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1 Introduction

Automatic induction of natural language grammars by machines has retained sustained interest in the

field of Computational Linguistics (CL) and remains an open problem till date. It also has significant

consequences in several other areas including cognitive science, linguistics and psycholinguistics to

name a few. From a domain independent perspective, the goal of an unsupervised grammar induction

system is to mimic children: learning a grammar that can generate infinite number of grammatically

valid utterances from a finite amount of data. Looked from the perspective of Natural Language

Processing (NLP) - an unsupervised grammar induction algorithm could be useful for numerous

applications such as language modelling and Statistical Machine Translation (SMT).

The research on unsupervised induction of natural language grammar started attracting wider

interest with the introduction of inside-outside algorithm (Baker, 1979) for generating probabilistic

context-free grammars (PCFG). This report presents an exhaustive survey of the different tech-

niques used in unsupervised grammar induction, given a finite and large enough number of example

sentences in a language. The wider applicability of the grammar induction in applications with

multi-lingual setting, such as machine translation, raises questions that are even more exciting and

challenging than the traditional grammar induction problem. Consider for example the question of

whether we can learn synchronous grammar rules that can translate from a source to a target lan-

guage given a finite bitext. A brief survey of the works focussing on applications of unsupervised

grammar induction, specifically on its intersection with the statistical machine translation is also

presented.

There have been broadly two types of methods that have been proposed, the first one assumes

a fixed model for the grammar and searches for optimal parameters (for the assumed structure) that

maximizes the data likelihood using the well-known EM algorithm. The second class of works also

include a structural search typically using the idea of distributional clustering to group terminal se-

quences. The methods also differ in whether they consider grammar induction as a monolithic task

or as consisting of two sub-problems of constituent identification and constituent labelling (see Sec-

tion 1.2) and this has an effect on whether it produces CFG-style rules or just constituent/destituent

sequences of one of more types.

Typically unsupervised approaches to grammar induction algorithm use raw text without any

annotations. However to avoid the sparsity issue associated with words, several approaches use the

Parts-Of-Speech (POS) tags instead of the raw sentences and induce structure over the POS tag

sequence. Often these POS tags are manually annotated in the corpus, bringing in an element of
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human effort, though some of the recent works experiment with automatically induced POS tags

or word-classes. In another dimension, these approaches use different grammar formalisms with

phrase-structure and dependency grammars being the important ones and these will be noted at

relevant sections in the report. Evaluation of unsupervised grammar induction is also challenging

because of the differences in the type of structure learnt or grammar formalisms used.

The report is structured as below: a brief section on motivation discussing the significance of un-

supervised grammar induction problem on different fields follows this. A formal problem definition

is then presented to complete this section. The two classes of methods proposed for this problem

are presented in Sections 2 and 3 followed by a detailed discussion of the results in Section 4. A

comprehensive survey of the different evaluation metrics proposed for this task is summarized in

Section 5. Turning towards applications Section 6 sketches the research direction for synchronous

grammar induction targeted for SMT and finally Section 7 concludes the report.

1.1 Motivation

Historically, the question of how children learn their first language merely by listening to the speech

of their parents or others in the surroundings, has fascinated the researchers in different disciplines

including Cognitive Science and Linguistics. These speeches provide a set of positive examples for

the child. The mistakes made by them, especially during the initial years are few and most often

these are not corrected by their parents, which might serve as a negative example for the child in

the learning process. The Poverty of Stimulus theory postulated by Chomsky (1980) suggest some

innate support in the brain that enables the learning of infinitely powerful grammar from the finite

data. This theory was further strengthened by examples of complex sentence structures, which

when heard by a child, would require it to recognize and process specific syntactic units in order

to generalize into grammar from the examples. The arguments against the poverty of stimulus

theory questions some of the assumptions made by Chomsky especially the point about negative

evidence and cite the availability of indirect negative evidence (Pullum and Scholz, 2002), which is

additionally supported by the reasonable success of unsupervised grammar induction algorithms in

learning hierarchical structures from the positive examples. However, the argument remains open

and is also controversial.

Secondly, the long and extensive research by linguists in studying the syntax of natural languages

demonstrates the regularities in them in the form of hidden structures. These structures can take

on different forms such as different types of constituent phrases (NP, VP etc.) in phrase-structure
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grammar or the head-dependent relations (sentence predicate and subject noun, determiner and noun

etc.) in dependency grammar, among others. These grammar formalisms capture different aspects

about the syntax of a language and hence have validity in their own terms.

For example, Figures (1a) and (1b) show the syntactic structure of a sentence in phrase-structure

and dependency grammar formalisms. The phrase structure tree in Figure (1a) gives the constituent

phrases (noun phrase: The Polish rat; verb phrase: eat will in the winter) and also encodes the order

in which the tree is derived from the top symbol S. In contrast, the dependency structure captures

the relations between a word and its dependents (ex. the auxiliary verb will has rat, eat and . as de-

pendents; determiner this is the dependent of the head noun winter). One of the differences between

phrase-structure and dependency representations is that the latter does not model the derivation or-

der explicitly, which is sometimes also considered as an advantage. The dependency structure can

also be formulated as context-free rules and subsequently represented in an alternate tree structure

as in Figure (1c), which is very similar to phrase-structure representation in Figure (1a).

While, this clearly show the existence of the hidden structures in languages, the key question is

whether these structures could be automatically discovered from finite data. A related question is to

identify the grammar formalism that is best suited for such learning, which typically depends on the

application that uses the induced grammar.

Thirdly, grammar induction is the key step that helps in analyzing text syntactically and is help-

ful in further downstream processing tasks such as semantic understanding or mapping to a target

language syntax for producing better translation or for simply checking the grammaticality of the

sentences. Supervised approaches to grammar induction rely on the availability of treebank data

where the sentences are manually annotated with syntactic information in the form of hierarchical

trees as in Figure (1a). The major drawback with these methods is their dependence on such man-

ually annotated resources and such resources are available for English and few other resource-rich

languages. Similarly, the domain of the annotated data is an important factor: for example a tree-

bank consisting mainly of articles in a narrow domain, say business or air-traffic inquiries, may not

model the sentence structures in other domains but in the same language. Hence these methods only

have limited applicability in resource-poor languages or domains.

The idea of unsupervised grammar induction using only limited positive examples is thus an

attractive proposition having significant implications from both practical and philosophical consid-

erations. As discussed in this report, various research works has shown promising results but still

offer significant scope for improvement.
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S

NP                        VP .

DT     JJ     NN   MD                VP

VB   ADVP        NP

RB DT           NN

The Polish  rat  will   eat     well   this      winter    .
(a) Constituency Tree

 DT         JJ        NN     MD     VB     RB      DT        NN        .      ROOT

The     Polish     rat    will      eat    well     this     winter     .

(b) Dependency Structure

eat RB          NN

DT       NN

will  VB             RB

MD

NN                       MD              VB .

DT        JJ           NN .

The   Polish           rat

well

this     winter
(c) Dependency CF Tree

Figure 1: Different types of Structures in a Sentence
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1.2 Problem Definition

A grammar G represents a language L in terms of its smaller constituent blocks and describes how

these blocks interact recursively to build sentences that are grammatically valid in that language. In

other words, the grammar G specifies how the terminal symbol sequences in a given sentence, can

be parenthesized (possibly with embedded structures), such that no two parentheses cross each other

and the sequence of symbols within each parenthesis forms a linguistically coherent structure.

The problem of inducing a grammar - given a corpus C consisting of a finite number of valid

sentences (positive examples) S and having a finite set of terminal symbols Σ, can be stated as

below.

Induce a grammarG by first identifying sequences of terminal symbols α that form minimal and

grammatically coherent units and then by grouping these sequences based on some syntactic notion

of similarity into |X| categories such that each category Xj (where j = 1, . . . , |X|) represents a

distinct syntactic type. The above definition looks at the problem from the perspective of clustering.

The syntactical notion of similarity mentioned above reflects the nature of information captured

by the grammar formalism used. It represents the different syntactic categories for phrase-structure

grammars, whereas for dependency grammars it represents the relationships between heads and their

corresponding dependents.

Formally the goal is to induce a set of production rules R that describe how to generate valid

sentences S in language L, by starting from a special start symbol Xs that is distinct from each Xj

(where j = 1, . . . , |X|) and recursively rewriting the non-terminals in the right-side of productions

until no non-terminal remains. This latter one serves as a more formal definition of the task and also

captures the search perspective of grammar induction.

Thus, the productions R capture the relationship between set of non-terminals X and non-

terminal, terminal sequences (X ∪ Σ)? by recursively rewriting the non-terminals as Xi → α or

Xi → αXjβ, whereXi, Xj ∈ X and α, β ∈ Σ?. Additionally, the production rulesR will typically

have probabilities associated with them, signifying the likelihood of the individual rules being used

in generating C.

The supervised approaches exploit the availability of annotated data commonly known as tree-

banks for learning the grammar, whereas unsupervised approaches attempt to induce grammar di-

rectly from the raw text or more specifically the POS sequences, in order to avoid the sparsity issues

associated with the words. In practical setting, the nature of grammar induced vary among differ-

ent unsupervised approaches mainly due to differences in either the method employed (search or
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clustering) or the grammar formalism used or both.

1.2.1 Phrase Structure Induction

As noted earlier, phrase structure representation of a language encodes the constituent phrases of a

given sentence by their syntactic categories (NP, VP etc.) and additionally order them by a series

of production rules R indicating how the sentence is derived by combining them. Thus the phrase

structure representation has an underlying grammar defined by the context-free rules. In a proba-

bilistic setting, the rules in the grammar are assigned a probability signifying how often the rule is

used in the language L generated by G.

For each string qn1 generated by L(G), only the generated string q = q1 . . . qn is observed, while

the set of parse trees T that yield q is unobserved. The probability of an observed sequence can be

written as:

PΘ(q) =
∑
T

PΘ(q, T ) (1)

where, the joint probability distribution PΘ(q, T ) can be parameterized by making a Markov as-

sumption such that the rules in a derivation to be independent of each other.

PΘ(q, T ) =
∏
r

Θ(r)c(r:q,T ) (2)

The goal of the PCFG training is to find the parameters Θ that maximizes the likelihood of a corpus

C.

L(Θ) =
∑
q∈C

∑
T∈T (q)

PΘ(T, q|Θ) (3)

Towards this end, first the expected value Θ′ of log-likelihood can be calculated, which can then

be maximized to yield an updated value Θ̄ as:

Q(Θ′|Θ) =
∑
q∈C

∑
T∈T (q)

PΘ(T |q) log
PΘ′(T, q)

PΘ(T, q)
(4)

Θ̄ = argmax
Θ′

Q(Θ′|Θ) (5)

Q can be maximized by taking the derivative of Equation4 and setting it to zero. In computing this,

the expected counts of the rules used in the parse trees T that derive q needs to be computed. Now
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instead of summing over all parse trees T ∈ T (q), the Markov assumption mentioned above can be

exploited to compute the expected count efficiently.

For example, consider the ruleXi → XjXk used to generate the sequence qts (i.e qsqs+1 . . . qt−1qt)

in the derivation of the observed sentence q. Using independence assumption, the probability of gen-

erating the observation sequence q from the start symbol S can be written as:

PΘ(S ⇒∗ q1 . . . qn) = PΘ(q)

= PΘ(S ⇒ q1 . . . qs−1 Xi qt+1 . . . qn)×

pΘ(Xi → XjXk)× P (Xj ⇒ qs . . . qr)× P (Xk ⇒ qr+1 . . . qt)

The inside-outside algorithm explained in Section 2, provides an efficient method for computing

the expected counts by using the inside and outside probabilities.

2 Parameter Search with Fixed Models

One way of inducing a probabilistic grammar is to fix the structure of a grammar and then to find the

set of optimal parameters such that the resulting grammar best explains the language, which is usu-

ally approximated by a training corpus. The inside-outside algorithm originally proposed by (Baker,

1979), generalized the forward-backward algorithm for the regular HMMs to probabilistic context-

free grammars for speech recognition. It is an instance of the EM algorithm (Dempster et al., 1977)

applied in the context of PCFG estimation and is used to find the frequency counts of the individual

productions in the derivation of sentences in a corpus C.

The parametric search for natural language grammar, starts by assuming a fixed model structure,

consisting of X non-terminals. It further assumes the productions to be in Chomsky Normal Form

(CNF) shown below, resulting in fully binary branching derivations.

bijk : Xi → XjXk (6)

uim : Xi → q(m) (7)

where Xi (for i = 1, . . . , |X|) are unique non-terminal entries and q(m) is the mth terminal symbol

in the observation sequence. The first rule rewrites a non-terminal into two other non-terminals and

the second rule generates a terminal symbol from a parent non-terminal. Thus, given a set of Σ

terminal symbols and X non-terminals, it enumerates a total of X3 +X · Σ production rules of the

9



specified form and the goal of the inside-outside algorithm is to find the parameter estimates or rule

probabilities for the productions in the model. The parameter estimates are constrained by the fact

that the sum of the probabilities of all the rules generated by a given non-terminal should sum to 1

as in Equation (8). ∑
j,k

bijk +
∑
m

uim = 1 for each Xi ∈ X (8)

Given a list of productions, the model for generating a tree T yielding a sequence q can be

written as in Equation (9), where Xi(s, t) refers to the span (s, t) being rewritten by non-terminal

Xi. The probability of q can then be obtained by marginalizing over all trees that yield the sentence

q. Alternately, P (q|Θ) can be written in terms of inside and outside probabilities as in Equation (10).

P (T, q|Θ) =
∏

Xi(s,t)→α∈T

P (α|Xi) (9)

P (q|Θ) =
∏
i

Iqi (1, n)Oqi (1, n) (10)

1  .  .  s .  .  .  .  .  r   r+1  .  .  .  .  .  t  .  .  n

j k

i

Figure 2: Computing inside probabilities - Figure from Lari and Young (1990)

The inside probability Iqi (s, t) defines the probability of generating a sub-tree rooted at a node

Xi and deriving the observation sequence under it as in Figure (2). Formally, it is denoted as

Equations (11) and (12) and is the probability of the non-terminal symbolXi generating the fragment

of observation sequence q(s) . . . q(t).

Iqi (s, s) = P (uis), when s = t (11)

Iqi (s, t) =
∑
j,k

t−1∑
r=s

P (bijk)I
q
j (s, r)Iqk(r + 1, t) (12)
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The outside probabilities Oqi (s, t) are computed during the re-write process once the inner proba-

i

S

1  .  .  .  .  .  .  .   s .  .  .  .  .  .  .  .  .  . t   .  .  .  .  .  .  .  n

Figure 3: Definition of outside probabilities - Figure from Lari and Young (1990)

j

k i

1  .  .  .   r .  .  .  .  .  .  . s  .  .  .  .  .  t   .  .  .  .  n

(a) Xj → XkXi

i k

1  .  .  .  s .  .  .  .  .  t  .  .  .  .  .  .  r   .  .  .  .  n

j

(b) Xj → XiXk

Figure 4: Computing outside probabilities - Figure from Lari and Young (1990)

bilities are found. As shown in Figure (3), it rewrites starting from the start symbol S and generates

a non-terminal Xi that spans (s, t); and is defined as the probability of generating the sequence

outside of Xi, i.e. q(1) . . . q(s − 1) Xi q(t + 1) . . . q(n). The Xi non-terminal can then be part of

either bjki or bjik and the respective computations are illustrated in Figures (4a) and (4b), which can

be written as Equations (13) and (14).

Oqi (1, n) =

{
1 if Xi = S,

0 otherwise
(13)

Oqi (s, t) =
∑
j,k

(
Oqj (r, t)P (bjki)I

q
k(r, s− 1) +Oqj (s, r)P (bjik)I

q
k(t+ 1, r)

)
(14)

The inside-outside re-estimation starts by assuming random parameter estimates for the rules in the

grammar satisfying the above constraint in Equation (8) and uses these initial estimates to generate
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all possible parses for each sentence q in C. It then computes the expected fraction of parses of q

having a node Xi generating the words in the span (s, t) using Equations (15) and (16).

wqijk(s, t) =
1

Pq

t−1∑
r=s

P (bijk)I
q
j (s, r)Iqk(r + 1, t)Oqi (s, t) (15)

vqim(s, t) =
1

Pq
Iqi (s, t)Oqi (s, t) (16)

These counts are then aggregated and normalized appropriately to re-estimate new probability esti-

mates for the rules in entire corpus C as in Equations (17) and (18).

P (bijk) =

∑
q∈C

∑nq−1
s=1

∑nq
t=s+1w

q
ijk(s, t)∑

q∈C
∑nq

s=1

∑nq
t=s v

q
im(s, t)

(17)

P (uim) =

∑
q∈C

∑
tø(t)=m v

q
im(t, t)∑

q∈C
∑nq

s=1

∑nq
t=s v

q
im(s, t)

(18)

These steps are repeated iteratively until the convergence. The convergence is determined by a

threshold variation in the entropy of the language L generated by grammar G.

While presenting a detailed training procedure for estimating the parameters Θ of a PCFG, Lari

and Young (1990) used it to induce a grammar for an artificial palindrome language. By using

the entropy minimization (equivalently maximizing the data likelihood P (D|Θ)) of the generated

language as an objective, Lari and Young showed the estimated PCFG to be better than a regular

grammar estimated by an equivalent HMM. They also proposed pre-training methods for initializing

the PCFG, so as to avoid local maxima and to enable faster convergence. While, such pre-training

methods worked well for the simple palindrome language, Carroll and Charniak (1992) showed its

ineffectiveness for natural language grammar.

Lari & Young further introduced some ideas to constrain the generated grammar, by explic-

itly assigning non-terminal symbols to each of the terminal symbols and forcing the remaining

non-terminals to model the hidden process. This avoids the case, where few terminal symbols get

modelled excessively by several non-terminals leaving out the rest. They also introduced a gram-

mar minimization procedure to reduce the redundant non-terminals rewriting the frequent terminals.

It works by first identifying the redundant non-terminals generating the same terminal and then

chooses a non-terminal at random and fixes the corresponding production parameters. The produc-

tion parameters of the other redundant non-terminals that produce same terminal are randomized,

thereby making them available for uncovered terminal symbols corresponding to under-represented
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stochastic processes. While these pre-training technique and grammar minimization procedure fa-

cilitate faster convergence and improved grammar, the results are not impressive as the underlying

language in Lari and Young is not a natural language but a simpler palindrome language.

2.1 Constraining Search

Carroll and Charniak (1992) presented a set of experiments in inducing probabilistic dependency

grammar based on the approach by Baker (1979) and Lari and Young (1990). The approach uses

the inside-outside algorithm but instead of assuming the full model involving all the productions

for a given set of non-terminals, it begins with the set of all productions that are applicable for

the sentences in the corpus and filters them further based on a threshold value on the re-estimated

probabilities.

Carroll and Charniak also demonstrate that the search space of the inside-outside is riddled

with local optima and in a specific experiment with 300 different initializations they show that

all the induced grammars are i) different and ii) of extremely poor quality, when compared to the

original grammar. The experiments also suggest the entropy minimization to be an ineffective choice

as an objective for inside-outside algorithm, or in other words the entropy minimization does not

necessarily lead to a better grammar.

In trying to address these issues, Carroll and Charniak used the grammar constraints to guide the

search process for grammar induction. The general objective of these constraints is to eliminate a

grammatically incompatible non-terminal being generated from a given non-terminal (for example

an adjective generating a determiner or a verb generated from a pronoun). These linguistic con-

straints are specified in the form of a matrix, representing the non-terminals that are allowed on the

right-side of each of the left non-terminal. The constraints are shown to be effective in avoiding

syntactically untenable productions from being generated, while testing with a toy grammar. They

also experiment on the efficacy of different subsets of constraints and show a destituent grammar -

a grammar specifying the constituents that should be disallowed, to be better.

Pereira and Schabes (1992) present a different approach of incorporating linguistic constraints

in the inside-outside re-estimation by exploiting the availability of annotated data. In this approach,

a partial bracketing annotations as in the Penn treebank (PTB) corpus is used for inducing the PCFG

and the inside-outside algorithm is modified appropriately to choose the productions that conform to
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the brackets in the corpus. Figure (5) shows some example bracketed sentences from PTB, specifi-

cally from the WSJ10 dataset1.

( (S
(NP-SBJ (DT The) (JJ 40-year-old) (NNP Mr.) (NNP Murakami) )
(VP (VBZ is)

(NP-PRD (DT a) (NN publishing) (NN sensation) )
(PP-LOC (IN in)

(NP (NNP Japan) )))
(. .) ))

( (S
(NP-SBJ (NNP Mr.) (NNP Baris) )
(VP (VBZ is)

(NP-PRD
(NP (DT a) (NN lawyer) )
(PP-LOC (IN in)

(NP (NNP New) (NNP York) ))))
(. .) ))

( (S
(NP-SBJ (DT The) (JJ Japanese) (JJ industrial) (NNS companies) )
(VP (MD should)

(VP (VB know)
(ADVP-CLR (JJR better) )))

(. .) ))

Figure 5: Example Bracketed Sentences from Penn Treebank (WSJ10 set)

The bracketed examples are annotated with both Parts-of-Speech (POS) tags (found alongside

the words inside the parentheses), such as VBZ, NN, DT and so on. It also includes the grammatical

categories (marked at the top of the nodes in separate lines), such as ADVP, NP and PP. Pereira

and Schabes use the bracketings to guide the learning, but ignore the grammatical categories in the

annotations. Thus when the grammar is constrained to conform to the bracketings, it cannot identify

a word sequence that crosses the gold bracketing as a constituent. As an example, the tag sequence

1Wall Street Journal (WSJ) section of PTB having 10 or fewer words after stripping off the symbols and punctuations
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NNP NNP VBZ (corresponding to Mr. Murakami is in the first sentence) cannot be valid sequence,

even though it appears frequently in the corpus.

Compatibility between the corpus and generated productions is ensured by an auxiliary function:

c(i, j) =

{
1, if span(i, j) does not overlap any b ∈ B
0, otherwise

(19)

The expressions for re-estimating the binary and unary counts is also modified to consider only

the productions that are compatible with the bracketing. This approach effectively eliminates non-

syntactic sequences in the right side of the productions and is shown to better model the hierarchical

structure and also resulting in faster convergence. The evaluation shows over 90% of the identified

constituents to be compatible with with the test set constituents on a simple ATIS corpus. It should

however be noted that the specific requirement of annotated data might limit the applicability of this

approach for languages with scarce resources.

Another simpler way of guiding the parametric search process would be to use a bootstrap-

ping approach by specifying some seed examples for different constituent types and propogating the

examples to induce the PCFG rules (Haghighi and Klein, 2006). Exploiting this idea in a prototype-

driven approach, Haghighi and Klein (2006) start by manually specifying a small number of con-

stituent yields for 7 major syntactic categories and then propogate these examples over the corpus

to induce labels for new sequences by the notion of distributional similarity. While this is similar

to other approaches based on distributional clustering (Clark, 2001; Klein and Manning, 2001a)

(see Section 3.2), it uses a fixed model (with specific number of non-terminals X) and uses the

bootstrapping to better guide the search process to avoid the local extremum.

Given a terminal POS sequence α and its context c (adjacent tags on either side or boundary), the

distribution of α over its contexts is defined as its signature and denoted by σ(α). Given prototype

sequences for each constituent phrases, it compares the signature σ(α) (of a new sequence α) with

that of the set of prototypes of each phrase σ(Xi) using a variant of KL divergence metric and

assigns the sequence α to the type having least divergence or to a NONE type if the divergence is

above a threshold.

X(α) =

{
NONE, if minXi DSKL(σ(α), σ(Xi)) < t

argminXi DSKL(σ(α), σ(Xi)), otherwise
(20)

where, σ(Xi) is the signature of the phrase-type Xi and is computed by averaging the signatures of

its prototypical examples provided manually. Incorporating this distributional information through a
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prototype feature (pst), into the PCFG model in Equation (9) results in an augmented model written

as:

P (T, q|Θ) =
∏

Xi(s,t)→α∈T

P (pst|X)P (α|Xi) (21)

Intuitively, the prototype feature helps in finding the appropriate label for a sequence covered by a

subtree in T . In evaluating the augmented model Haghighi and Klein (2006) used both raw cor-

pus and bracketed corpus (Pereira and Schabes, 1992) and found significant gains in the labelled

and unlabelled F1 scores, while using the additional bracketing information over the raw corpus.

Prototype-driven learning was further integrated with the constituent-context model to label the con-

stituent sequences as explained in section 3.3.

Unlike most of the approaches discussed earlier, the prototype-driven approach offers an easier

mechanism for directly controlling the quality of the PCFG rules. For example, the bootstrapping

sequences of certain constituent phrases can be modified on the basis of error analysis thereby re-

sulting in improved grammar. The authors also demonstrate this by adding specific examples for

capturing the possessive nouns and infinitival verbs.

2.2 Improving Learning with Negative Examples

The EM-style likelihood based approaches covered earlier use only positive examples in a corpus,

which are likely to be grammatically correct than otherwise. Intuitively, these approaches attempt

to move the probability mass to a set of production rules supported by the sentences observed but

without identifying the productions from which the probability mass must be moved.

Now, contrasting this with the language acquisition in children, research has indicated to the

availability of indirect negative evidence to them (Pullum and Scholz, 2002) giving them an oppor-

tunity to improve their learning. For example, as children listen to more utterances like a red apple

or that black dog, they rule out the variations such as red a apple, apple red a, black that dog as

ungrammatical, from the fact that they never hear them. Extending this analogy to the likelihood

based approaches, it has been argued that negative evidences could help the EM to move the prob-

ability mass from the rules covering the negative evidences to the rules applicable to the positive

examples. In other words, while the plain EM-style algorithms attempt to move probability mass

to a set of rules blindly, the negative examples explicitly identify the productions that must be pe-

nalized. Contrastive Estimation proposed by Smith and Eisner (2005) exploits this idea of implicit

negative evidence available in a sentence for the grammar induction task.

The idea is to generate for a given sentence q, a large neighbourhood N (q) of ungrammatical
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sentences as negative evidence, by perturbing q with certain operations. For example, a delete (DEL)

operator generates sentences in the neighbourhood by deleting one word in q; it thus generates n+1

different sentences including q, where n is the length of q. Similarly, the transpose (TRANS) operator

transposes two subsequent words in a sentence to generate its neighbourhood. These operators can

also be combined together to produce an even larger neighbourhood. It can be seen that the sentences

generated by such operations will most likely be ungrammatical.

The question of choosing an appropriate neighbourhood is task and language dependent; for ex-

ample the transpose operator may not be good neighbourhood generator for inducing grammars for

configurational languages that allows different word-orders unlike English. Smith and Eisner (2005)

use three different neighbourhoods, viz. LENGTH, TRANS and DELORTRANS for their experiments

in unsupervised dependency learning for English.

Contrastive estimation is a generic family, of which EM can be seen a specific case where the

neighbourhood N (q) is the entire set of observed sentences. Comparing the objective functions

maximized by regular EM and CE in Equations (22) and (23) respectively, it should be noted that

CE approach is constrained by the neighbourhood of a sentence, whereas for the regular EM it is

the entire set of derivations possible with the terminal symbols set Σ?. This results in an intractable

normalization for the EM, which is restricted in the CE to be the sentence’s neighbourhood.

∏
q∈C

P (q|Θ) =
∏
q∈C

∑
T∈T :yield(T )=q

P (T, q|Θ) (22)

∏
q∈C

P (q|N (q),Θ) =
∏
q∈C

∑
T∈T :yield(T )=q

P (T, q|N (q),Θ) (23)

The CE approach by Smith and Eisner differs from other approaches in two ways. Firstly,

instead of the PCFG they use weighted CFG (WCFG), which defines the probability as a score

allowing the production rules to have arbitrary weights without being constrained by the fact that

they have to sum to 1. The score of a (sentence, tree) pair is then normalized by the sum of the

scores of all the structures allowed by the weighted CFG. Secondly, it views the grammar induction

as MATCHLINGUIST task: the task of matching the human linguistic annotations in PTB and this is

implicitly specified by the choice of an objective function that guides the grammar learning to that

of matching the human annotations.

The approach by Smith and Eisner uses the DMV model (Klein and Manning, 2004) (cf Sec-

tion 3.5) in a log-linear framework. Briefly, the DMV model treats a dependency tree T shown in

Figure (1b) as an ordered (head, argument) pairs (denoted as (h, a)) and score the entire structure
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as the product of the probabilities of the individual dependencies. Apart from the argument (a) for

a head (h), the model includes the direction of the dependency and the number of arguments for the

head (valence) as separate features in the log-linear framework. The neighbourhood likelihood can

then be defined in terms of the features as:

LN (Θ) =
∑
q∈C

log

∑
T∈T (q)

exp

(
Θ · f(q, T )

)
∑

(q,T )∈N (q)×T

exp

(
Θ · f(q, T )

) (24)

where the feature functions f(q, T ) refer to the probability distributions of the DMV model

P (root), P (END|·)) and P (a|·). Using these feature functions the model learns dependency struc-

ture for the WSJ10 dataset with two different initializers: a simple uniform initialization and an

initializer similar to Klein and Manning (2004). The weights are learnt by the modified EM pro-

cedure as in Klein and Manning, but an additional smoothing step was added. CE has been shown

to perform better than the simple generative EM as in Carroll and Charniak (1992) by a significant

margin. Further results are discussed in Section 4.

3 Structural Search Approaches

The approaches covered in the earlier section used a fixed model (by fixing the set of productions

R in the grammar G) while searching for the maximum likelihood parameters. Theoretically, this

approach is expected to assign a lower probability for invalid productions and thus minimal score

for an ungrammatical sentence. However it chooses a locally optimal solution due to modelling and

search issues detailed above.

An alternative would be to search for an appropriate structure as dictated by the evidence pro-

vided by the data, so that the resulting grammar is compact in describing the data. These models rely

on some heuristics for deciding the grammar constituents and use a Minimum Description Length

(MDL)-style criterion that reduces the joint encoding of the induced grammar and data. Some of the

earliest approaches in this category Stolcke and Omohundro (1994); van Zaanen (2000) and Adri-

aans et al. (2000), are based on the simple idea of clustering the word sequences, either bottom-up

or top-down, to identify constituents which can then possibly be embedded as PCFG-style rules.

This section begins by explaining these simpler approaches and then proceeds to the more formal

approaches that employed a rigorous framework of distributional analysis or dependency parsing.
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3.1 Minimum Description Length Approaches

Stolcke and Omohundro (1994) proposed a simple model merging approach that incrementally gen-

eralizes the grammar starting from an instance-based maximum likelihood grammar. Following a

Bayesian approach, it uses the posterior probability of the model given the data in corpus C to guide

the search process and maximizes the objective function in Equation (25). A normalization factor in

the denominator of (25) has been dropped as it is invariant to the model M .

P (M |C) = P (M)P (C|M) (25)

Based on the original model merging idea proposed by (Omohundro, 1992), it starts from an large

instance-based initial model prior (P (M0)) maximizing the likelihood and iteratively applies two

generalization operators, viz. merging and chunking to generalize the grammar so as to maximize

the posterior. At each iteration it explores all possible merging steps and choose the model(s) that

result in the largest increase in the posterior. While Stolcke and Omohundro (1994) give a detailed

sketch of an algorithm with a small example grammar, they do not give any objective evaluation of

the model that would allow us to compare it with others.

van Zaanen and Adriaans (2001) present a comparative study of the two early systems Alignment-

based Learning (ABL) (van Zaanen, 2000) and EMILE (Adriaans et al., 2000). ABL is based on the

linguistic notion of substitutability (Harris, 1951) and is also used by several other approaches as

we will see later. Briefly, it is defined as the ability of a constituent (sequence of words) to be sub-

stituted by another constituent (having different sequence of words) of same type without violating

the syntax. Consider the example in examples (1) and (2) from the ATIS corpus with the underlined

segment indicating the shared context. It is now easy to deduce that the phrases a family fare and

coach fare for flight 1943 are of same type based on the shared context they appear in. Thus, broadly,

ABL or other similar methods depend on identifying the valid constituents from a text and grouping

them by the constituent types.

(1) What is a family fare?

(2) What is coach fare for flight 1943?

ABL identifies constituents by reversing the notion of substitutability: if two sentence fragments can

be substituted for each other then they are constituents of same type. The approach proposed by van

Zaanen involves two phases: Alignment Learning and Selection Learning. In the alignment learning

phase it uses the edit-distance algorithm to align two sentences such that identical fragments in the

sentence pair are identified. Given the training corpus of n sentences, the ABL compares every
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sentence pair (n2 of them) and identifies all possible constituents. Every time a new constituent is

found, it introduces a new non-terminal and also merges the evidence for a constituent that has been

seen earlier thereby avoiding the proliferation of non-terminals.

(3) (1 Book Delta 128 )1 from Dallas to Boston

(4) (1 Give me (2 all flights )1 from Dallas to Boston )2

(5) Give me (2 help on classes )2

However, the alignment learning phase might produce overlapping alignments in a sentence by

comparing it with two different sentences. For example consider the sentence (4), which is being

compared with (3) and (5). The underlines represent the alignment between the sentence pairs and

the parentheses indicate the constituents indexed to show the constituent correspondences. The se-

lection learning phase attempts to choose the correct constituent from such overlapping constituents.

van Zaanen describes five methods for selection, two of which are important. viz. leaf and branch.

These are probabilistic methods and compute the probabilities of overlapping constituents to choose

the right one. The leaf method gets the probability of a constituent α by normalizing its count to the

total number of constituents C as in:

Pleaf (α) =
|α′ ∈ C : yield(α′) = yield(α)|

|C|
(26)

The branch method additionally uses the non-terminal information for better normalization and the

expression is given by:

Pbranch
(
α|root(α) = X(α)

)
=
|α′ ∈ C : yield(α′) = yield(α) ∧ root(α′) = X(α)|

|α′′ ∈ C : root(α′′) = X(α)|
(27)

The EMILE system (Adriaans et al., 2000) is similar to ABL in the sense that it exploits the

shared contexts to group the constituents into clusters. Employing the notion of substitution classes,

the idea is to iteratively find new constituent sequences from contexts and vice versa starting from

a small set of bootstrapping examples. Given a large enough corpus in a very narrow domain (such

as the ATIS corpus of air traffic reservation queries), one can expect to find classes of constituents

appearing in similar contexts. It has been shown to work for shallow, context-free languages with

characteristic contexts and expressions provided that the sample is drawn based on a simple distri-

bution.

Initially, EMILE uses a clustering phase to generate clusters of contexts and expressions using

some random seeds provided manually. Each expression cluster is then assigned a group-label,
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which can be used to rewrite sentences by substituting the expressions with the label, resulting in

proto-rules. For example, Sentence (1) can result in: [0]⇒ What is [19] and [19]⇒ a family fare.

In the subsequent rule induction phase, it generates recursive rules by substituting labels for smaller

expressions in longer expressions. For example, using the rule [19] ⇒ a family fare and a longer

expression [201]⇒ the price of a family fare to Rome, it can create a new rule [201]⇒ the price of

[19] to Rome.

However, the biggest drawback of both ABL and EMILE lies in their strong assumptions about

the presence of typical constituents and surrounding context. Naturally, while ABL and EMILE

work reasonably well on the ATIS corpus pertaining to a narrow domain, they may not generalize in

other corpus such as WSJ, whose sentences are more complex in a slightly broader domain.

3.2 Distributional Clustering Approaches

Clark (2000) presented Context Distribution Clustering (CDC) algorithm that induces clusters of tag

sequences based on the context distributional information, which are then filtered using a Mutual

Information (MI) criterion between the left and right contexts of a sequence to remove destituent

(non-constituent) clusters. The algorithm is incorporated in the well-known Minimum Description

Length (MDL) framework, whereby it chooses the clusters so that the resulting constituents have

the shortest description length. It starts by clustering the most frequent (> 5000) tag sequences in

the BNC corpus using the k-means clustering with the value of k set to 100. While, several clusters

clearly correspond to syntactic constituents, this method also produces spurious clusters where the

tag sequences are destituents.

Based on the traditional tests for constituency, a valid constituent is known to occur in the differ-

ent contexts unlike a destituent sequence. For example, a noun phrase sequence DT NN or NN can

appear as a subject starting a sentence, or as an object in the end of a sentence. In the subject posi-

tion, it will typically be followed by a finite verb as in (6). On the other hand, it normally appears

after a finite verb in the object position as in the example (7) and is likely followed by the sentence

end marker or a prepositional phrase. In contrast, a frequent destituent sequence like IN DT (in the)

is always followed by a noun, as shown in the same sentence.

(6) Susan/NN made/VBD a/DT presentation/NN to/TO the/DT committee/NN ./PUNC

(7) We/NN put/VBD a/DT man/NN in/IN the/DT moon/NN ./PUNC

This suggests a strong correlation (and thus high MI) between the contexts occurring on either side

of a constituent, whereas no such correlation exists for a destituent sequence. Clark exploits this to
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identify the destituent clusters by measuring the MI between the left and right contexts2 and uses a

threshold - that accounts for the natural MI existing between the neighbourhood words; to determine

the constituency.

The algorithm starts from a maximum likelihood grammar with a single non-terminal and in-

dividual rules for each sentence type and iteratively clusters the tag sequences and filters them ac-

cording to the MI criterion. At each iteration it selects a cluster greedily, such that this results in

best reduction in description length. A new non-terminal is added to the cluster if it does not have

a singleton non-terminal member already; other cluster members are rewritten as rules that expand

the single non-terminal. The next iteration starts from the current grammar and might create a new

cluster or new rules to be merged with an existing cluster. The MDL gain in each iteration is shown

to be related to the mutual information of set of rules that are found in that iteration.

In contrast to the ML and MDL objective functions, Klein and Manning (2001a) uses two lin-

guistic criteria for constituency, viz. External distribution and Substitutability as the basis for gram-

mar induction. While substitutability was defined earlier, according to external distribution a valid

constituent (sequence of words in a given sentence) will appear in a variety of structural positions

within larger constituents unlike the destituents that are restricted to limited contexts.

Klein and Manning formalize these two linguistic criteria by a distributional notion of context.

Given a parts-of-speech tag sequence α occurring in a context (say) xαy, where x and y are the

adjacent tags or sentence boundaries. The distribution over contexts in which α occurs is called its

signature denoted by σ(α). They present two systems: Greedy-Merge and Constituency-Parser that

considers the grammar induction problem as a clustering problem, where (distributionally) similar

tag sequences are grouped in the same cluster, possibly represented by a unique non-terminal.

Greedy-merge learns symbolic CFGs for partial parsing aimed more for constituent precision

than on recall. It uses agglomerative clustering, where the sequences are clustered iteratively with a

stopping criterion based on heuristics (same category appears in several merges) or by monitoring

for the drop in parsing accuracy using a small test set. It compares pairs of sequences α and β using

the normalized divergence metric in Equation (28) and merges the pair with least divergence. It also

assigns a new non-terminal category for each new merge.

d(α, β) =
DJS(σ(α), σ(β))

Hs(σ(α)) +Hs(σ(β))
(28)

2Sentence boundary marks the left or right context for constituents appearing in the beginning or end of a sentence

respectively.
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whereHs(σ(α)) is the scaled entropy of the signature σ(α) for sequence α defined by Equation (29).

Hs(σ(α)) = H(σ(α))
(
H(σu(α))/H(u)

)
(29)

After each merge, the sentences are partially parsed by the current grammar, attaching all the parent-

less nodes to a pseudo ROOT node. The clustering is now repeated on the sequences that are ordered

sets of adjacent sister nodes in the parse. While merging a sequence and a single non-terminal, it

creates a new rule rewriting the single non-terminal as the sequence similar to CDC. The merging of

two non-terminals results in the collapse of two clusters into one and is followed by the reanalysis

of the rule RHS. The current grammar state is used to parse a held out test set to track improvement

in parser performance and the algorithm is stopped when the test set accuracy shows a drop.

While the idea of greedy merge has similarities with CDC (Clark, 2000) in terms of approach

and high precision-low recall, there are significant differences as well. Clark starts with a maximum

likelihood grammar with one rule for each sentence type and iteratively finds points for breaking

sentences. Greedy merge, contrary to this uses agglomerative clustering in a bottom-up fashion

to cluster the sequences. Secondly, the MI criterion of CDC is similar to the one proposed by

Magerman and Marcu (1990) in that it helps to find the right points for segmenting the sentence

capturing long distance dependencies, whereas the greedy-merge is plainly motivated by contextual

similarities between sequences as captured by the diverge measure in equation (28).

The constituency-parser method (Klein and Manning, 2001a) is interested in identifying the

constituent sequences in a given corpus. It other words, it is a clustering system that separates con-

stituent sequences from destituents. Considering a sentence as a collection of (sequence, context)

pairs (α, c), it assumes that such pairs are generated independently by a model shown in Equa-

tion (30). It first generates a binary judgement jα of whether a sequence α is a constituent or not and

then generates the sequence α followed by its context c given the judgement3. The joint probability

of (α, c) pair tokens for the entire parse tree T can be written as.

P (α, c) =
∑
jα∈T

P (jα)P (α|jα)P (c|jα) (30)

It uses EM to maximize the likelihood of these pair tokens given the latent judgements jα, con-

strained by the requirement that the pairs from a given sentence must form a valid binary parse

3This is not a generative model in strict sense, since the (sequence, context) pair tokens are considered independent of

each other. As authors point out, this can be thought of like a random field over possible parses with the sequences and

their contexts used as features.
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(avoiding mutually incompatible parses). It uses four different methods to initialize the bracket-

ings for EM: Random (using random initial parses), Entropy (P (jα|α) is weighted proportionally

to Hs(σ(α))), Right-branch (by forcing right-branching structures) and Greedy (using the grammar

output of Greedy-merge). It finds the best tree in the E-step by scoring it with the product of the

likelihood of its hidden judgements as in:

argmax
T

∏
(α,c)∈s

P
(
jα(α, T )|α, c

)
The probability of a pair token (α, c) appearing in T being a constituent is computed by Equa-

tion (31). For the subsequent re-estimation steps, it again uses the four methods mentioned above

for deciding the binary bracketing. In the M-step, it fixes the best trees and finds the parameters that

maximize the likelihood of the (α, c) pair tokens given the latent judgements jα, using a gradient

ascent method.

P (jα|α, c) = P (jα|α)P (jα|c)/P (jα) (31)

As mentioned earlier, the main purpose of this method is clustering of constituent and destituent

sequences so that it does not produce CFG-style rules (probabilistic or otherwise). The resulting

constituents have high recall, because the model is forced to select a bracketing scheme so as to

produce a full binary parse of the sentence. The complete evaluation of this method along with

other approaches is presented in Section 4.

3.3 Constituent Context Approaches

Earlier models of clustering approaches for grammar induction attempted to solve the two problems

of identifying the constituents and labelling them simultaneously using the distributional analysis of

sequences and their contexts. Consider the Figure (6a), where the points correspond to the 50 most

frequent constituent sequences of three types shown in the vector space of its contexts, projected

onto their first two principal components. Clearly, the three types of constituents can be separated

reasonably well by clustering. On the other hand Figure (6b) shows 150 sequences identified as

constituents with probability more than 0.5 and another 150 sequences that are not, again projected

onto the two principal components. This shows that the problem of separating constituents from

destituents is not easily amenable to clustering (Klein and Manning, 2001b).

The Constituent Context Model (CCM) proposes a simpler probability model over trees to in-

duce bracketing (Klein and Manning, 2001b) using a simple observation that valid constituents in a

tree should be non-crossing. It uses two features defined for any parse tree t of a sentence q: fα(t)
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(a) Three types of Constituents (b) Constituents and Destituents

Figure 6: Frequent sequences plot illustrating the amenability of constituent labelling and con-
stituent identity to clustering - Figure from Klein and Manning (2001b)

over the terminal sequences and fc(t) over the contexts of a sequence α. The parse tree t of q is thus

viewed as a collection of sequences and contexts for every node in t and the empty spans between

two terminals. It uses a conditional exponential model defined in Equation (32).

P (t|q,Θ) =

exp
( ∑

(α,c)∈t

λαfα + λcfc

)
∑

t:yield(t)=q

exp
( ∑

(α,c)∈t

λαfα + λcfc

) (32)

where, λα and λc are the weights corresponding to the model features. The sequence feature fα
counts the frequency of sequence α being a constituent in a tree t, just by itself. The contextual

feature fc counts the frequency of a terminal symbol c used as a context in a tree.

The algorithm is an EM-style iterative that maximizes the conditional probability of trees over

the entire corpus C and is given by: P (T |C,Θ) =
∏
t∈T ,yield(t)=q P (t|q,Θ). It is initialized by λ

being zero (with ties broken at random) and arbitrary set of trees4 for T so that all parse trees have

uniform probability.

The algorithm first finds the set of best (high probability) tree structure t∗ for each sentence

with a fixed Θ. It then fixes the trees and estimates a new set of Θ∗ that maximizes P (T |C,Θ)

using for example, a conjugate gradient (CG) ascent method. Note that in both steps, the condi-

tional likelihood of trees P (T |C,Θ) is greater than its value in the corresponding previous step

4Considering arbitrary sets of trees without any constraints on the constituent sizes will lead to exponential number of

trees. In order to keep it at a manageable level it assumes a binary branching structure that results in significant reduction

of trees.
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assuring non-decreasing conditional likelihood in every iteration until convergence. Similar to the

constituency-parser method, CCM also attempts to identify the constituents and does not group them

into different types. Consequently, it does not produce CFG-style rules for full parsing, but enables

shallow parsing using identified constituents.

The generative version of CCM (Klein and Manning, 2002) combines the notion of distributional

clustering in a generative framework thus making it possible for the system to apply a constituent

sequence learnt from a given context to learn a different context and vice versa. While CDC and

greedy-merge approaches included distributional notion, the constituency-parser and CCM lacked

this. The generative CCM first generates a bracketing B, using a bracketing distribution P (B) and

then generates a sentence q for the given B as in Equation (33).

P (q) = P (B)P (q|B) (33)

Thus given a sentence, it finds several possible bracketings for it, such that there are no crossing

brackets in a particular bracketing scheme. After generating the possible non-crossing bracketings

B, it makes two simple assumptions for P (q|B): i) the spans in a givenB can be filled independently

and ii) the sequence for a given span and its context are independent of each other5.

P (q|B) =
∏

〈i,j〉∈spans(q)

P (αij , cij |Bij)

=
∏
〈i,j〉

P (αij |Bij)P (cij |Bij)

P (αij |Bij) is a pair of multinomial distributions for both constituents and destituents over the set of

possible sequences and P (cij |Bij) is the same for all possible contexts. Given this model, the gen-

erative CCM employs EM algorithm to induce structure by alternately computing the conditional

bracketing likelihood P (B|q,Θ) and then finding the parameters Θ′ by maximizing the likelihood

of sentences, i.e
∑

B P (B|q,Θ)P (q,B|Θ′). Unlike the conventional EM procedure, here the gram-

mar induction starts from the M step with a initial bracketing distribution Psplit(B) obtained by

recursively choosing a random point and then proceeding on either side to split a sentence. This

soft EM procedure has been shown to have better convergence and robustness, and is not sensitive

to initialization or smoothing parameters.

5While these assumptions make the model simpler, it also makes it deficient either due to conflicting span indices (i

and j) or due to incorrect sequence length and consequently the generated sequences and contexts may not tile to a valid

sentence. This is addressed by a renormalization step (see Klein and Manning (2002)).
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The generative CCM has also been extended to handle multiple constituent classes for induc-

ing the constituent labels apart from constituent identification and it employs a complex model of

generating bracketing, labels, and finally the constituents and their contexts. It uses a total of 12

constituent types including destituents and is shown to be effective for some but not all constituent

types, though with a minor drop of 0.2% in overall precision and recall compared to the two-class

model of identifying constituents and destituents.

Klein and Manning (2002) also show that generative CCM can also be used with automati-

cally induced POS tags instead of the gold tags. Generative CCM uses the baseline system by

Schütze (1995) which employs a weighted k-means algorithm to induce 200 word-classes clusters

using the distributional information of the word contexts.

The generative CCM in Equation (33) has been shown to have higher accuracy in identifying

constituents (from destituents), but does not label them. On the other hand, the prototype-driven

model of Equation (21) (see Section 2.1) based on distributional similarity is good at labelling them.

Haghighi and Klein (2006) integrated these two complementary models and showed it to produce

a better phrase-structure grammar. The combined model runs the EM on the two approaches sepa-

rately, and computes the posteriors over their hidden variables while maximizing the same objective

function given in Equation (34).

P (q|Θccm,Θproto) =
∑

B∈B(q)

Pccm(B, q|Θccm)
∑

T∈T (B):yield(T )=q

Pproto(T, q|Θproto) (34)

The CC model first generates unlabelled binary bracketing B for a sentence and then the prototype

model generates labels for the nodes in the tree T that is compatible with some B ∈ B. This

approach is similar to the one by Periera and Schabes (Pereira and Schabes, 1992), except that Klein

and Manning use the bracketing generated by Pccm(·) instead of the manual bracketing. This ensures

that the probability mass is assigned to the rules that are compatible with the hidden bracketing B,

and that the grammar G is of better quality compared to the CCM. As noted above, the advantage

of this approach is that it provides an easier handle for controlling the resulting PCFG, through the

seed examples for different constituent types.

3.4 Inducing Latent Tree Substitution Grammar

In the case of PCFG induction, the parse tree is derived from its constituent rules that are productions

of the CFG. Now, instead of using the productions, one could use a Tree Substitution Grammar

(TSG), where elementary units of the derivation are the arbitrary sized subtrees. The elementary
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trees can then be combined at the (frontier) non-terminal nodes in the derivation process. The

objective in such an approach is to induce the latent TSG. This is commonly known in the literature

as Data-oriented Parsing (DOP) (Bod, 2006). Though, this approach is similar to PCFG induction

using EM, it has been included here with other structural-search based methods because the TSG

rules are not known before the model is trained completely.

Unlike CFG whose productions are restricted to one level rewriting, the productions of the DOP

considers all possible subtrees in a parse tree and therefore can have arbitrary depth. DOP is thought

to model the language better as it includes concrete language examples in its rules and not just

abstract rules. As a probabilistic model, the DOP productions are assigned probabilities and the

probability of a derivation is obtained by summing over the (log) probabilities of the involved pro-

ductions. Due to the arbitrary depth of the TSG rules, the number of productions is combinatorially

large, therefore the parameterization is difficult. However, the DOP framework uses random sam-

pling to overcome this issue.

The DOP can be used in an unsupervised setting by considering all possible binary parses and

using their subtrees to train a probabilistic model. In fact two versions of unsupervised DOP model

using a relative frequency based and maximum likelihood (ML) training has been proposed and

the ML-based approach is shown to perform better (Bod, 2006). The unsupervised ML-DOP starts

by generating all possible (unlabelled) binary trees for the sentences in the training corpus and

then randomly sampling a large subset of binary trees. It then extracts a fixed number of subtrees,

which is then trained iteratively with EM and using a re-estimation procedure similar to inside-

outside algorithm. The overfitting can be avoided by cross-training procedure - dividing the training

set into two parts and training the subtrees extracted from one part on the other and vice versa.

However, the random sampling of subtrees might render the replication of this approach to get the

same performance difficult.

3.5 Dependency Models

The example dependency structure given earlier in Section 1.1 is repeated in Figure (7) to illus-

trate the dependency structure. As noted earlier, a projective dependency tree captures the head-

dependent relationship among the words in a sentence (ex. the auxiliary verb will has rat, eat, and

. as dependents; determiner this is the dependent of the head noun winter) such that no dependency

edges in the tree cross each other.

Similar to the case of PCFG that assigns a score to a parse tree by aggregating the probability
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 DT         JJ        NN     MD     VB     RB      DT        NN        .      ROOT

The     Polish     rat    will      eat    well     this     winter     .

Figure 7: Dependency Structure

of the rules involved in the derivation, the dependency models treat the dependency structure D as a

set of ordered (head, argument) pairs denoted as (h, a), and score the entire structure as the product

of the probabilities of the individual dependencies. Optionally, the direction of the dependency and

the number of arguments for the head (valence) are also included in the model as separate features.

Earlier work on unsupervised dependency induction used a generative model (Paskin, 2001)

that first generates a plain dependency graph G having empty nodes connected by directed arcs,

uniformly at random and then generates the words in the sentence q starting from a pseudo ROOT

node to complete an entire dependency structure D.

P (D) = P (G)P (q|G)

= P (G)
∏

(s,t,dir)∈G

P (q(s)|q(t), dir) (35)

It exploits the property of dependency structures that, every word in a sentence has exactly one head

and links a pair of grammatical bigrams such that this property is satisfied. The term P (a|h, dir)
is a multinomial distribution for generating an argument conditioned on the head and the direction

(specifying whether the argument occurs on right or left of the head). The parameters of P (a|h, dir)
are determined by running EM over the raw data. However, the model is deficient because it captures

more of the semantical relatedness between different words rather than the syntactic dependencies

and hence links two words that have high mutual information. This deficiency occurs because, the

model in Equation (35), first fixes the structure instead of letting the structure to evolve on the basis

of the heads and their valencies (number of arguments they can take).

Head outward process (Eisner, 1996; Collins, 1999) used in supervised dependency models

captures this linguistic valency where each head takes a specific number of arguments. For example,

transitive verbs such as paint, touch take two arguments (a subject and an object), while some other

verbs (ask, give) has a valency of 3 and take both direct and indirect objects in addition to a subject.

The supervised approaches by Eisner and Collins include such valency information along with the
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identity of a head and the direction in generating its set of arguments. Specifically, the valency is

factored in the model by including a END process, which is generated for each side of a head after

its arguments are generated.

The Dependency Model with Valence (DMV) is a generative model that combines the graph

generation with that of the terminal symbols (Klein and Manning, 2004), while including the head-

outward and END processes. For each head, it generates the dependents on right and left sides

separately in the same order, and in each direction the generation is continued until a final END

argument is generated for that side indicating that no further arguments need to be generated in that

side. A single dependent for ROOT is chosen uniformly over all the words in the sentence.

The DMV model can be seen as dealing with four types of distinct lexicalized tree structures as

shown in Figure (8). Starting from the head h, it iteratively generates the dependents on the right-

side Figure (8a) until an END argument is generated as in Figure (8c). Then, it repeats the process

on the left side to generate the configurations in Figures (8b) and (8d). The right and left ceiling (e
and d) in a node signifies that END argument has been generated for the side.
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END

(c) Right END

s

h

h

t

END

(d) Left END

Figure 8: Dependency Structures handled by the DMV model - Figure from Klein and Manning
(2004)

At every step, the model first decides if an END is to be generated for the head in the current

direction given its binary adjacency, defining whether or not an argument has already been generated

for it; P (END|h, dir, adj). If this binary END decision turns out to be false, the model generates

an argument for the head in the current direction P (a|h, dir); the adjacency is not considered in

generating the argument itself. Klein and Manning (2004) use the word-classes and not the actual

words as the terminal symbols. The probability of a fragment rooted at a head h in the D is given

by Equation (36):

P (D(h)) =
∏

dir∈{r,l}

( ∏
a∈AD(h,dir)

P (¬END|h, dir, adj)P (a|h, dir)P (D(a))
)

P (END|h, dir, adj) (36)
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where, AD(h, r) refers to the right-side r dependents (arguments) of a head h in D.

The parameters of END (P (END|·)) and choosing argument P (a|·) are re-estimated by the

inside-outside algorithm (as explained in Section 2) and uses the expected frequencies of a node

labelled h in the span (s, t) in the parses of observed sequence o (co(h : s, t)). The probability of

the entire tree T can then be written as Equation (37), with the root node qr chosen uniformly from

all the words in q.

p(T ) = pROOT(qr) · P (D(r)) (37)

In their approach, Klein and Manning, begin with the M-step of EM and use a new initialization

scheme called harmonic initializer that gives an initial guess of the posterior distributions. Given a

sentence q of length n words, i) it chooses a root node qr with uniform probability 1/n and ii) each

non-ROOT node takes the same number of arguments, with each node at some position i taking other

nodes at position j as arguments, in inverse proportion to the distance |i − j| between them plus a

constant. These constraints for the initializer can be summarized by the Equations (38) to (40).

PROOT(qi) =
1

n
(38)

P (qi|ROOT, r) = 0 (39)

P (qj |qi, dir) =
1

c+ |i− j|
; qi 6= qj 6= ROOT (40)

The other unspecified cases can be assumed to be either uniform or straightforward as suggested

by Spitkovsky et al. (2010a) and are shown by Equations (41) to (43).

P (END) =
1

2
(41)

P (END|ROOT, l, 1) = 0 (42)

P (¬END|ROOT, l, 0) = P (END|ROOT, r, 0) = 1 (43)

This initializer ensures that the model is not locked in a local optimum as it happens in the

EM with random initialization. The DMV model has been evaluated for the accuracy in directed

and undirected dependency attachments and has been shown to perform reasonably well for three

different languages, namely English, German, and Chinese as later covered in the Section 4. It was

further combined with the CCM so that the resulting joint model can extract both constituency and

dependency structures.

The combined model uses the four structures illustrated in Figure (8), each of which are scored

by the product of the probabilities from individual models. For CCM, the configurations are viewed
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as a sequence of terminal symbols appearing in its context. The inside-outside algorithm is run over

this product model and the parameters of the two models are separately re-estimated using the overall

counts obtained from the inside-outside procedure. Interestingly, the combined model scores better

in both constituency and dependency evaluation than the standalone models for English, German and

Chinese. It has to be noted however that, both DMV and the combined model, produce constituent

sequences and dependency attachments, but not a probabilistic grammar.

A typical approach in learning is to change the training regime by bootstrapping with a sim-

pler subset and adding more data in stages, iteratively increasing the learning complexity, which

mimics the idea of gradual learning. Employing this idea in combination with the DMV approach

Spitkovsky et. al (2010a), propose three different algorithms: Babysteps, Less is More and Leapfrog.

Babysteps is similar to Carroll and Charniak (1992) in that it starts from a simpler training set con-

sisting of single-word sentences in WSJ and iteratively adds more complex6 sentences from WSJk

(k = 1 . . . 45) to the training. At each iteration the algorithm is initialized by the model learnt from

the previous iteration. Less is More is similar to the original DMV and uses a fixed, low-complexity

subset of the training data. The third variant, Leapfrog, combines the first two approaches by making

smaller increments initially up to WSJ15 and then jumping large steps of WSJ15, 30, 45.

The inference method used offers yet another handle for experimentation. Majority of the ap-

proaches above use the classic EM with inside-outside re-estimation, which is an exact inference

method. The inside-outside algorithm in EM can be replaced by a computationally simpler alterna-

tive of best parse, resulting in Viterbi-EM (Spitkovsky et al., 2010b). Despite being an approximate

inference method, Viterbi-EM gains significant accuracy improvements as it uses the same inference

method for both training and evaluation.

The DMV model of probabilistic grammar was subsequently used in several other works. Cohen

et al. (2008) used the DMV in a Bayesian setting through a variational EM algorithm. This model

extends the correlated topic model (CTM) (Blei and Lafferty, 2006) originally proposed for topic

modelling in documents for grammar induction. The CTM employs a logistic normal prior instead

of the Dirichlet prior used by the Latent Dirichlet Allocation (LDA) model (Blei et al., 2003) as the

former is better in capturing the correlations between the topics by relaxing the strong independence

assumed between the different topics by the latter. This can be illustrated by comparing the process

involved in generating the multinomial θ in Dirichlet logistic-normal distributions.

The process for generating a sentence s and its derivation tree t using a hierarchical generative

6The complexity of the sentence is approximated by its length.
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Figure 9: Graphical Model for Probabilistic Grammar with Logistic-normal prior - Figure from
Cohen et al. (2008)

model with a logistic-normal distribution shown in Figure (9) is as follows:

• Draw a logistic normal distribution η ∼ N (µk,Σk) for k = 1, . . . ,K

• Map to simplex θk,i = exp(ηk,i)/
∑Nk

i′=1 exp(ηk,i′) for k = 1, . . . ,K and i = 1, . . . , Nk

• Sample from θ to generate (s, t)

The covariance matrix Σ of the Gaussian N can be used for specifying such prior information;

this allows the CTM to assume some correlation between the topics, incorporated through a logistic

normal distribution of topics. In contrast, for the case of a Dirichlet distribution, the correlation

among different multinomials in θ (for example between θi and θj for i 6= j) cannot be captured

directly, but only through the normalization step in the Dirichlet generation process given below.

• Draw ηj ∼ Γ(αj , 1) independently for j ∈ 1, . . . , d

• θj = ηj/
∑

i ηi for j ∈ 1, . . . , d

In the context of the grammar induction, Cohen et al. (2008) analogously propose to use the

correlations between similar POS tags to hypothesize the argument types taken by a specific word

after observing a similar tag as its argument. For example, having observed a singular noun (NN)

as an argument for a verb (VBD) with some probability p′, the CTM can assume the probability of

having a plural noun (NNS) as an argument for verb (VBD) to be correlated to p′, thereby improving

the induction of dependency structures.

For inference, Cohen et al. give a Variational Bayesian algorithm that approximates a posterior

function q(η, t) such that it maximizes the lower bound of the likelihood p(s, t|µ,Σ) given by the

Jensen’s inequality as in Equation (44).
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log p(s, t|µ,Σ) ≥
K∑
k=1

Eq
(

log p(ηk|µk,Σk)
)

+ Eq
(

log p(s, t|η)
)

+H(q) (44)

Using a mean-field assumption factorizes the posterior q(η, t) as

q(η, t) = q(η)q(t) (45)

Now, simplifying the likelihood by using the factorized posterior and by introducing K new varia-

tional parameters ζ̃k yields the second term of Equation (44) as:

Eq
(

log p(s, t|η)
)

=
K∑
k=1

Nk∑
i=1

f̃k,i

(
µ̃k,i − log ζ̃k + 1− 1

ζ̃k

Nk∑
j=1

exp
(
µ̃k,j +

σ̃2
k,j

2

))

Employing a short-hand notation of ψ̃k,i for the complex expression involving µ̃, σ̃ and ζ̃ in the

second term expression, the lower bound of Equation (44) can be written as Equation (46).

log p(s, t|µ,Σ) ≥
K∑
k=1

Eq
(

log p(ηk|µk,Σk)
)

+

K∑
k=1

Nk∑
i=1

f̃k,iψ̃k,i +H(q) (46)

Now, the grammar parameters θ can be estimated with the EM algorithm, where the E-step

maximizes the lower bound with respect to the variational parameters µ̃, σ̃, ζ̃ and f̃ using co-ordinate

ascent. Each of these parameters are optimized separately by different optimization techniques: µ̃

through conjugate gradient, σ̃ using Newton’s method and ζ̃ by a closed form solution involving

µ̃ and σ̃. f̃ are the counts of the individual dependencies observed in the derivations of s and are

estimate through dynamic programming. The M-step estimates the values of µ and Σ using a closed-

form solution and the parameters estimated in E-step. The process is repeated until convergence of

the likelihood p(q|µ,Σ) of held-out data.

The LN prior allows the probabilities in a single multinomial to covary; thus it correlates the

probabilities of a plural noun (NNS) and a singular noun (NN) separately being an argument of a

head verb (VBD). The LN prior is realized in practice by combining the singular and plural nouns

into a coarse group and allowing the probabilities within this group to covary. However, this could

be further generalized to enable covariance across multinomials throughout the model, thus per-

mitting correlations between the probabilities of different heads (such as VBD, VBZ and VBN)

independently taking NN as an argument. In other words, instead of only letting the probabilities of

arguments from the same group to covary, a generalized version can allow covariance of the proba-

bilities of both heads and arguments independently in their respective coarse groups. This resulted
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in a shared LN prior model (Cohen and Smith, 2009a), which again used Variational Bayes for

inference algorithm explained above.

Another alternative to inject prior information in the Variational Bayes framework is to use

a mixture model for posterior distribution, where the mixture components are linguistically moti-

vated (Cohen and Smith, 2009b). Unlike the mean-field assumption (Equation (45)) used in logistic-

normal prior model that assumes a factorized approximate posterior, mixture models employ relaxed

restriction on the posterior by introducing a family of mixture distributions ∆r = {〈λ1 . . . λr〉 ∈
Rr : λi ≥ 0,

∑
i λi = 1}. The posterior can now be written as a linear combination of the mixture

components.

q(η, t|λ) =

r∑
i=1

λiqi(η)qi(t) (47)

The variational EM can now be modified to maximize the lower bound of the likelihood with

respect to q(η), q(t) and λ. Cohen and Smith (2009b) achieve this by independently optimizing the

bound to update qi(η) and qi(t) (where, i = 1, . . . , r), respectively by running the E and M steps

for r times and finally optimizing for mixture coefficients λ in a separate C step. In order to avoid

a stronger bias towards a particular mixture component, λ is additionally constrained within ∆r ini-

tially, which are then gradually relaxed using the idea of annealing in the later iterations of EM so as

to avoid local maxima. Using the mixture components helps to pull the attachment counts during the

E-step, towards the prior expectations as encoded by the mixture beliefs. Cohen and Smith (2009b)

experiment with different linguistically motivated mixture components RIGHTATTACH (RA - each

word is attached its parent in the right), VERBASROOT (VAR - only verbs can be the root of the

sentence), SHORTDEP (SD - allowing only shorter dependencies) and so on.

The DMV models explained thus far are simple ones and do not use sophisticated features em-

ployed by the supervised approaches. The valence frame information and lexicalization are two of

the important linguistic features that can enrich the DMV as proposed in Extended Valence Gram-

mar (EVG) and Lexicalized-EVG (L-EVG) (Headden-III et al., 2009). The DMV uses the valence

information only for determining the number of arguments for a head. The EVG introduces the

notion of valence frames by which it allows different distributions over the arguments of a head at

different valence slots. This difference in the distribution makes it possible to distinguish between

the different roles played by the arguments; for example give a sequence DT JJ NN as in A green

apple, the dependency attachments NN-JJ and NN-DT are distinguished from each other unlike the

case of DMV, which treats them to be equivalent.

In addition to the valence frames, Headden et al. (2009) incorporates lexical information which
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adds to the sophistication at the cost of introducing data sparsity issues. The lexical information

is incorporated for both head and argument resulting in lexicalized EVG (L-EVG). The argument

POS tag is now conditioned on the head POS tag (h), head word (hw), direction (dir) and valence

slot (v). The argument word (aw) is conditioned only on the argument POS tag (a). A third key

difference between this and the earlier DMV-based approaches is that, Headden et al. uses the split-

head algorithm for converting the DMV into a CFG representation by splitting the heads for its left

and right derivations. Consequently, EVG and L-EVG produces a PCFG style productions unlike

the other DMV variants that are characterized by probabilistic models for generating arguments and

END on either directions.

However the sophistication of the model leads to increased sparsity and Headden et al. resort

to smoothing to address the issue. For the EVG, the smoothing is achieved either by dropping the

valence information and backing off to the original DMV model, or by dropping the head POS

tag. Headden et al. show smoothing with dropped head to perform better than dropped valence

frame. In the case of L-EVG, the unlexicalized EVG with dropped head is used as the backoff

distribution. In order to facilitate smoothing in EVG and L-EVG, Headden et al. use a modified

class of PCFGs called tied PCFGs that gives the same probability for analogous rules rewriting two

different non-terminals. This equal probability gives rise to equivalence classes over rules (R) and

non-terminals (N ) that are tied. They use a Dirichlet prior over the tied PCFGs and combine it

with linear interpolation for smoothing. In order to effectively use the Dirichlet prior they employ

Variational Bayes technique to estimate a distribution over θ, instead of a point estimate directly

returned by EM.

Using the idea of Variational Bayesian learning of PCFG (Kurihara and Sato, 2004), Headden et

al. add the prior information through the Dirichlet distribution having hyperparameters α over tied

PCFGs. Following the VB, they maximize the approximate posterior distribution Q(D, θ) over de-

pendency trees D and parameters θ, which maximizes the lower bound F of the marginal likelihood

logP (q|α), which has an intractable integral as given in Equation (48).

logP (q|α) ≥
∑

D∈D(q)

∫
θ
Q(D, θ) log

P (q,D, θ|α)

Q(D, θ)
(48)

The approximate posterior distribution is further simplified through an independence assumption

and is given in Equation (49), where N̄ is a non-terminal equivalence class. Q(D) and Q(θ) are

maximized alternately until convergence and at each iteration the lower-bound F in Equation (48)

increases monotonically.
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Q(D, θ) = Q(D)Q(θ)

=
∏

D∈D(q)

Q(D)
∏
N̄∈N̄

Q(θN̄ ) (49)

In their experiments Headden et al. use a random initializer and create independent sets with

each having several initial settings and run Variational Bayes EM for a fixed number of iterations.

The model with best likelihood estimate on a held-out data in each set is then run until convergence.

The variational posteriors are then averaged to yield a point estimate of θ. In the case of L-EVG,

the model is bootstrapped by running sets of smoothed EVGs as explained above and using the best

model from these as initial distribution for corresponding L-EVG. Headden et al. show this random

initializer to be better than the harmonic initializer (Klein and Manning, 2004) for both original

(DMV) and the extended (EVG, and L-EVG) models. The improvement in the DMV for the random

initializer can partly be attributed to the Dirichlet prior employed, but further experiments involving

the two initializers are required for a complete understanding of the strengths of the initializers. In

the case of the extended models, the additional contexts added to the model might prefer the random

initializer because it does not depend on the DMV unlike the harmonic initializer.

Most of the DMV variants model shorter dependencies better than longer ones and this is pos-

sibly because the argument generation is conditioned only on valence positions 0 and 1 indicating

the generation of first and subsequent arguments. While, modelling larger dependencies through

independent valence positions might be better, it might also affect the tractability of the model. One

alternative could be to use large dependency fragments (Blunsom and Cohn, 2010) without using

the valence.

Adapting the CFG-DMV model further with a Tree Substitution Grammar (TSG), Blunsom and

Cohn (2010) defined a hierarchical Pitman-Yor Process (PYP) prior that biases towards a compact

grammar. The frontier non-terminal nodes in TSG allows other TSG elementary trees to be added,

leading to the generation of the tree until all the non-terminal frontiers are exhausted. The probability

of a derivation, tree and sentences for probabilistic TSG (PTSG) are thus defined in a way similar to

PCFG.

Continuing experiments with different types of priors in the earlier works, the TSG model use

a hierarchical Pitman-Yor Process prior, which allows multiple levels of backoff (including unlex-

icalized and skip-head) models to be used. It can be seen that the lexicalized, longer TSG rules

and multi-level PYP function to compensate for each other. Blunsom and Cohn use Markov Chain
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Monte Carlo (MCMC) with Metropolis-Hastings (MS) sampler, so as to efficiently sample full trees

by exploiting the factorization of derivation probabilities.

3.6 Summary

Table (1) gives a summary of the major approaches covered in this report including the objective

function used and the type of search employed. Just to briefly recap the notations used in the table:

q represents a sentence in corpus C. B (bracketing), T (phrase-structure tree) and D (dependency

tree) denote the specific instances of different types of structures induced with B, T and D refer

to the corresponding set of instances pertaining to q. The parameters learned by the model are

represented by Θ with the subscripted Θ indicating specific features in the corresponding model.

Algorithm Objective Search Output
EM

∏
q∈C

∑
T∈T (q)

P (T, q|Θ) Parametric PCFG

CCM
∏
q∈C

∑
B∈B(q)

P (B|q,Θ)P (B, q|Θ) Structural Constituent Sequences

DMV
∏
q∈C

∑
D∈D(q)

P (D, q|Θ) Structural Dependency Structure

Prototype
(w/ CCM)

∏
q∈C

∑
B∈B(q)

P (B, q|Θccm)
∑

T∈T (B,q)

P (T, q|Θproto) Parametric PCFG

CE
∏
q∈C

∑
T∈T (q)

P (T, q|N (q),Θ) Parametric Weighted Dependency
structure

CTM
∏
q∈C

P (q|µ,Σ) Structural Dependency Structure

EVG
∏

D∈D(q)

Q(D)
∏
N̄∈N̄

Q(θN̄ ) Structural Dependency Structure

Table 1: Summary of Different Unsupervised Grammar Induction Approaches - Table idea from
Smith and Eisner (2005)
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4 Experiments and Results

4.1 Experimental Setup

Most of the work in unsupervised induction has focussed on inducing grammar for English. How-

ever, some of them have also experimented with inducing grammars for other languages such as

Chinese and German. This section first presents the experiments and discusses the results for gram-

mar induction for English. The results on the other languages are presented towards the end of the

section.

ATIS and WSJ are the two datasets that are typically used in the experiments for evaluating

different unsupervised induction approaches. ATIS is a corpus of air traffic information system

having short sentences concerning the same domain and includes topics such as reservation. The

sentences in WSJ corpus come from the Wall Street Journal corpus pertaining to news domain

mostly about business and politics. Considering the computational complexity7 involved in training

unsupervised induction algorithms on longer sentences, majority of them restrict the training to a

subset of WSJ consisting of 7422 sentences having at most 10 words after removing the punctuation

and this set is referred as WSJ10. While the earlier works focussing on this problem used ATIS for

evaluation, the recent approaches were usually evaluated on WSJ10.

Both ATIS and WSJ have the phrase structure annotations as part of Penn treebank (PTB) and

consequently the approaches inducing the constituent sequences or phrase-structure grammar di-

rectly use these annotations for evaluation. In contrast, most of the recent research beginning from

DMV (Klein and Manning, 2004) has focussed on inducing dependency structures and thus need to

map the phrase-structure annotations to dependency structures using some head-finding techniques.

Methods of Collins (1999), Hwa and Lopez (2004) and Yamada and Matsumoto (2003) satisfy this

requirement and have been employed in different approaches.

Though different metrics have been proposed for evaluating unsupervised grammar induction

(see Section 5), PARSEVAL remains the most widely used metric. PARSEVAL computes a family

of measures by matching the brackets between a parser derivation and the corresponding gold parse.

The set of measures include precision (percentage of total brackets proposed that are correct), recall

(percentage of total gold brackets that are found) and F-score (harmonic mean of precision and re-

call), with the term unlabelled indicating that the constituent identity is ignored if available. Along

7The inside-outside dynamic programming algorithm typically used in the unsupervised induction has a cubic running

time.
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with these, it also defines, average number of crossing brackets (CB) and percentage of constituents

having zero or at most 2 crossing brackets (0 CB and ≤ 2 CB). The research on dependency in-

duction use the directed dependency attachment accuracy giving the percent of directed attachments

proposed by the approach matching with the gold attachments. Some of the works additionally use

a weaker version of this by ignoring the direction of attachment as undirected accuracy.

4.2 Results and Discussion

Beginning with a discussion on approaches evaluated on the ATIS corpus, Table (2) presents the

results for ABL, EMILE, CDC and CCM using the PARSEVAL metric. First it shows ABL to have

significantly higher recall but with lesser precision (overall with higher F-score) than EMILE. This

is because EMILE requires enough evidence before incorporating an expression in the grammar,

whereas ABL is a greedy approach of including constituents on sparse evidence. This also means

that as the corpus size increases, ABL will face scalability issues as it has to now deal with increased

number of constituents having n-way overlap.

The last three rows of Table (2) give the results for CDC (after 40 iterations) and CCM ap-

proaches. As can be seen CDC has higher precision than ABL and EMILE and has a recall that is

comparable to ABL. However CDC scores significantly low on recall when compared with the CCM

family of approaches despite being trained on a much larger, complex BNC corpus and using tagged

data. Partly the low recall for CDC is because it requires large number of samples in a specific

left and right contexts of x and y together so that the corresponding sequence can be considered

as a constituent. In other words the Mutual Information (MI) criterion of CDC imposes a strong

requirement on the combined left and right contexts leading to low recall. Note that the CCM and

generative CCM numbers are also better than the Right-branching baseline8 and hence are naturally

considered as baseline approach in the subsequent works.

The performance of greedy-merge and constituency-parser approaches are reproduced from

Klein and Manning (Klein and Manning, 2001a) in Figure (10) to better illustrate the performances

in different initialization and re-estimation settings. As noted in Section 3.2 greedy-merge (labelled

’Greedy’) is a precision oriented system to learn symbolic CFG rules, whereas constituency-parser

is forced to generate a complete parse of the sentences and this is evident in Figures (10a) and (10b)

respectively showing precision and recall. The different initialization and re-estimation settings used

8Right-branching structures works well for English and hence is frequently used as a natural baseline for English
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Model UR UP F-score CB 0 CB ≤ 2 CB
RBRANCH 46.4 39.9 42.9 2.18 - -
EMILE 16.8 51.6 25.4 0.84 47.4 93.4
ABL 35.6 43.6 39.2 2.12 29.1 65.0
CDC (40 itr) 34.6 53.4 42.0 1.46 45.3 78.2
CCM 46.8 54.4 50.3 1.61 - -
Gen CCM 47.6 55.4 51.2 1.45 - -

Table 2: Distributional Analysis Approaches and CCM: Evaluation on ATIS Corpus

by the constituency-parser are shown separately, with the latter settings distinguished by the suffix ’-

RE’. The Right-branching initialization works well as expected in both precision and recall, closely

followed by the Greedy-merge output used in the re-estimation step of EM.

(a) Unlabelled Precision (b) Unlabelled Recall

Figure 10: Greedy-merge and Constituency Parser: Evaluation on ATIS corpus - Figure from Klein
and Manning (2001a)

Turning specifically to the recall, the constituency parser consistently makes mistakes with VP

as it frequently combines subject with the verb below the object nouns thus leading to low recall

in all the settings except for right-branching initializer. For right-branching initializer, the linguistic

bias of placing the dependents after head words works well for English and this ensures that the

verb is first combined with the object before it is attached with the subject improving the VP recall

significantly.

Table (3) gives the results for several models that followed the period dominated by the ap-

proaches employing distributional analysis over linear contexts. To facilitate coherent discussion,

the results are grouped logically and show the results for both constituency and dependency parsing
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results using PARSEVAL and attachment accuracy metrics respectively. The baseline results in the

first group confirms the strength of right-branching baseline for constituency parsing. The undi-

rected accuracies of left and right-branching baselines are comparable, while the directed accuracy

is better for left branching. Because the sentences are smaller, many sentences do not have depen-

dents following the verb and this improves the directed accuracy for left-branching, which places

the head to the right of the dependents; for example the sentence head (verb) will take dependents

(subject noun) in the left and none in the right.

The grammatical bigrams (Paskin, 2001) uses a larger set of WSJ corpus (consisting of more

than 3.3 mn sentences from volumes 1 & 2 of TREC dataset) for training. Evaluation has been done

on a subset of WSJ corpus from the PTB showing undirected accuracy of 39.7% even below the

random baseline. The method links two words exhibiting higher mutual information between them,

without considering syntactic aspects, their relative positions and so on.

The Constituent-Context Model (CCM) discussed earlier is a generative model over trees fo-

cussing on producing a bracketing for the given sentences without labelling them. It outperforms

the right-branching baseline in the constituency parsing results for the WSJ10 dataset, as was seen

for the ATIS corpus. The DMV on the other hand is a complementary approach and works better

for dependency parsing. The joint model of DMV and CCM combines their strengths naturally

producing superior results for both types of parsing. The joint model was also evaluated on the

induced POS tags instead of the gold annotations for training to result slightly degraded perfor-

mance. Despite the slight reduction in the results, the experiments by Klein and Manning (2004) are

seen positive, because this is the first work demonstrating results for fully unsupervised grammar

induction.

Prototype-driven learning (Haghighi and Klein, 2006) uses three different experiments in evalu-

ating the approach. Firstly, it evaluates the strength of the proposed distributional prototype features

in inducing labels for the sequences. While the unlabelled F-score is better than the corresponding

baselines, it is still lesser than the CCM and the DMV. The weakness of the prototype-driven model

lies in its inability to identify the constituent sequences. In order to address this issue, the other two

experiments combines this approach with two different models for producing bracketing, viz. PTB

gold bracketing and CCM bracketing model.

The joint model with PTB gold bracketing gives oracular performance of 88.1 F-score figures

achievable when perfect bracketing information is available. The second joint model uses CCM to

bracket the corpus, instead of using gold bracketing and it results in significantly better performance

than the simple model using prototype features, and its F-score is also comparable with the CCM
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Model Recall Precision F-score Dir Undir
LBRANCH 32.6 25.6 28.7 33.6 56.7
RANDOM 39.4 31.0 34.7 30.1 45.6
RBRANCH 70.0 55.1 61.7 24.0 55.9
Grammatical Bigrams∗ - - - - 39.7
CCM 81.6 64.2 71.9 23.8 43.3
DMV 59.2 46.6 52.1 43.2 62.7
CCM + DMV (Gold POS) 88.0 69.3 77.6 47.5 64.5
CCM + DMV (Ind POS) 82.8 65.2 72.9 42.3 60.4
Proto 76.2 59.6 66.9 - -
Proto-Gold 100.0 78.8 88.1 - -
Proto + CCM 86.9 68.4 76.5 - -
Proto (Lab) 62.9 51.8 56.8 - -
Proto-Gold (Lab) 78.7 64.8 71.1 - -
Proto + CCM (Lab) 68.5 56.9 62.2 - -
UML-DOP - - 82.9 - -

Table 3: Results for PCFG and Dependency Attachment: Evaluation on WSJ10 Corpus

and joint CCM-DMV models. Haghighi and Klein also evaluate their model on labelled sequences

and the results are shown in Table (3). The Data-oriented parsing in the unsupervised setting results

in a significant 5% improvement in the F-score.

Tables (4) and (5) illustrate the results of several recent variations of the DMV. The former

includes the evaluation on WSJ10 dataset focussing on Contrastive Estimation (Smith and Eisner,

2005); EVG and L-EVG (Headden-III et al., 2009), while the latter table gives the results of the

DMV variations evaluated on different sets of WSJk covering logistic-normal (Cohen et al., 2008)

and shared LN (Cohen and Smith, 2009a) priors and the training regime variation (Spitkovsky et al.,

2010a). However, there are minor differences in the test sets or in the experimental setup, so these

may not be completely comparable. As an example, CE evaluates using the entire section 23 of

the WSJ corpus, whereas some models use WSJ10 dataset for evaluation. And, Cohen et al. (2008;

2009a) introduced the idea of separating the training (sections 1-21 of WSJ) and test (section 23)

phases, each using different datasets as in the parentheses, with an optional tuning phase (section

22); this was later adopted by others in experiments.

The results of the CE are shown for different neighbourhoods; with transposition (TRANS)
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Model Smoothing/ Prior Harmonic init Uniform/Random init
Dir. Acc. Iterations Dir. Acc. Iterations

EM (generative) no smoothing 35.2 64.1 23.6 63.3

CE (log-linear)
Nhood: LENGTH

σ2 = 0.1 42.9 150.5 32.4 101.1
σ2 = 1 42.9 260.5 33.6 177.0
no smoothing 42.3 195.2 33.7 173.1

CE (log-linear)
Nhood: TRANS

σ2 = 0.1 32.4 54.9 41.5 33.8
σ2 = 1 31.5 113.7 48.5 82.5
no smoothing 37.4 271.3 48.8 286.6

CE (log-linear)
Nhood: DELORTRANS

σ2 = 0.1 32.0 56.2 41.1 38.6
σ2 = 1 47.1 132.2 46.7 87.0
no smoothing 36.4 287.9 46.2 212.8

DMV no smoothing 46.9 - 55.7∗ -
DMV drop-head - - 61.2∗ -
EVG no smoothing - - 53.3∗ -
EVG drop-valence - - 62.1∗ -
EVG drop-head - - 65.0∗ -
L-EVG EVG drop-head - - 68.8∗ -

Table 4: Results for Dependency Attachment: Evaluation on WSJ10 Corpus

Model Prior Directed Accuracy
WSJ10 WSJ20 WSJ∞

DMV (VB-EM)∗ Log-Normal 59.4 45.9 40.5
DMV (VB-EM)∗ Shared LN 61.3 47.4 41.4
Babysteps (@15) - 55.5 44.3 39.2
Less is More (@15) - 56.2 48.2 44.1
Leapfrog (@15) - 57.1 48.7 45.0
Viterbi EM (smoothed, @45) - 65.3 53.8 47.9
TSG-DMV PYP 67.7 - 55.7

Table 5: Results for Dependency Attachment: Evaluation on WSJ{10,20,∞} of Section 23
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neighbourhood having the best performance. The Variational Bayesian models employing log-

normal and shared log-normal priors has accuracies (Table (5)) that are better than the CE, using

the harmonic initializer. In the case of shared log-normal priors, the result is shown for soft tying of

verbs and nouns. It would be interesting to see if tying more categories will be helpful, even though

this might be computationally expensive.

Varying the training regime involving the three approaches of Babysteps, Less is More, and

Leapfrog (Spitkovsky et al., 2010a) help the longer sentences more than the shorter ones (Table (5)).

This could be due to the separated training and test steps with the test step using the models trained

on larger WSJ set for evaluation. The TSG-DMV (Blunsom and Cohn, 2010) drastically improves

the attachment accuracy on the entire set of WSJ23 to 67.7% and is close to the 68.8% accuracy of

the L-EVG for WSJ10.

The effect of different initializers, viz. harmonic (a smart initializer that prefers closer attach-

ments than distant ones), uniform (initializes all the attachment weights to 0) and random (samples

from random distribution and then aggregates the best performing ones) is also shown in Table (4).

The findings are not conclusive as can be seen from the numbers favouring both harmonic (Klein

and Manning, 2004; Cohen et al., 2008; Spitkovsky et al., 2010a) and random9 (Headden-III et al.,

2009; Spitkovsky et al., 2010b) initializers. The lack of clarity about the strength of different ini-

tializers has also been confirmed by Smith and Eisner (2005), who demonstrate mixed results across

different neighbourhoods as shown in Table (4).

Interestingly, the EVG and L-EVG models by Headden-III et al. (2009), make a mean-field

assumption and employ several sets of initializers before averaging the best initializers from each

set. Clearly, a single random initializer may not perform to the same level as the averaged point

estimate and this probably explains the higher accuracy obtained by these models.

Smoothing the models is found to be helpful in some cases, while in others it affects the per-

formance negatively. For the case of Contrastive Estimation, significant variation in the accuracy

(5.9% and 15.1%) was observed for harmonic initializer with different smoothing levels - between

stronger smoothing (indicated by a a lower variance of σ2 = 0.1) to unsmoothed (σ2 = ∞). The

unsmoothed models suffered drop in the attachment accuracies to the tune of 15% apart from taking

longer time to converge. EVG and L-EVG employed different smoothing methods for its models

leading to improvements in the accuracy. In the case of EVG, valence slot information was found to

be more important than the head for predicting the arguments. Additionally, smoothing also helps

9indicated by ∗ in Table (4)
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the original DMV model, with drop-head smoothing improving the accuracy by a significant mar-

gin of 5.5%. Spitkovsky et al. (2010b) also demonstrate smoothing to be helpful for an approximate

Viterbi inference, achieving attachment accuracy better than the EVG model. And, it further shows

the smoothing to be harmful with an exact inference method using inside-outside re-estimation for

EM.

Yet another point of variation among these methods is the question of the parsing method.

Viterbi and Minimum Bayes Risk (MBR) are by far the two important methods used in the un-

supervised grammar induction. The results again vary in support of both Viterbi (Spitkovsky et al.,

2010a; Spitkovsky et al., 2010b) and MBR (Cohen et al., 2008) decoding, with Viterbi decoding

presently having the highest accuracy for WSJ10 for the L-EVG (Headden-III et al., 2009) model.

Specifically, the significant gain in the performance obtained by Spitkovsky et al. (2010b) can be

attributed to that fact that it uses same method (Viterbi) consistently for both training and prediction,

unlike the other methods that use exact inference (EM with inside-outside re-estimation) for training

and approximate decoding (Viterbi) during evaluation.

4.3 Results on Chinese and German

Table (6) illustrates the results obtained for Chinese and German, primarily by Klein and Man-

ning (2004), Haghighi and Klein (2006) and Cohen and Smith (2009a; 2009b). Experiments on

Chinese use the CTB10 dataset (consisting of 2437 sentences) from the Penn Chinese Treebank and

using the head finding rules similar to the head-percolation approach used for English. For the case

of German, NEGRA10 dataset from the larger NEGRA corpus, consisting also of the dependency

annotations has been used for the experiments.

Without getting into deeper analysis of these results, the most striking aspect can be noted by

comparing the performance of Chinese and German relative to that of English. Interestingly, these

approaches perform significantly worse for both Chinese and German grammar induction, than En-

glish. As an example, best directed dependency accuracies of 55.2% and 50.6%, respectively for

Chinese and German is considerably lesser than 68.6% for English. This indicates that the present

approaches must be augmented with different feature sets that are more appropriate for the language

in question.
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Model; prior Recall Precision F-score Dir Undir
Chinese

LBRANCH 48.8 26.3 34.2 30.2 43.9
RANDOM 50.7 27.3 35.5 35.9 47.3
RBRANCH 53.9 29.0 37.8 14.2 41.5
CCM 64.3 34.6 45.0 23.8 40.5
DMV 66.7 35.9 46.7 42.5 54.2
CCM + DMV 62.0 33.3 43.3 55.2 60.3
UML-DOP - - 47.2 - -
Proto + CCM - - 53.2 - -
Proto + CCM (Lab) - - 39.0 - -
DMV; LN - - - 50.1 -
DMV; Shared LN - - - 51.9 -
DMV- Mixtures (VERBASROOT) - - - 50.5 -
DMV- Mixtures (RA+VAR+SD) - - - 50.6 -

German
LBRANCH 48.8 27.4 35.1 32.6 51.2
RANDOM 49.6 27.9 35.7 21.8 41.5
RBRANCH 60.1 33.8 43.3 21.0 49.9
CCM 85.5 48.1 61.6 25.5 44.9
DMV 69.5 38.4 49.5 40.0 57.8
CCM + DMV 89.7 49.6 63.9 50.6 64.7
UML-DOP - - 67.0 - -

Table 6: Unsupervised Induction Results for Chinese and German
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4.4 Issues in Unsupervised Grammar Induction

Research on unsupervised natural language grammar induction has typically focussed on either

phrase structure representation or dependency grammars. While phrase structure grammars domi-

nated the research in the earlier stages, majority of the recent approaches use dependency grammars

for modelling the language. This subsection gives a brief, yet comprehensive summary of the issues

common to them, specifically relating to EM and also highlights the disparate issues.

4.4.1 Phrase-structure Grammars

Linguistically, the phrase structure grammar can be thought of as a model of language explaining

various constituents in a sentence, along with how these constituents are arranged hierarchically to

yield the sentence. The statistical approaches approximate this by using the word sequences - that

occur frequently more often than chance, to model the constituents, which are then combined by the

production rules of a grammar, maximizing the likelihood (or minimizing the cross-entropy) of the

observed corpus. Thus, statistical phrase structure modelling is aimed towards finding a grammar

that predicts the data well rather than explaining. Unsupervised grammar induction experiments

illustrated the lack of correlation between minimum entropy and an optimal grammar (Pereira and

Schabes, 1992), as also showing the weakness of the EM search space containing numerous local

optima (Carroll and Charniak, 1992; Charniak, 1994).

In a different experiment, de Marcken (1995) further demonstrated issues in the phrase-structure

search process using an augmented head-driven model. Analyzing the appropriateness of the inside-

outside algorithm for predicting the data, de Marcken experimented with a relatively small corpus

of 1000 sentences made up of three unique POS tags. By dynamically plotting the changes in the

parameters between successive iterations, he showed the inside-outside algorithm to be incapable

of performing actual search, because it simply prefers a grammar that concentrates the probability

mass on fewer rules.

de Marcken further showed the trade-off in handling the multiple ordered adjunction either by

having multiple rules rewriting the same non-terminal or by introducing additional non-terminals

separating the rules. While the former approach captures the syntactic relation between the words

better (the chain rules cover from the head to all its dependents), it suffers because the rule proba-

bilities are fragmented leading to lower overall sentence probability. On the other hand, the latter

approach with additional non-terminals assigns higher probability to the sentence at the cost of ig-

noring the relations between the head and its far-lying dependents.
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These findings illustrate the problems in unsupervised induction of phrase-structure grammars,

specifically when using EM. However, some of these also apply to approaches that use some heuris-

tic for identifying constituents by grouping common but unusual word sequences.

A key insight in understanding the shortcomings of the phrase-structure grammar is the dis-

continuous search space and closely coupled sentence derivation by an ordered series of rules (de

Marcken, 1995). de Marcken proposed flattening of the derivation using a simpler grammar that

independently captures the head-dependent relations, mostly ignoring the recursive relations in the

text. Interestingly, the later interest in the dependency grammars are in tune with these results.

4.4.2 Dependency Structures

Majority of the approaches in unsupervised dependency induction use projective dependency struc-

tures and also without any underlying grammar such as PCFG. The projective dependency captures

the relationship among the heads and their dependents in a sentence, such that there are no crossing

dependencies. While, the flat dependency structure does not provide useful syntactic information,

they are helpful in keeping the model simpler and induction easier. However, these dependency

models also suffer by the inherent issues of the EM algorithm used for inference.

Spitkovsky et al. (2010b) showed that the likelihood objectives and accuracy are detached from

each other for dependency induction. Using a toy corpus, they showed the per-token attachment

accuracies to be 40% and 50% for an MLE and a pseudo model10 respectively, thus highlighting the

disconnect.

Spitkovsky et al. further demonstrated - as one might expect from other learning settings, that the

cross-entropy and derivation probability based likelihood measures are ineffective in distinguishing

a supervised model θsup from a poor unsupervised model θ̃, as the latter model can score better on

likelihood objectives than the supervised one. Separately, Liang and Klein (2008) also showed the

issues with the objective functions in the EM setting for both PCFG and DMV, apart from studying

the data sparsity issues.

5 Evaluation Metrics

The widely used evaluation metrics of PARSEVAL and dependency attachment accuracy were ex-

plained in Section 4, while discussing the results of the different approaches. This section explains

10Psuedo model deterministically attaches a word to a head in the right or left
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some of the other metrics that were proposed for evaluating unsupervised grammar induction.

One of the simpler metric is to find the percentage of sentences that can be analyzed fully (with

at least one parse) in a given corpus, indicating its coverage for the specified corpus (Briscoe and

Carroll, 1995). The issue is that, coverage as a measure by itself, does not indicate the correctness of

the analysis for any of the sentences nor does it give any information about problematic constituents

so as to be able to improve the approach.

Structural consistency evaluates the goodness of a corpus as percentage of sentences analyzed

and additionally attempts to factor in the quality of the analyses in evaluation. It computes the

percentage of sentences in the parser output having one or more of its analyses structurally consistent

with the gold parse (Black et al., 1993), where the consistency is defined by the absence of crossing

brackets. This was later extended by Briscoe and Carroll (1995) to consider top-n analyses instead of

the Viterbi parse. It fails to give credit to almost correct analysis with minor issues and consequently

does not help in fine-grained (say constituent-level) error analysis.

The Parse Base (PB) metric introduced by Black et al. (1993) measures the average number

of ambiguous parses in the corpus after normalizing it by the sentence length. It assumes linear

correspondence between the sentence length and the number of parses (longer the sentences, more

ambiguous they are, leading to more parses). This was improved later leading to Average Parse

Base (APB), where the correspondence is assumed to be exponential (Briscoe and Carroll, 1995).

Though, this allows the comparison of two or more competing approaches using the same corpus,

it fails to distinguish approaches based on coverage. Thus an approach resulting in a low-coverage

grammar might score better in this metric than a high-coverage grammar.

Entropy or Perplexity of a corpus is a well known measure to study the unpredictability and

ambiguity in the language, with lower entropy/perplexity indicating higher regularity. Thus the

probabilistic grammar can be used to generate a number of sentences whose entropy can then be

compared with that of a corpus to provide a model independent measure of the regularity of the

resulting grammar. While this captures the regularity of the language generated by the grammar,

this does not measure the goodness of the parses produced by the grammar.

Moving away from the string-based approaches, several types of tree-based similarity measures

have been proposed to allow a finer degree if evaluation (Sampson et al., 1990). The percentage

of rules correctly used in a parser derivation (that are found in the gold parse) from the total rules

used in the derivation is a well known tree similarity measure. Thus, the tree similarity is tolerant

to the errors in the gold annotations. An important drawback is that the numbers do not distinguish

between the degree of errors in unmatched rules.
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The well-known PARSEVAL metric also known as GEIG (Grammar Evaluation Interest Group)

for evaluating parsers computes precision and recall measure using the matching constituents (brack-

ets) between a parser derivation and gold parse. This only requires bracketing annotation in the test

corpus and hence allows comparison of different parsers based on dissimilar grammar frameworks

on the same footing. It further captures relatively fine-grained information and is also less sensitive

to the errors in annotation (the errors are localized). Because of these reasons, this continues to be

used widely despite several criticisms against the metric.

Some of the notable critiques against the PARSEVAL are covered in Lin (1995); Carroll and

Briscoe (1996) and Manning and Carpenter (1997), which range from a single deep attachment

error being heavily penalized (due to the large number of brackets affected) as opposed to an error

occurring at a higher level to lack of correspondence between high constituent boundary correctness

score and semantic inference. Additionally, there are systematic differences between the annotation

schema used the treebanks and the induced grammar. As a result PARSEVAL penalizes the gram-

mars for producing deeper structures than found in the treebank trees, which tend to be flat (Srinivas

et al., 1995).

Lin (1995) proposed evaluation based on dependency relationships between the parse output

and manual parse by computing the precision and recall for dependency links. If the parse output or

the test corpus uses phrase structure representation, they are first converted to dependency analysis

automatically with each dependency link capturing the relationship type. This is not without issues;

the most important being the loss resulting from the phrase structure to dependency analysis con-

version. However, this approach works for grammars using both phrase structure and dependency

formalisms, covering majority of the parsers.

Carroll and Charniak (1998) present a detailed survey of different parser evaluation techniques

and also present a new evaluation scheme using the syntactic dependency between a head and a de-

pendent. These syntactic dependencies are called grammatical relations (GR) and different types of

GR are hierarchically arranged for one or a group of similar languages. The evaluation scheme relies

on a parser identifying the heads of different constituents and their relations with the dependents (ar-

guments or modifier or further subtypes). The parser is expected to identify the specific relationship

in the hierarchy as far as possible and is allowed to generalize to a higher-level relationship in the

hierarchy in case of ambiguity. The evaluation is then done by computing the recall and precision

scores over the GRs between the gold data and parser output. While this has commonalities with

Lin (1995), there are several differences as well. Importantly, a GR analysis does not correspond to

a strict dependency tree (as two or more heads can modify a single dependent) and GR also captures
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the semantic arguments that are syntactically realized. And finally, a lexical argument that is not

realized at surface level (as in subject pro-drop) can be recorded by the GR.

6 Grammar Induction in Multilingual setting

Multilingual language modelling can take different forms when applied in different contexts such as

inducing word and/or phrase alignments, synchronous parsing etc. In the case of alignments mul-

tilingual modelling capture the word or phrase level correspondences in the sentence pairs and in

the case of synchronous parsing, it refers to the simultaneous generation or recognition of correlated

sentences. Interestingly these tasks are also directly useful for an important application in NLP, Sta-

tistical Machine Translation (SMT). This section presents a brief summary of the works focussing

on bilingual/multilingual language modelling, specifically pertaining to synchronous grammar in-

duction mostly targeted for SMT.

Inversion Transduction Grammar (ITG) proposed by Wu (1997) generalizes the transduction

grammars that describes correlated language pairs simultaneously, by allowing inverted ordering of

the constituents between source and target languages. While the traditional transduction grammars

allows rules of the form Ai → BsCs, BtCt (denoted by A → [BC]), ITG allows the target non-

terminals to be inverted resulting in Ai → BsCs, CtBt (denoted by A → 〈BC〉). This makes the

ITG bit more flexible and allows it to model structurally-related languages by imposing identical

grammatical structure on both source and target sides, but fails to model linguistically divergent

languages. A Stochastic ITG version can be obtained by adding probabilities to the individual

productions and this stochastic framework lends itself for finding the optimal parse of a sentence-

pair using dynamic programming (Wu, 1997).

Among other applications, Wu demonstrate that ITG can be used for identifying the constituents

from parallel sentences. This is achieved by using a single non-terminal symbol X and rewriting

recursively to generate either a pair of non-terminals or terminal symbols also allowing singleton

terminals which does not have equivalents in the other language along with corresponding probabil-

ities. The lexical translation probabilities (generating a terminal pair) is learned through an align-

ment model, while the probabilities for other rule types are fixed at a small value. Now, running

a maximum-likelihood parser selects the parse tree whose constituents have best lexical translation

probabilities. Additional post-processing is then applied to find longer constituents.

While, ITG provides a formal handle for a restrictive synchronous grammar, hierarchical phrase-

based translation (Chiang, 2007) uses a more powerful Synchronous Context-Free Grammars (SCFG)
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formalism for learning hierarchical phrase pairs from aligned bitext. Beginning from the conven-

tional phrase alignments as building blocks, it incrementally identifies hierarchical rules embedding

sub-phrases, whose probabilities are then learned using relative frequency estimation. The proce-

dure is repeated for learning longer hierarchical rules until no further rules can be learned as defined

by a set of constraints. It can be efficiently parsed by using a variant of CKY parsing and further

speedup can be achieved by using Cube-pruning (Huang and Chiang, 2005). In contrast to the

rigid inverse reordering allowed by ITG, hierarchical rules in SCFG allow arbitrary reordering of

the constituents having a mix of terminals and non-terminals. Because of this and due to heavy

lexicalization the space of possible productions is combinatorially huge, making the hierarchical

phrase-structure model to be well-suited for SMT.

ITG and hierarchical phrase-based system both have their own advantages as also their short-

comings. Merging the best elements from both approaches, a generative version of SCFG induction

using MLE (Blunsom et al., 2008), proposes to generate multiple non-terminal categories like the

former at the same time using a powerful SCFG model similar to the latter. The SCFG rules of this

model is somewhat restricted and rewrites either a pair of non-terminals (with possibility to re-order)

or emits a pair of terminal symbols. The generative process starts from selecting a non-terminal sym-

bol and then iteratively rewriting the two child non-terminals (if available), until no non-terminals

remain. It uses a hierarchical Dirichlet prior to model different rule types. Using mean-field approx-

imation for inference, it shows an experiment to successfully recover a toy grammar by induction as

also its applicability in SMT.

Exploiting different cues from bitext in improving the monolingual tasks such as POS tagging

and supervised parsing, has gained attention in recent times. All these approaches are motivated

by the premise that, sentence-pair fragments in a bitext can surely be expected to exhibit identical

syntactic constructs, despite the syntactic divergences between the corresponding languages.

Kuhn (2004) exploited the availability of bitext word alignments to improve monolingual parsing

performance. A constituent in one language will generally remain so in another language, even if

it is syntactically expressed as a different type. Thus, given a contiguous sequence of words in

source language aligned to a set of target words that are separated by a wide margin, the source

language sequence can be hypothesized to be a destituent. Kuhn uses this alignment dissipation in

the bitext to identify destituent spans in monolingual texts by defining a set of constraints for the

destituents, which are then used as additional weighting factors for the EM so as to complement the

positive evidence observed through rule counts during the inside-outside re-estimation. While, this

drastically improves over the right-branching baseline and traditional EM (for English), it still lags
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behind the CCM (Klein and Manning, 2002).

Snyder et al. (Snyder et al., 2009) use a similar approach to improve monolingual constituency

parsing by exploiting the bilingual cues in the parallel data in an entirely unsupervised setting. The

idea is to propagate evidence from the unambiguous parallel sentence in one language to learn the

structure of an ambiguous sentence in the other language. It uses a generative Bayesian model,

to generate a sentence pair starting from an alignment tree whose nodes might correspond either

to monolingual or aligned bilingual constituents. This alignment tree enables the model to capture

the linguistic divergences and similarities at monolingual and aligned nodes respectively. The model

then generates isolated or pair of POS tags for the nodes by sampling from corresponding probability

distributions before generating the word alignments. The sentence pair is finally generated from the

POS tags and word-alignments. Using MCMC for inference, the approach is shown to improve over

the CCM (Klein and Manning, 2002) model.

The soft parameter tying (Cohen and Smith, 2009a) discussed earlier in monolingual setting is

another example for bootstrapping unsupervised induction for one language by evidence from the

other, even while using non-parallel corpora. It ties the parameters of the hidden grammar for two

languages and learns the grammars jointly, which are then tested separately on the corresponding

monolingual data. This approach of cross-tying parameters yielded 0.8% increase in the attachment

accuracy for English, while marginally increasing the accuracy for Chinese.

7 Conclusion

The report presented the different approaches in unsupervised grammar induction that broadly fall

into two types of search, viz. parametric and structural. Majority of the approaches use Expectation-

Maximization (EM) algorithm or its variant to estimate the grammar parameters iteratively by max-

imizing the likelihood of the data and internally using inside-outside or another similar procedure

for re-estimating the counts of the events occurring in the grammar.

The earliest approaches using EM for inducing constituency structures are generally shown to

be poor choices for modelling the languages, as they attempt to model both constituent identification

and labelling tasks simultaneously, and is also shown to be deficient due to the natural disconnect

between their maximum likelihood objective and an optimal grammar. In contrast, most of the

successful approaches in recent times, beginning from the DMV (Klein and Manning, 2004) use

a simplified dependency formalism involving the head-argument relationships between the words

in a sentence. However, despite their apparent success the syntactic value of such dependency
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trees is well below that of the phrase structure trees. The most recent EVG, L-EVG and TSG-

DMV approaches combine the simplicity of dependency formalism with the power of a PCFG by

imposing a context-free or tree-substitution grammar over the classic DMV to yield state-of-the-art

performances.

While the current models are being used for both monolingual parsing and for SMT in a bilingual

setting, they are yet to match their counterparts that use some form of supervision. The difference

in the parsing performance between supervised and unsupervised approaches is more pronounced in

the monolingual setting than in the bilingual setting.

In terms of scalability of the different approaches, recent methods in monolingual induction are

shown to be robust and are able to parse longer and complex sentences at test time. However, the

complexity of the training routines in these approaches make it expensive to train on sentences of

unrestricted length due to a higher level of ambiguity in them and as a result, majority of them still

use the simpler WSJ10 data for training.

7.1 Future Directions

The pipeline for unsupervised grammar induction actually start from human-annotated Parts-of-

Speech (POS) tags. Thus the applicability of these approaches to resource-poor languages that

do not have annotated lexical resources including POS tagged corpus and treebanks is very weak.

Though the state-of-the-art unsupervised POS induction accuracy has reached over 90% for several

POS categories (Schütze, 1995), the methods employing the induced tags report a drastic drop in the

F1 score by 5% and more, indicating the grammar induction approaches to be sensitive to the errors

in the POS tags. One of the possible future directions could thus focus on addressing this issue.

Secondly apart from being restricted to 10 word sentences, majority of them are trained and

evaluated on sentences after stripping the punctuations and symbols off, because the PARSEVAL

metric does not include them in evaluation. However, the punctuations have been shown to be

useful in the context of supervised dependency parsing (Collins, 1999). It would thus be interesting

to see if they can help in unsupervised setting and also to study the models’ sensitivity to the noise

introduced by their unscrupulous usage in texts. Specifically, it might be possible to exploit non-

word symbols and punctuations to identify constituent boundaries or the valence information by

adding some features or well-defined heuristics.

While models based on different grammar formalisms capture certain distinct syntactic aspects

well, they fail to model some other aspects as was discussed in Section 4.4. In this respect, the recent
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EVG, L-EVG (Headden-III et al., 2009) and TSG-DMV (Blunsom et al., 2008) models combine

both CFG and DMV to exploit their complementary strengths. A challenging goal would be to

explore the possibility of additionally identifying constituent sequences and categorizing them based

on syntactic types as in the phrase-structure representation.

Finally, research on unsupervised grammar induction is largely restricted to English, though

there is a minor interest in other high-density languages such as Chinese and German. The charac-

teristics of the languages bring in unique requirements for modelling. As an example the morpho-

logically complex languages often tend to be configurable (allowing free word-order) and possibly

allowing crossing structures. In such languages the morphological information expressed in the

surface sentence could additionally be exploited in the modelling. It is not clear, if the current

approaches will be as effective in these unexplored languages, as it is in English.

The margin of difference in the results between English and other minimally explored languages

is clearly evident in the results; for example the best F1 score in phrase structure induction drops

to 53.2 and 67 for Chinese and German respectively from 76.5 for English. Clearly, the current

approaches need to be better adapted for other languages by using either different feature sets or

different grammar formalisms.
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A Notations Used

Note: Notations having more than one usage are either explicitly clarified as required in the text or

will be clear in the context of their usage.

B : Bracketing distribution

B : Bracketing of a sentence as observed in annotated data

bijk : Binary rule Xi → XjXk

C : Corpus used

D.. : Divergence measure with the subscript indicating its type- JS, KL etc.

D : Also, a single Dependency structure

D : Set of Dependency structures

G : Symbolic or probabilistic grammar

G : Graph- dependency or other

H(.) : Entropy of certain sequence in the argument

Ioi (.) : Inside probability of a node rooted by Xi and spanning over a pair of indices

specified in the argument of o

Ioi (.) : Outside probability of generating Xi in a span (specified in the argument) along with

with rest of the terminal symbols in o

N : Neighbourhood in Contrastive Estimation; Also sets of non-terminal equivalence classes

in EVG and L-EVG

P (.) : Probability distrituion

p(.) : Probability specific to a model

qn1 : An observed sentence of length n

R : Productions in G

r, s, t : Span indices in a given observation sequenceo

S : Total sentences in corpus C

t : A specific tree, such that t ∈ T

T : Parts-of-Speech tags or the set of terminals in the grammar

T : Set of trees corresponding to a corpus
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uim : Unary rule Xi → o(m)

wqijk(.) : Count of the rule Xi → XjXk appearing in different parses of a sentence q

for the specified span

vqim(.) : Count of the rule Xi → q(m) appearing in different parses of a sentence q

for the specified span

X : Non-terminals set, also the number of non-terminals

Xi : Non-terminal symbol of type i

X(α) : Non-terminal type of sequence α

α, β : Terminal sequences of some span (aka yields), typically POS tags are considered as

terminals

σ(.) : Signature of a terminal sequence in the argument, typically the adjacent tags or the

boundary on either sides

Σ : Terminal symbols set, also indicates the number of terminals

Θ : Parameters of a model
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