 
participants were asked whether Chicago was the capital of Illinois. This is a question where a minority 
of respondents might be expected to give the correct answer. The majority of respondents might use 
simple heuristics that lead them to the plausible yet incorrect answer. In the BTS approach, judges 
provide a private answer to a binary question, as well as an estimate of the percentage of people who 
would give each response. The latter estimate involves metacognitive knowledge of other people. For 
each judge, a BTS score is calculated that combines the accuracy of the metacognitive judgments 



(rewarding an accurate prediction of other people’s responses) as well as an information score that 
rewards surprisingly common responses. In the capital of Illinois question, the correct answer Springfield 
will receive a high score if more people actually produced that answer than was predicted 
(metacognitively). Prelec and Seung (2006) show that the BTS-weighted aggregate outperforms majority 
voting in a number of cases --- essentially cases where only a minority of judges know the correct 
answer. While these initial empirical results are promising, it is unclear how the method will perform in 
areas such as forecasting, where the true answer in unknowable at the time the question is asked, and 
metacognition about other people’s forecasts might be biased in a number of ways.  

The Role of Information Sharing 
Much of the work that has been done in collective decision making has historically involved a good deal 
of dynamic group interaction (Lorge et al., 1958). A group of people that is properly trained, and has a 
good deal of experience working together, can often make judgments that are more accurate than that 
of any of the individual members (Watson et al., 1991). When groups are not specifically trained to work 
together, the results can be far more varied however; group members can have trouble coordinating 
their responses to obtain a consensus (Steiner, 1972; Lorenz et al., 2011) and are more vulnerable to 
cognitive biases and errors (Janis, 1972; Stasser & Titus, 1987; Kerr, MacCoun & Kramer, 1996). It has 
been suggested that interacting groups are most effective when their collective decision is arrived at by 
a weighted average of each member’s opinions (Libby et al., 1987).  

One popular method for soliciting group judgments is the Delphi method (Rowe & Wright, 1999). By 
separating individuals, having them individually answer guided questionnaires, and allowing them to 
view each other’s responses and provide updated feedback, the Delphi method allows individuals to 
weight their own expertise in relationship to others and provide an (ideally) more-informed estimate. 
These individual estimates are then combined via statistical aggregation similar to those of non-
communicative groups. As with training specialized decision-making groups, there is still a large cost 
associated with setting up and coordinating a Delphi-based decision process. There are a number of 
additional schemes for limited information sharing that avoid many of the social and cognitive biasing 
inherent dynamic group decision making (Gallupe et al., 1991; Olson, Malone & Smith, 2001; Whitworth 
et al., 2001; Rains, 2005).  

The effect of information sharing strongly depends on the type of network structure in which 
participants share information with each other (Kearns, Suri, & Montfort, 2006; Mason, Jones, and 
Goldstone, 2008; Judd, Kearns, & Vorobeychik, 2010; Bernstein et al., 2011; Kearns, Judd, & 
Vorobeychik, 2012). For example, Mason et al. (2008) studied problem-solving tasks where participants 
(corresponding to nodes on a network) were arranged in a number of different networks, including fully 
connected networks, lattices, random networks and small-world networks. The task for participants was 
to find the maximum of a continuous function with one input variable. Participants could probe the 
function with numerical values for the input variable and obtain feedback by the value returned by the 
function. The function was sufficiently complicated with multiple local modes such that no individual 
could cover the space of possibilities within a reasonable amount of time. Participants received 
information about their neighbor’s guesses and outcomes. The results showed that the network 



configuration had a strong impact on overall performance. Individuals found good global solutions more 
quickly in the small-world networks, relative to lattices and random networks, presumably because 
information can spread very quickly in these networks. It is not entirely clear why the performance in 
the small-world network was better than the fully connected network, however. In a fully connected 
network, participants have full information about all other participants, and they theoretically should be 
able to benefit from this information. Mason et al. (2008) proposed that ‘less is more’ in these networks 
– participants might be better able to pay attention to the information from a smaller number of 
neighbors. 

Kearns et al. (2006) and Judd et al. (2010) studied decentralized coordination games on networks where 
each participant solves only a small part of a global problem. Unlike the Mason et al. (2008) study, 
individuals were required to coordinate their efforts in order to collectively produce a good global 
solution. One coordination game involved a coloring problem where each participant needed to choose 
a color from a fixed set of colors that is different from their neighbors. The results showed that the 
network structure had a strong influence on solution times. Long-distance connections hurt 
performance in the coloring task.  On the other hand, if the task was altered such that consensus 
solutions were rewarded (i.e., all nodes have the same color), the long-distance connections improved 
performance. Across many of these coordination tasks, performance of human subjects came close to 
the optimal solution. Kearns (2012) reported that 88% of the potential rewards available to human 
subjects were collected.   

Task-sharing can also be beneficial when individuals must explore a large problem space to find good 
solutions. In Khatib et al. (2011), a collective problem-solving approach to scientific discovery was used 
to optimize protein structures. Each player manipulated the protein folding structure to find stable 
configurations. One group of participants found a breakthrough solution to the problem that was 
adopted by other participants as a new starting point in their own solutions. Collaboration also makes 
sense when questions are complex enough that subjects may have different parts of the answer 
(Malone et al., 2009). In Miller & Steyvers (2011), rank ordering tasks were explored; the first subject in 
the task was given a random list ordering, and then each subject received the final ordering of a 
previous participant in an iterative fashion. Unlike in simpler information passing tasks (see Beppu & 
Grifiths, 2009), answers did not necessarily converge on the correct ordering, but by aggregating across 
all subjects in the sequence, it was possible to combine the partial knowledge of each individual into a 
nearly-complete whole. It has been shown in subsequent experiments that subjects are more 
susceptible to memory bias when given the responses of another, but by aggregation this can be 
overcome (Ditta & Steyvers, 2013). 

Collective Intelligence within Individuals 
Whereas collective intelligence is often considered at the level of groups of individuals, we can also 
consider collective intelligence within a single individual. In one such experiment, Vul and Pashler (2008) 
asked individuals to estimate quantities (e.g. “what percentage of the world’s airports are in the United 
States”) multiple times at varying time intervals. They found a wisdom of the crowd effect within one 



mind - the average of two guesses (from the same person) was more accurate than either of the 
individual guesses. This effect was larger if more time elapsed between the two estimates, presumably 
because participants answers were less correlated due to strategic or memory effects. Hourihan and 
Benjamin (2010) found the average of two guesses from individuals with low working-memory spans 
was more accurate than individuals with high working-memory spans, suggesting that the ability to 
remember the first response (as opposed to reconstructing an answer from general knowledge) might 
be an impediment to the wisdom within one mind effect. 

Similarly, Rauhut and Lorenz (2011) generalized this finding and demonstrated that the average over 5 
repeated estimates was significantly better than the average from 2 repeated estimates (or a single 
estimate). This is somewhat surprising because one might assume that the first guess would already be 
based on all available information and that the subsequent guesses would not provide additional 
information. These findings show that there is an independent error component in the estimates that 
can be cancelled by averaging. Generally, they also support the concept that subjective estimates arise 
as samples from probabilistic representations underlying perceptual and cognitive models (Gigerenzer, 
Hoffrage, & Kleinbölting, 1991; Fiser, Berkes, Orban, & Lengyel, 2010; Griffiths, Vul, & Sanborn, 2012).     

The exact procedure used to elicit repeated judgments has been found to influence the wisdom-within 
one mind effect. For example, methods such as dialectical bootstrapping (Herzog and Hertwig, 2009) are 
designed to facilitate the retrieval of independent information from memory. In this procedure, 
participants are told that their first estimate is off the mark and are asked to consider knowledge that 
was previously overlooked, ignored, or deemed inconsistent with current beliefs. Herzog and Hertwig 
showed that the dialectical procedure led to higher accuracy than standard instructions. Another 
procedure is the More-Or-Less-Elicitation (MOLE) method (Welsh, Lee, & Begg, 2009). Participants are 
asked to make repeated relative judgments where they have to select which of two options is thought 
to be closer to the true value. The advantage of this procedure is that it avoids asking the exact same 
question which might elicit an identical answer. 

Discussion 
Human cognition plays a key role in the formation of group collective intelligence. In order to 
understand these groups, we need to understand how judgments from individual minds are affected by 
errors, biases, strategies and task considerations. By the development of aggregation models that 
correct for these factors, as well as debiasing procedures where individuals are trained to avoid such 
mistakes, it is possible to make more intelligent collective decisions.  

It is also necessary to understand how the collective performance of a group is affected by factors such 
as group composition, relative expertise among members and the information being sharing amongst 
the group (if any). This can help to identify individuals who tend to produce more accurate judgments 
and also shows us how and when to allow individuals to share information to make better collective 
estimates. Additionally, by understanding the meta-cognition of individuals – their understanding of the 
other individuals in a group – we can learn more about an individual’s knowledge than just their 
estimate itself. 



Finally, one of the most important roles for cognitive research is to better understand the mental 
representations that are used to produce the judgments. Converging evidence suggests that human 
knowledge and judgment is inherently probabilistic in nature. This affects not only how individuals 
retrieve information from themselves, but shapes how they view the information of others. The nature 
of these representations has implications for the kinds of aggregation models that are effective in 
combining human judgments. 
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