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One motivation for Universal Grammar (UG) comes from the existence of induction

problems in language acquisition, and their solutions. Previous induction problem charac-

terizations have typically assumed that only direct evidence is relevant; however, INDIRECT

positive evidence may also be useful. We examine the case study of English anaphoric

one and investigate whether a probabilistic learner using indirect positive evidence can

solve this induction problem. We find that this learner, given realistic input, can reproduce

child anaphoric one behavior thought to indicate the induction problem had been solved.

Surprisingly, however, this behavior can be generated even when a non-adult representation

underlies it. This suggests that the previous characterization of the anaphoric one induction

problem may need to be updated, as the link between observable behavior and underlying

knowledge is not straightforward. We also discuss the nature of the learning biases leading

to this result, and how this impacts the larger debate about the motivation for UG and its

contents.

1. UNIVERSAL GRAMMAR: MAKING AN ARGUMENT FROM ACQUISITION

One explicit motivation for Universal Grammar (UG) comes from an ARGUMENT

FROM ACQUISITION: UG allows children to acquire language knowledge as

effectively and rapidly as they do (Chomsky 1980a, Crain 1991, Hornstein &

Lightfoot 1981, Lightfoot 1982b, Legate & Yang 2002). In particular, UG is

meant to be one or more learning biases that are part of our biological endowment
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(INNATE) and are only used for learning language (DOMAIN-SPECIFIC). These

learning biases allow children to solve induction problems, where the available

data appear to be compatible with multiple hypotheses about the generalizations

for the language.1 Thus, this motivation for the existence of UG comes directly

from the existence of induction problems. Proposals for the contents of UG have

traditionally come from characterizing a specific induction problem pertaining

to a particular linguistic phenomenon, and describing the (UG) solution to that

specific characterization (e.g., structure-dependent rules to relate the declarative

and interrogative forms of utterances (Chomsky 1980a), the structure of English

anaphoric one in certain utterances (Baker 1978), and constraints on long-distance

dependencies (e.g. Chomsky 1973)). A specific characterization of an induction

problem not only makes it possible to precisely describe a potential solution, but

also to explicitly test that solution and compare it to other potential solutions.

When the solutions all involve UG biases, this both supports the existence of UG

and provides specific proposals for its contents. In contrast, if some solutions do

not involve UG biases, this takes away the support for UG that comes from that

characterization of the induction problem.

Our goal in this article is to characterize the induction problem for learning

English anaphoric one, as it has been used to motivate both the existence and

contents of UG, and subsequently describe and test a potential solution that draws

on a type of evidence not previously used for this induction problem (INDIRECT

POSITIVE EVIDENCE, discussed below in section 1.2). Our methodology is

straightforward. We first characterize the induction problem by drawing on

theoretical and experimental work that describes the knowledge to be attained

and the observed behavior of young children demonstrating their knowledge.

Then, we describe the evidence available in the input that children can use to

learn the required knowledge. We subsequently discuss several proposed solutions

to this induction problem, including a new proposal that uses indirect positive

evidence. We embed each of these solutions in a probabilistic learning model in

order to test their effectiveness, and demonstrate their ability to reproduce the
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observed child behavior under certain conditions. The results suggest a somewhat

nuanced picture, however: In particular, it is possible to produce the observed

child behavior without having the adult representation of anaphoric one. This

suggests the induction problem surrounding anaphoric one likely needs to be

redefined to allow for a longer learning period, and is a general cautionary note

about the non-trivial relationship between underlying knowledge and observed

behavior. Nonetheless, computational modeling results based on realistic input

allow us to make progress on the debate surrounding UG by providing a formal

mechanism for exploring whether learning strategies can solve apparent induction

problems (or at the very least, generate observed behavior). We are then able to

compare the types of biases required by each successful strategy, consider whether

any are UG, and compare precisely what kinds of UG biases each successful

strategy motivates if UG biases are indeed involved.

1.1 Characterizing induction problems

Since the characterization of an induction problem is crucial for providing support

to UG and making concrete proposals about its contents, how are induction

problems characterized? We believe an induction problem involves at least the

following parts: the initial state, the data intake, the learning period, and the target

state.

The INITIAL STATE includes both the initial knowledge state and the existing

learning capabilities and biases of the learner at that time. The initial knowledge

can be defined by specifying what children already know by the time they

are trying to learn the specific linguistic knowledge in question. This can be

stipulated – for example, we might assume that children already know there are

different grammatical categories before they learn the syntactic representation of

some item in the language. However, this may also be assessed by experimental

methods that can tell us what knowledge children seem to have at a particular

point in development – for example, do they behave as if they have grammatical
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categories? Similarly, experimental methods can also be used to assess what

learning capabilities and biases children have, such as whether they can track

distributional information in the input and what information they are sensitive to.

The DATA INTAKE for an induction problem refers to the available input

children use to learn from (Fodor 1998). This is defined by the assumptions

and biases the learner has in the initial state. For example, if children assume

only syntactic information is relevant, they may ignore semantic cues that might

otherwise be useful. Once the information children use is defined, corpus analysis

methods can provide realistic estimates of the input children get.

The LEARNING PERIOD defines how long children have to reach the target

state. Experimental methods can provide this information, usually by assessing

the knowledge children have at a particular age, as demonstrated by their behavior.

Often in computational studies, the learning period is implemented as children

receiving a specific amount of data, which is the amount they would encounter

during the learning period. After that quantity of data, they should then reach the

target knowledge state.

The TARGET STATE defines what knowledge children are trying to attain.

Theoretical methods will specify this knowledge, and the particular representation

it has. Notably, there may be different specifications, depending on the theoretical

framework assumed. Sometimes, these different specifications are equivalent for

the purposes of the induction problem. For example, determining which of two

syntactic categories is the correct one for a particular item may be common to two

frameworks, even if the two frameworks involve different labels for the syntactic

category options.

An induction problem can then be characterized using these four components:

Given a specific initial state, data intake, and learning period, an induction

problem occurs when the specified target state is not the only knowledge state that

could be reached. Clearly, there can be different characterizations of an induction

problem pertaining to the same linguistic phenomenon, because there may be

differences in any one of these components. Thus, it is important to investigate the
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specific characterization that has been used to motivate a given UG learning bias.

Notably, the initial state can be affected by the learning strategy used; for example,

the learning strategy may involve particular biases about the data relevant for

learning. Since these aspects of the initial state are often stipulated, what looks

like an induction problem with one characterization of the initial state may not be

an induction problem with a different characterization. Relatedly, it is also useful

to ask whether a particular learning strategy will work for different induction

problem characterizations; to the extent that it does, this is stronger support for

that learning strategy and the learning biases that comprise it.

1.2 The direct evidence assumption

Previous characterizations of induction problems motivating UG have tended to

include a particular assumption in the initial state of the learner: the DIRECT

EVIDENCE assumption. The basic intuition of the direct evidence assumption is

that in order to learn some linguistic knowledge L, children learn from examples

of L in the linguistic input (DIRECT POSITIVE EVIDENCE). It is also possible that

a learner, particularly a statistical learner, can be sensitive to INDIRECT NEGATIVE

EVIDENCE related to the directly informative data, and so will notice what direct

evidence examples are missing from the input.

For example, when learning how to form complex yes/no questions in English,

children would pay attention to examples of complex yes/no questions like (1a)

and potentially notice the absence of ungrammatical complex yes/no questions

like (1b).

(1) Complex yes/no question examples

(a) Is the boy who is in the corner wis happy?

(b) *Is the boy who wis in the corner is happy?2

When learning the representation of anaphoric one in English, children would

pay attention to examples of one being used anaphorically (2a) and potentially

notice the absence of ungrammatical uses of one like (2b).

5



L. PEARL & B. MIS

(2) Anaphoric one examples

(a) Look – a red bottle. Oh, look – another one.

(b) *She sat by the side of the river, and he sat by the one of the road.

When learning to form complex wh-questions in English, children would pay

attention to examples of complex wh-questions in English (3a-c) and potentially

notice the absence of ungrammatical examples like (3d).

(3) Complex wh-question examples

(a) Who wwho thinks the necklace is expensive?

(b) What does Jack think wwhat is expensive?

(c) Who wwho thinks the necklace for Lily is expensive?

(d) *Who does Jack think the necklace for wwho is expensive?

However, another kind of data that could be informative to children is INDI-

RECT POSITIVE EVIDENCE. This refers to observable data that may not be

directly informative for the linguistic knowledge in question, but can nonetheless

be informative if viewed the correct way by children (for example, due to their

learning biases in the initial state). In particular, if the initial state includes

knowledge of what counts as indirect positive evidence, the induction problem

can now be characterized differently and may be solvable using different learning

strategies than the ones previously proposed.3 Recently, some computational

modeling studies have been exploring the utility of indirect positive evidence

for different induction problems (Reali & Christiansen 2005, Kam et al. 2008,

Foraker et al. 2009, Perfors et al. 2011, Pearl & Sprouse in press). We follow this

promising approach here.

1.3 Case study: English anaphoric one

A specific characterization of an induction problem concerning English anaphoric

one (from example (2) above) has received considerable recent attention (e.g.,

Pullum & Scholz (2002), Lidz et al. (2003), Akhtar et al. (2004), Regier & Gahl
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(2004), Tomasello (2004), Lidz & Waxman (2004), Pearl (2007), Foraker et al.

(2009), Pearl & Lidz (2009), among others). Computational modeling studies

have examined this characterization and investigated learning strategies that alter

the initial state of the learner in various ways affecting the data intake, while

keeping the learning period and target state the same (Regier & Gahl 2004,

Pearl & Lidz 2009). More specifically, each study has broadened the set of

direct positive evidence a learner could use. In the current study, we investigate a

learning strategy that broadens it further to include indirect positive evidence.

The rest of this paper is organized as follows. Section 2 briefly reviews the

characterization of the induction problem under consideration, including the adult

knowledge indicative of the target state and the child behavior thought to specify

the learning period. Section 3 highlights why anaphoric one has been considered

an induction problem, given the available direct evidence used for the data

intake. Section 4 reviews previous proposals for learning strategies that solve this

induction problem, and describes a new learning strategy that additionally uses

indirect positive evidence. Section 5 reviews the different kinds of information

that are available when understanding referential pronoun data points and presents

an online probabilistic learning framework adapted from Pearl & Lidz (2009)

that we use to compare the different learning strategies. We show in section 6

that a learner using the indirect positive evidence strategy reproduces the child

behavior associated with correct knowledge of one. Surprisingly, this learning

strategy leads to a different knowledge state than the target state, even though

it produces the behavior thought to implicate the target state. This suggests that

the link between observed behavior, interpretation, and knowledge representation

may not be as transparent as once thought. In particular, very young children may

not have the adult representation for one, and so the learning period characterizing

this induction problem should actually be longer. In addition, we replicate results

found with the previously proposed learning strategies, which suggests that it is

the learner’s view of the data intake that yields the new results we find, rather than

simply something about the specific probabilistic learning framework chosen.
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Section 7 discusses the nature of the learning biases comprising this learner’s

strategy, and more generally what children require in order to solve this induction

problem for anaphoric one. Section 7 also discusses alternate learning strategies

and alternate characterizations of the induction problem that alter the target state

and/or the initial state. Section 8 concludes with how these results impact the

larger debate about the contents of UG.

2. CHARACTERIZING THE ANAPHORIC ONE INDUCTION PROBLEM

While knowledge of one clearly goes beyond being able to correctly interpret

examples like (2a) and recognize the ungrammaticality of (2b), the specific issue

of representation for one in those cases has often been cited as an example

of an induction problem for language acquisition (Baker 1978, Hornstein &

Lightfoot 1981, Lightfoot 1982a, 1989, Crain 1991, Ramsey & Stich 1991). More

specifically, adult knowledge has been characterized as involving both a syntactic

and semantic component. An example is shown in (4).

(4) Situation: Two red bottles are present.

Utterance: Look – a red bottle! Oh, look – another one!

Default interpretation of one:

syntactic antecedent of one = red bottle

semantic referent of one = RED BOTTLE

In order to interpret an utterance like (4), the listener must first identify

the linguistic antecedent of one, i.e., what previously mentioned string one is

effectively standing in for. This is the syntactic component. In (4), adults generally

interpret one’s antecedent as red bottle, so the utterance is equivalent to Look – a

red bottle! Oh, look – another red bottle!.4 Then, the listener uses this antecedent

to identify the referent of one, e.g., what thing in the world one is referring to,

and what properties that referent has. This is the semantic component. Given

the antecedent red bottle, adults interpret the referent of one as a bottle that is

red (RED BOTTLE), as opposed to just any bottle (BOTTLE). That is, the one the
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speaker is referring to is a bottle that specifically has the property RED and this

utterance would sound somewhat strange if the speaker actually was referring to

a purple bottle.

An influential theoretical framework posits that the string red bottle has the

structure in (5), while a red bottle has the structure in (6) (Chomsky 1970,

Jackendoff 1977). The bracket notation corresponds to the syntactic phrase

structure tree in Figure 1.

(5) [N ′ red [N ′ [N0 bottle]]

(6) [NP a [N ′ red [N ′ [N0 bottle]]]

!!!!"#$"#$

!%!%

&&
!!''

()$$*#()$$*#

!!!!!"#"$%&'"$!"#"$%&'"$

!%!%

&&
(!)"*#&+"(!)"*#&+"

+#"+#"

!!!!

!!''

()$$*#()$$*#

Figure 1
Phrase structure tree corresponding to the bracket notation in examples (5) and (6).

The syntactic category N0 can only contain noun strings (e.g., bottle), and the

category NP contains any noun phrase (e.g., a bottle, a red bottle). The syntactic

category N′ is larger than N0 but smaller than NP, and can contain both noun

strings (e.g., bottle) and noun+modifier strings (e.g., red bottle). Note that the

noun-only string bottle can be labeled both as syntactic category N′ (7a) and

syntactic category N0 (7b) (this also can be seen in Figure 1, where bottle projects

to both N0 and N′).5

(7a) [N ′ [N0 bottle]]

(7b) [N0 bottle]
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This theoretical framework also posits that an anaphoric element (like one) can

only have a linguistic antecedent of the same syntactic category as the element

itself. Since one’s antecedent can be red bottle, then one should be category N′.

Notably, if the syntactic category of one were instead N0, one could not have red

bottle as its antecedent; instead, it could only have noun-only strings like bottle,

and we would interpret (4) as Look – a red bottle! Oh, look – another bottle! In

that case, adults should be perfectly happy to have one’s referent be a purple

bottle. Since adults do not have this as the default interpretation in (4) and instead

prefer one’s antecedent to be red bottle (and its referent to be a RED BOTTLE),

one’s syntactic category must be N′ here.

One way to represent adult knowledge of the default interpretation of one for

data like (4) is as in (8). On the syntax side, the syntactic category of one is N′

and so one’s antecedent is also N′. On the semantic side, the property mentioned

in the potential antecedent (e.g., red) is important for the referent to have. This

has a syntactic implication for one’s antecedent: The antecedent is the larger N′

that includes the modifier (e.g., red bottle, rather than bottle).

(8) Adult anaphoric one knowledge in utterances like

Look – a red bottle! Do you see another one?

(a) Syntactic structure: category N′

(b) Semantic referent and antecedent: The mentioned property (red) in the

potential antecedent is relevant for determining the referent of one. So,

one’s antecedent is [N ′ red [N ′ [N0 bottle]]] rather than [N ′ [N0 bottle]].

Behavioral evidence from Lidz et al. (2003) (henceforth LWF) suggests that

18-month-olds also have this same interpretation for utterances like (4).6 Using

an intermodal preferential looking paradigm (Spelke 1979, Golinkoff et al. 1987),

LWF examined the looking behavior of 18-month-olds when hearing an utterance

like Look, a red bottle! Now look – do you see another one?. The 18-month-

olds demonstrated a significant preference for looking at the bottle that was red

(as compared to a bottle that was some other color), just as adults would do.7
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LWF interpreted this to mean that by 18 months, children have acquired the

same representation for anaphoric one that adults have. This specifies the learning

period for anaphoric one.

In terms of the learner’s initial state, the original proposal by Baker (1978)

(henceforth, Baker) assumed that only direct evidence was relevant, and that

only unambiguous data were informative. LWF’s corpus analysis of child-directed

speech samples (as well as our own corpus analysis, discussed in section 5.2.2)

verified that these data were indeed too sparse to reach that target state given such

a short learning period. In particular, LWF found that a mere 0.25% of child-

directed anaphoric one utterances were unambiguous data, which is far below

what theory-neutral estimates would suggest is necessary for acquisition by 18

months (Yang 2004, 2011). More strikingly, our own corpus analysis found NO

examples of these kind of unambiguous data.

The induction problem for anaphoric one8 can then be characterized as follows,

and appears very real indeed.

(i) INITIAL STATE:

Knowledge: Syntactic categories exist, in particular N0, N′, and NP.

Knowledge: Anaphoric elements like one take linguistic antecedents of the

same category.

Bias: Only direct evidence of one is useful.

Bias: Only unambiguous evidence of one is useful.

(ii) DATA INTAKE (following biases in initial state):

All unambiguous one evidence in the input.

(iii) LEARNING PERIOD:

Completed by 18 months.

(iv) TARGET STATE:

Knowledge: In utterances like the example in (4), one is category N′ and

its linguistic antecedent includes the modifier.

11



L. PEARL & B. MIS

3. THE DIRECT EVIDENCE

Unambiguous data using anaphoric one like (9) are very rare because they require

a specific conjunction of situation and utterance.

(9) Unambiguous (UNAMB) data example

Situation: Both a red bottle and a purple bottle are present.

Utterance: Look – a red bottle! There isn’t another one here, though.

In (9), if the child mistakenly believes the referent is just a BOTTLE, then the

antecedent of one is bottle – and it’s surprising that the speaker would claim there

isn’t another bottle here, since another bottle is clearly present. Thus, in order to

make sense of this data point, it must be that the referent is a RED BOTTLE. Since

there isn’t another red bottle present, the utterance is then a reasonable thing to

say. The corresponding syntactic antecedent is red bottle, which has the syntactic

structure [N ′ red [N ′ [N0 bottle]]] and indicates one’s category is N′.

There are other one data available, but they are ambiguous in various ways.

Many one data are ambiguous with respect the syntactic category of one (10),

even if children already know that the choice is between N′ and N0.

(10) Syntactic (SYN) ambiguity example

Situation: There are two bottles present.

Utterance: Look, a bottle! Oh look – another one!

Syn ambiguous data like (10) do not clearly indicate the category of one, even

though the referent is clear. In (10), the referent must be a BOTTLE since the

antecedent can only be bottle. But, is the syntactic structure [N ′ [N0 bottle]] or

just [N0 bottle]? Notably, if the child held the mistaken hypothesis that one was

category N0, this data point would not conflict with that hypothesis since it is

compatible with the antecedent being [N0 bottle].

As we saw in Figure 1, sometimes there is also more than one N′ antecedent to

choose from (e.g., red bottle: [N ′ red [N ′ [N0 bottle]]] vs. bottle: [N ′ [N0 bottle]]).
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In these cases, there is also ambiguity with respect to the referent (e.g., a RED

BOTTLE vs. any BOTTLE), as shown in (11).

(11) Semantic and Syntactic (SEM-SYN) ambiguity example

Situation: There are two red bottles present.

Utterance: Look, a red bottle! Oh look – another one!

Sem-Syn ambiguous data like (11) are unclear about both the properties of the

referent and the category of one. In (11), if the child held the mistaken hypothesis

that the referent must simply be a BOTTLE (unlike the adult interpretation of a RED

BOTTLE), this would not be disproven by this data point – there is in fact another

bottle present. That it happens to be a red bottle would be viewed as merely

a coincidence. The alternative hypothesis is that the referent is a RED BOTTLE

(this is the adult interpretation), and so it’s important that the other bottle present

have the property red. Since both these options for referent are available, this

data point is ambiguous semantically. This data point is ambiguous syntactically

for the same reason Syn data like (10) are: If the referent is a BOTTLE, then the

antecedent is bottle, which is either N0 or N′.

4. LEARNING STRATEGIES

4.1 Previous solutions to the induction problem

4.1.1 Adding additional knowledge to the initial state

The solution proposed by Baker was that children must know that anaphoric

elements (like one) cannot be syntactic category N0. Instead, children automat-

ically rule out that possibility from their hypothesis space.9 Baker’s solution thus

updates the initial state as follows:

BAKER’S UPDATE OF THE INITIAL STATE:

Knowledge: Syntactic categories exist, in particular N0, N′, and NP.

Knowledge: Anaphoric elements like one take linguistic antecedents of the

same category.
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Bias: Only direct evidence of one is useful.

Bias: Only unambiguous evidence of one is useful.

+Knowledge: One is not category N0.

Because this knowledge is domain-specific and was assumed to be innate, this

solution is a UG learning bias, and in fact specified a proposal for one piece of

UG. Of course, as is apparent from the original characterization of the induction

problem, domain-specific knowledge was already assumed in the initial state of

the learner (e.g., that anaphoric elements take linguistic antecedents of the same

category). Whether that other knowledge must be innate or could instead be

derived from prior experience with language is unclear – importantly, that was

not relevant to the debate concerning the solution to this characterization. In

particular, even if that other initial state knowledge was necessarily innate (which

is not at all clear), the induction problem STILL exists, and one solution is the UG

knowledge that Baker proposed.

4.1.2 Updating the initial state in other ways

Regier & Gahl (2004) (henceforth R&G) investigated a learning strategy that

assumed children had the ability to do Bayesian inference and were not restricted

to learning from unambiguous data. Specifically, a Bayesian learner could learn

something from Sem-Syn data like (11) by tracking how often a property that was

mentioned was important for the referent to have (e.g., when red was mentioned,

was the referent just a BOTTLE or specifically a RED BOTTLE?). If the referent

keeps having the property mentioned in the potential antecedent (e.g., keeps

being a RED BOTTLE), this is a suspicious coincidence unless one’s antecedent

actually does include the modifier describing that property (e.g., red bottle). If the

antecedent includes the modifier, this then indicates that one’s antecedent is N′,

since N0 cannot include modifiers. One would then be N′ as well, since it is the

same category as its antecedent.
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The R&G data set consisted of both unambiguous data and Sem-Syn ambigu-

ous data, and their online Bayesian learner was able to learn the correct represen-

tation for anaphoric one quite quickly. Their solution involved updating the initial

state as follows:

R&G’s update of the initial state:

Knowledge: Syntactic categories exist, in particular N0, N′, and NP.

Knowledge: Anaphoric elements like one take linguistic antecedents of the

same category.

Bias: Only direct evidence of one is useful.

–Bias: Only unambiguous evidence of one is useful.

+Bias: Use Bayesian inference.

R&G reasoned that removing the restriction to unambiguous evidence and

using Bayesian inference were unlikely to be part of UG. Thus, their solution

to the induction problem did not require additional UG components.

Pearl & Lidz (2009) (henceforth P&L) noted that if the child had to learn

the syntactic category of one, then an “equal-opportunity” (EO) Bayesian learner

able to extract information from ambiguous data (like R&G’s learner) would view

Syn ambiguous data like (10) as informative, as well. Unfortunately, P&L found

that Syn ambiguous data lead an online Bayesian learner to the wrong syntactic

category for one (i.e., one=N0). Moreover, Syn ambiguous data far outnumber the

Sem-Syn ambiguous and unambiguous data combined (about 20 to 1 in P&L’s

corpus analysis). Thus, a Bayesian learner like R&G proposed would need to

explicitly filter out the Syn ambiguous data. This learning strategy updates the

initial state as follows:

P&L’S UPDATE OF THE INITIAL STATE:

Knowledge: Syntactic categories exist, in particular N0, N′, and NP.

Knowledge: Anaphoric elements like one take linguistic antecedents of the

same category.

Bias: Only direct evidence of one is useful.

–Bias: Only unambiguous evidence of one is useful.
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+Bias: Use Bayesian inference.

+Bias: Only unambiguous and Sem-Syn ambiguous data are useful.

P&L suggested that this kind of data intake filter is domain-specific, since it

involves ignoring a specific kind of linguistic data. While this could be innate

(and so part of UG), they speculate how this restriction could be derived from

innate domain-general learning biases.10 To the extent that is true, P&L’s solution

to the induction problem also did not require a UG component, though it did add

a restriction to the data intake.

4.2 Another solution: Removing the direct evidence bias

Instead of restricting the data intake, we consider a learning strategy that expands

it beyond unambiguous (9), Sem-Syn ambiguous (11), and Syn ambiguous (10)

data. Consider that there are other anaphoric elements in the language besides one,

such as pronouns like it, him, her, etc. – thus, the ability for a linguistic element to

stand in for a specific string is not unique to one. These other pronouns would be

category NP in the current induction problem characterization, since they replace

an entire noun phrase (NP) when they are used, as in (12):

(12) Look at the cute penguin. I want to hug it/him/her.

≈ Look at the cute penguin. I want to hug the cute penguin.

Here, the antecedent of the pronoun it/him/her is the NP the cute penguin:

(13) [NP the [N ′ cute [N ′ [N0 penguin]]]]

In fact, it turns out that one can also have an NP antecedent:

(14) Look! A red bottle. I want one.

≈ Look! A red bottle. I want a red bottle.

We note that the issue of one’s syntactic category only occurs when one is

being used in a syntactic environment that indicates it is smaller than NP (such

as in utterances (4), (9), (10), and (11)).11 However, since one is similar to other

pronouns referentially (by being anaphoric and having linguistic antecedents) and
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shares some syntactic distribution properties with them (since it can appear as

an NP), a learner could decide that information gleaned from other pronouns

is relevant for interpreting one. These “other pronoun” data would then become

indirect positive evidence for the learner trying to acquire the representation for

anaphoric one, since the learner is leveraging information from the presence of

these data.

This bias to use other pronoun data can be combined with a bias to use Bayesian

inference, similar to R&G’s and P&L’s learners. In particular, a learner could

track how often a property mentioned in the potential antecedent (e.g., red in a

red bottle in (14)) is important for the referent to have (and so also important for

the antecedent to include). Crucially, we can apply this not only to data points

where one is <NP ((9) and (11)), but also to data points where pronouns are

used anaphorically and in an NP syntactic environment ((12) and (14)). When

the potential antecedent mentions a property and the pronoun is used as an NP

(as in (12) and (14)), the antecedent is necessarily also an NP, and so necessarily

includes the mentioned property (e.g., a red bottle). Data points like (12) and (14)

are thus unambiguous both syntactically (category=NP) and semantically (the

referent must have the mentioned property). We will refer to them as unambiguous

NP (UNAMB NP) data points, and these are the additional data points our learner

(the +OtherPro learner) will learn from. The initial state for the +OtherPro

learning strategy is thus updated as follows:

+OTHERPRO’S UPDATE OF THE INITIAL STATE:

Knowledge: Syntactic categories exist, in particular N0, N′, and NP.

Knowledge: Anaphoric elements like one take linguistic antecedents of the

same category.

–Bias: Only direct evidence of one is useful.

–Bias: Only unambiguous evidence of one is useful.

+Bias: Use Bayesian inference.

+Bias: Learn from other pronoun data.

17
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Like the R&G and P&L learning strategies, our learning strategy differs from

the Baker strategy by learning from data besides the unambiguous <NP data.

However, our strategy differs from the strategies in R&G and P&L by learning

from data containing anaphoric elements besides one, since this is viewed as

indirect positive evidence. Table 1 shows which learning strategies use which data.

Table 1
Data used by different learning strategies.

Data type Example Learning strategies

Unamb <NP
Look – a red bottle! There

Baker, R&G, P&L’s EO, +OtherPro
isn’t another one here, though.

Sem-Syn amb
Look – a red bottle!

R&G, P&L’s EO, +OtherPro
Oh, look – another one!

Syn amb
Look – a bottle!

P&L’s EO, +OtherPro
Oh, look – another one!

Unamb NP
Look a red bottle!

+OtherPro
I want it/one.

We will save detailed discussion of the nature of the biases involved in the

+OtherPro learning strategy for section 7.2, specifically the bias to learn from

other pronoun data. If this is a UG bias, then this is a specific proposal about the

contents of UG that differs from the Baker proposal. Conversely, if this bias is

unlikely to be a UG bias, this is a(nother) solution to this induction problem that

does not require a UG learning bias.

5. LEARNING ANAPHORIC ONE

5.1 Information in the data

There is a variety of information that a learner uses to understand a referential

expression in an anaphoric data point, some of which is observable and some of

which is latent, as shown in Figure 2 (observed variables are shaded). This figure

models the information used by the learner when understanding a referential
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expression containing a pronoun. Notably, both syntactic and referential infor-

mation can be used by the learner, as will become clear when we step through the

different variables involved. All variables in this model are discrete, with variables

that are binary12 in lowercase.

!!!A!!

det!! !mod!!

C!

Pro! env!

O!

!!R!

!i!!

m!

o0m!

!!!!!=!observed!
!!!!!=!latent!

Figure 2
Model of understanding a referential expression containing a pronoun.

Beginning at the top lefthand side of Figure 2, R is the referential phrase

itself, i.e., the words used in the referential expression, such as another one or

it. This is observable from the data point, and from this, the learner can observe

the pronoun used in the referential expression (Pro), e.g., one or it. In addition,

from R, the learner can observe the syntactic environment (env) of the referential

pronoun. In particular, the learner can observe whether the pronoun is used in

an environment that indicates it is smaller than a noun phrase (env=<NP), such

as another one or instead is in an environment that indicates it is a noun phrase

(env=NP), such as it. The values of Pro and env are used to infer the syntactic

category (C) of the referential pronoun, which can be N0, N′, or NP. The learner

assumes the syntactic category of the pronoun is the same as the syntactic category

of the linguistic antecedent, and so uses the syntactic category information from

C to determine two properties of the linguistic antecedent: (1) if the antecedent

includes a determiner (det=yes) or not (det=no), and (2) if the antecedent includes
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a modifier (mod=yes) or not (mod=no). If C=NP, both a determiner and modifier

must be included if present (det=yes, mod=yes); if C=N′, a determiner is not

possible (det=no) though a modifier is and so may either be included (mod=yes)

or not (mod=no); if C=N0, neither a determiner nor a modifier is possible

(det=no, mod=no). All of these variables depend on the syntactic information

available from the data point.

Moving to the top righthand side of Figure 2, m concerns whether a property

was mentioned in the potential linguistic antecedent (m=yes) or not (m=no), e.g.,

Look – a red bottle vs. Look – a bottle. If a property is mentioned, o-m concerns

whether a referent (object) in the present situation has the mentioned property (o-

m=yes) or not (o-m=no). Both these variables’ values can be observed from the

previous linguistic context (m) and the current environment (o-m). If an object in

the present situation has the mentioned property (o-m=yes), the learner will infer

whether the property should be included in the linguistic antecedent (i=yes) or

not (i=no), which concerns the speaker’s intentions (specifically, did the speaker

intend to refer to that property when identifying the referent?) All these variables

can be thought of as concerning the referential intentions of the speaker.

Both syntactic information (det, mod) and referential information (i) are used

to infer the linguistic antecedent (A) of the referential pronoun, e.g., red bottle vs.

bottle. Only certain combinations of variable values are licit when a property is

mentioned (m=yes), due to the constraints placed on the antecedent by mod and

i:13

(a) det=yes, mod=yes, i=yes yielding e.g., A= the red bottle

(b) det=no, mod=yes, i=yes yielding e.g., A= red bottle

(c) det=no, mod=no, i=no yielding e.g., A= bottle

The antecedent is used to infer the intended object (O). Notably, despite this

depending on the linguistic antecedent A, the actual intended referent is often

observable from context (as is the case for our various data types discussed above).

That is, the learner can infer what object was the intended referent, even if the
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linguistic antecedent is ambiguous. For example, consider Sem-Syn ambiguous

data, such as Look – a red bottle! Oh, look – another one! The issue with such

data is that it is unclear whether the antecedent is red bottle or bottle since both

are compatible with the object present (e.g., a RED BOTTLE). Thus, though the

intended referent depends on the latent variable A, the learner can often observe

what properties the intended object O has, e.g., whether it is a RED BOTTLE or a

PURPLE BOTTLE, etc.

These variables can take on the values shown in table 2.14 The data types used

by the different learning proposals have the observable and latent values in Table

3.

Table 2
Variable values in informative referential data points. Observable

variables are in bold.

R ∈ {another one, it, etc.}
Pro ∈ {one, it, etc.} m ∈ {yes, no}
env ∈ {<NP, NP} o-m ∈ {yes, no, N/A}

C ∈ {NP, N′, N0} i ∈ {yes, no, N/A}
det ∈ {yes, no}

mod ∈ {yes, no}
A ∈ {a red bottle, red bottle, bottle, etc.}

O ∈ {RED BOTTLE, PURPLE BOTTLE, etc.}

Unambiguous <NP data have a referential expression R such as another one,

which uses the pronoun one (Pro=one) and indicates the pronoun is smaller

than an NP (env=<NP). In addition, a property is mentioned in the potential

linguistic antecedent (m=yes) and an object present has the mentioned property

(o-m=yes) – in particular, the intended referent has the mentioned property (e.g,

O=RED BOTTLE). Because these data are unambiguous, the learner can infer the

antecedent A (e.g., red bottle), which indicates that the property is included in

the antecedent (i=yes) on the referential side, while a modifier is included in the

antecedent (mod=yes) and a determiner is not included (det=no) on the syntactic

side. Given that a modifier is included, the category C must be N′.
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Table 3
Data types and variable values. Observable variables are in bold.

Variable Unamb <NP Sem-Syn Amb Syn Amb Unamb NP
R ex: another one ex: another one ex: another one ex: it

Pro one one one ex: it
env <NP <NP <NP NP

C N′ N′, N0 N′, N0 NP
det no no no yes

mod yes yes, no no yes
m yes yes no yes

o-m yes yes N/A yes
i yes yes, no N/A yes

A ex: red bottle ex: red bottle, bottle ex: bottle ex: a red bottle
O ex: RED BOTTLE ex: RED BOTTLE ex: BOTTLE ex: RED BOTTLE

Similar to Unambiguous<NP data, Sem-Syn ambiguous data have a referential

expression R such as another one, which uses the pronoun one (Pro=one) and

indicates the pronoun is smaller than an NP (env=<NP). In addition, a property

is mentioned in the potential linguistic antecedent (m=yes) and an object present

has the mentioned property (o-m=yes) – in particular, the intended referent has

the mentioned property (e.g, O=RED BOTTLE). However, because these data

are ambiguous, it is unclear whether the antecedent A includes the mentioned

property as a modifier or not (e.g., red bottle vs. bottle). Thus, while it is clear the

determiner is not included (det=no), it is unclear whether the mentioned property

is included in the modifier position (i=yes, no, mod=yes, no). Because of this, it

is also unclear whether the syntactic category C is N′ or N0.

Like Unambiguous <NP and Sem-Syn ambiguous data, Syn ambiguous data

have a referential expression R such as another one, which uses the pronoun

one (Pro=one) and indicates the pronoun is smaller than an NP (env=<NP).

However, a property is not mentioned in the potential linguistic antecedent

(m=no) and so it is moot whether an object present has the mentioned property (o-

m=N/A) – in particular, it does not matter what properties the intended referent

has (e.g, O=BOTTLE). Nonetheless, given the nature of these data, the learner
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can infer the antecedent A (e.g., bottle), which indicates that no determiner or

modifier is included in the antecedent (det=no, mod=no). Because no property

was mentioned, it is moot whether the mentioned property is included in the

antecedent (i=N/A). Nonetheless, it is unclear from the antecedent whether the

category C is N′ or N0.

Unambiguous NP data have a referential expression R such as it, which uses a

pronoun such as it (Pro=it) and indicates the pronoun is category NP (env=NP,

C=NP). In addition, a property is mentioned in the potential linguistic antecedent

(m=yes) and an object present has the mentioned property (o-m=yes) – in par-

ticular, the intended referent has the mentioned property (e.g, O=RED BOTTLE).

Because these data are unambiguous, the learner can infer the antecedent A (e.g.,

a red bottle), which indicates that the property is included in the antecedent

(i=yes) on the referential side, while a modifier and determiner are included in

the antecedent (mod=yes, det=no) on the syntactic side.

5.2 The online probabilistic learning framework

We now present an online probabilistic learning framework that uses the different

kinds of information available in the anaphoric data types described above.

5.2.1 Important quantities

The two components of the correct representation for anaphoric one in the default

context are

(a) when an object has the property mentioned in the potential antecedent (o-

m=yes), the property is included in the antecedent of one (i=yes), and

(b) when the syntactic environment indicates one is smaller than an NP

(env=<NP), it is category N′ (C=N′).

Importantly for the update equations we will use in the online probabilistic

learning framework, the variables of interest (i and C) can only take on two

values in these situations: i ∈ {yes, no} when o-m=yes and C ∈ {N′, N0} when
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env=<NP. Our modeled learner will determine the probability associated with a

particular value for both of these variables in these situations, specifically p(i=yes

| o-m=yes) and p(C=N′ | env=<NP). We represent the probability of the former

as pincl and the probability of the latter as pN ′ . If the correct representation of

one has been learned, both probabilities should be near 1.

We follow the update methods in P&L, and use equation (15) adapted from

Chew (1971), which assumes p comes from a binomial distribution and the beta

distribution is used to estimate the prior. It is reasonable to think of both pincl and

pN ′ as parameters in binomial distributions, given that each variable takes on only

two values, as noted above.

px =
α+ datax

α+ β + totaldatax
, α= β = 1 (15)

Parameters α and β represent a very weak prior when set to 1.15 The variable

datax represents how many informative data points indicative of x have been

observed, while totaldatax represents the total number of potential x data points

observed. After every informative data point, datax and totaldatax are updated

as in (16), and then px is updated using equation (15). The variable φx indicates

the probability that the current data point is an example of an x data point. For

unambiguous data, φx = 1; for ambiguous data φx < 1.

datax = datax + φx (16a)

totaldatax = totaldatax + 1 (16b)

Probability pincl is updated for Unambiguous <NP data, Sem-Syn ambiguous

data, and Unambiguous NP data only (Syn ambiguous data do not mention

a property, and so are uninformative for pincl since o-m=N/A). Probability

pN ′ is updated for Unambiguous <NP data, Sem-Syn ambiguous data, and
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Syn ambiguous data only (Unamb NP data indicate the category is not <NP

(env=NP), and so are uninformative for pN ′ ).

The value of φx depends on data type. We can derive the value of φincl by

doing probabilistic inference over the graphical model in Figure 2. φincl uses the

expanded equation in (17), which calculates the probability that the antecedent

includes the property (i=yes) given that an object present has the mentioned

property (o-m=yes), summing over all values of intended object O, antecedent

A, determiner in the antecedent det, modifier in the antecedent mod, syntactic

category C, pronoun Pro, syntactic environment env, referential expression R,

and property mentioned m.

φincl = p(i= yes|o-m = yes) (17a)

=
p(i= yes, o-m = yes)

p(o-m = yes)
(17b)

=

∑
O,A,det,mod,C,Pro,env,R,m p(i= yes, o-m = yes)∑

O,A,det,mod,C,Pro,env,R,i,m p(o-m = yes)
(17c)

When φincl is calculated for Unambiguous <NP and Unambiguous NP data

using (17), it can be shown that φincl = 1, which is intuitively satisfying since

these data unambiguously indicate that the property should be included in the

antecedent. When φincl is calculated for Sem-Syn ambiguous data using (17), it

can be shown that φincl is equal to (18):

φincl =
rep1

rep1 + rep2 + rep3
(18)

where
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rep1 = pN ′ ∗ m

n+m
∗ pincl (19a)

rep2 = pN ′ ∗ n

n+m
∗ (1− pincl) ∗

1
s

(19b)

rep3 = (1− pN ′) ∗ (1− pincl) ∗
1
s

(19c)

In (19),m and n refer to how often N′ strings are observed to contain modifiers

(m) (e.g., red bottle), as opposed to containing only nouns (n) (e.g., bottle). These

help determine the probability of observing an N′ string with a modifier (19a), as

compared to an N′ string that contains only a noun (19b). Parameter s indicates

how many salient properties there are in the learner’s hypothesis space at the time

the data point is observed, which determines how suspicious a coincidence it is

that the object just happens to have the mentioned property given that there are

s salient properties the learner is aware of. Parameters m, n, and s are implicitly

estimated by the learner based on prior experience, and will be estimated from

child-directed speech corpus frequencies when possible when we implement our

learner.

The quantities in (19) can be intuitively correlated with anaphoric one repre-

sentations. For rep1 (which is the adult representation), the syntactic category is

N′ (pN ′ ), a modifier is used ( m
n+m ), and the property is included in the antecedent

(pincl) – this corresponds to the antecedent A being red bottle = [N ′ red [N ′ [N0

bottle]]]. For rep2, the syntactic category is N′ (pN ′ ), a modifier is not used

( n
n+m ), the property is not included in the antecedent (1- pincl), and the intended

object O has the mentioned property by chance (1
s ) – this corresponds to the

antecedent A being bottle = [N ′ [N0 bottle]]. For rep3, the syntactic category

is N0 (1-pN ′ ), the property is not included in the antecedent (1- pincl), and the

intended object O has the mentioned property by chance ( 1
s ) – this corresponds

to the antecedent A being bottle = [N0 bottle]. The numerator of (18) contains the
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only representation that has the property included in the antecedent (rep1), while

the denominator contains all three representations.

The value of φN ′ also depends on data type. We can derive the value of φN ′

similarly to φincl, by again doing probabilistic inference over the graphical model

in Figure 2. φN ′ uses the expanded equation in (20), which calculates the proba-

bility that the syntactic category is N′ (C=N′) when the syntactic environment

indicates the referential pronoun is a category smaller than NP (env=<NP),

summing over all values of intended object O, antecedent A, determiner in

the antecedent det, modifier in the antecedent mod, pronoun Pro, referential

expression R, property included in the antecedent i, object present with mentioned

property o-m, and property mentioned m.

φN ′ = p(C =N ′|env =<NP ) (20a)

=
p(C =N ′, env =<NP )

p(env =<NP )
(20b)

=

∑
O,A,det,mod,Pro,R,i,o−m,m p(C =N ′, env =<NP )∑

O,A,det,mod,C,Pro,R,i,o−m,m p(env =<NP )
(20c)

When φN ′ is calculated for Unambiguous <NP data using equation (20), it

can be shown that φN ′=1, which is again intuitively satisfying since these data

unambiguously indicate that the category is N′ when the syntactic environment is

<NP. When φN ′ is calculated for Sem-Syn ambiguous data using (20), it can be

shown that φN ′ is equal to (21):

φN ′Sem−Syn =
rep1 + rep2

rep1 + rep2 + rep3
(21)

where rep1, rep2, and rep3 are the same as in (19). Equation (21) is intuitively

satisfying as only rep1 and rep2 are correlated with representations where one is

syntactic category N′.
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When φN ′ is calculated for Syn ambiguous data using equation (20), it can be

shown that φN ′ is equal to (22):

φN ′Syn =
rep4

rep4 + rep5
(22)

where

rep4 = pN ′ ∗ n

n+m
(23a)

rep5 = 1− pN ′ (23b)

The quantities in (23) intuitively correspond to representations for anaphoric

one when no property is mentioned in the previous context. For rep4, the

syntactic category is N′ (pN ′ ) and the N’ string uses only a noun ( n
n+m ) – this

corresponds to the antecedent A being bottle = [N ′ [N0 bottle]]. For rep5, the

syntactic category is N0 (1-pN ′ ), and so the string is noun-only by definition – this

corresponds to the antecedent A being bottle = [N0 bottle]. The numerator of

equation (22) contains the representation that has one’s category as N′, while the

denominator contains both possible representations.

Table 4 shows the equations used when updating pincl and pN ′ for each of

the informative data types, along with a sample update after a single data point

of each type at the beginning of learning when pincl = pN ′ = 0.50, using the

following parameter values: m= 1, n= 2.9, and s= 10.16

For Unamb <NP data, both φincl and φN ′ are 1, and so datax is increased by

1. This leads to pincl and pN ′ both being increased. This is intuitively satisfying

since unambiguous <NP data by definition are informative about both pincl (the

mentioned property should indeed be included in the antecedent) and pN ′ (the

syntactic category is indeed N′).

For Sem-Syn ambiguous data, both pincl and pN ′ are altered, based on their

respective φ values, which are less than 1 but greater than 0. The exact φ value
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Table 4
Values for model parameters for each data type, and sample updates for
pincl and pN ′ , showing the value of each probability after one data point
is seen at the beginning of learning when pincl = pN ′ = 0.50, α= β = 1,

m= 1, n= 2.9, and s= 10.

datax = datax + φx px = α+datax
α+β+totaldatax

, α= β = 1

Data type φincl φN′ pincl pN′

Unamb <NP 1 1 0.67 0.67

Sem-Syn Amb rep1
rep1+rep2+rep3

rep1+rep2
rep1+rep2+rep3

0.53 0.59

Syn Amb N/A rep4
rep4+rep5

0.50 0.48

Unamb NP 1 N/A 0.67 0.50

depends on current values of pincl and pN ′ (which are both 0.50 initially). After

one Sem-Syn Amb data point, pincl increases to 0.53, and pN ′ increases to .59.

This is again intuitively satisfying since the learner capitalizes on the suspicious

coincidence that the intended object has the mentioned property, but is not as

confident in this data point as the learner would be about an unambiguous <NP

data point.

Syn ambiguous data are only informative with respect to syntactic category,

so only pN ′ is updated and only φN ′ has a value. Here, we see the misleading

nature of the Syn ambiguous data that P&L discovered – the value of pN ′ is

lowered because the representation using syntactic category N0 (rep5) currently

has a higher probability than the representation using category N′ (rep4). This is

because the N′ representation in rep4 must include the probability of choosing a

noun-only string (like bottle) from all the N′ strings available in order to account

for the observed data point ( n
n+m ); in contrast, the N0 category by definition only

includes noun-only strings. Because of this, the N′ representation is penalized, and

the amount of the penalty depends on the values of m and n. More specifically,

the learner we implement here considers the sets of strings covered by category
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N0 and category N′, where the set of N0 strings (size n), which contains noun-

only strings, is included in the set of N′ strings (size n+m), which also includes

noun+modifier strings. The higher the value of m is with respect to n, the more

likely N′ strings are to have modifiers in the learner’s experience. If m is high,

it is a suspicious a coincidence to find a noun-only string as the antecedent, if

the antecedent is actually category N′. For a Bayesian learner that capitalizes on

suspicious coincidences, this means that when m is higher, a noun-only string

causes the learner to favor the smaller of the two hypotheses, namely that one

is category N0. Thus, the larger that m is compared to n, the more that Syn

ambiguous data cause a Bayesian learner to (incorrectly) favor the N0 category

over the N′ category.

Unamb NP data are only informative with respect to whether the mentioned

property is included in the antecedent, so only pincl is updated and only φI has a

value. Since these data are unambiguous, φincl=1, which is intuitively satisfying.

This leads to an increase in pincl.

5.2.2 Learner input sets & parameter values

Table 5 indicates the availability of different data types in the learner’s input,

based on a corpus analysis of the Brown-Eve corpus (Brown 1973) from the

CHILDES database (MacWhinney 2000). We chose the Eve corpus since it

included naturalistic speech directed to a child starting at the age of 18 months

and continuing through 27 months, containing 17,521 child-directed speech

utterances.17

We note that we did not find any Unamb<NP data, which accords with Baker’s

original intuition that such data are very scarce. We note also that uninformative

data include ungrammatical uses of anaphoric one, uses of one where no potential

antecedent was mentioned in the previous linguistic context (e.g., Do you want

one? with no previous linguistic context), and uses of pronouns as NPs where

the antecedent did not contain a modifier (e.g., Mmm – a cookie. Do you want
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Table 5
Data type frequencies

Data type Brown-Eve
Unamb <NP 0.00%
Syn-Sem Amb 0.66%
Syn Amb 7.52%
Unamb NP 8.42%
Uninformative 83.4%

it?). This last kind of data is viewed as uninformative because NP data points can

only help indicate whether a mentioned property is included in the antecedent. If

no property is mentioned, then the data point is uninformative as to whether the

antecedent must contain the mentioned property.

Following P&L, we posit that the anaphoric one learning period begins at 14

months, based on experimental data supporting infant recognition of the category

Noun and the ability to distinguish it from other categories such as Adjective

at this age (Booth & Waxman 2003). If children hear approximately 1,000,000

sentences from birth until 18 months (Akhtar et al. 2004), then we can use the data

frequencies in Table 5 to estimate the expected distribution of anaphoric one data

during the learning period that spans from 14 to 18 months. Based on our analysis,

we estimate that the child hears approximately 36,500 referential pronoun data

points during the learning period.18 Table 6 shows the input sets we will use to

test the different learning proposals for anaphoric one, based on the data each

learning strategy considers relevant for learning.

For the free parameters in the model, we will follow the corpus-based estimates

P&L used for m and n, which are approximately m = 1 and n = 2.9.19 As

discussed above, these parameters matter when the learner is trying to decide

whether the syntactic category should be N′ or N0, given that it is smaller than

NP (i.e., pN ′ ). For s, which concerns the number of salient properties the learner is

considering in any given situation, it is unclear how best to empirically ground our

estimate as it concerns what is salient to the child, which is not easily observable
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Table 6
Input sets for different anaphoric one learning strategies

Data type Baker R&G/P&L filtered P&L’s EO +OtherPro
Unamb <NP 0 0 0 0

Sem-Syn Amb 0 242 242 242
Syn Amb 0 0 2743 2743

Unamb NP 0 0 0 3073
Uninformative 36500 36258 33515 30442

from existing empirical data. It may be that a child is only aware of a few

salient properties out of all the properties known (e.g., PURPLE and IN MOMMY’S

HAND for a purple bottle in Mommy’s hand). In contrast, it may be that the

child considers all known properties, which we can conservatively estimate as

the number of adjectives known by this age (e.g., P&L estimate 14- to 16-month-

olds know approximately 49 adjectives, using the MacArthur CDI (Dale & Fenson

1996)). Given this, our simulations will explore a variety of s values, ranging from

2 to 49.

5.2.3 Measures of success

One way to assess acquisition success is to measure pincl and pN ′ at the end

of the learning period, since we would want these values to be near 1 for the

default adult representation. In addition, we can also assess how likely a learner

would be to reproduce the observed child behavior from the LWF experiment.

In particular, when presented with a scenario with utterances like Look – a red

bottle! Now look – do you see another one?, how often will the learner look to

the bottle with the mentioned property (RED), given a choice between that bottle

and a bottle of a different color? Notably, this is a metric that the previous studies

by R&G and P&L did not use, as they were only assessing the probability of the

target representation where pincl=pN ′=1. However, given that we have empirical

data about children’s behavior, it seems reasonable to also use it in assessing

acquisition success if we can.
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We can use almost the same graphical model shown in Figure 2 to calculate the

probability of the learner looking at the referent that has the mentioned property

when given a choice between two referents (pbeh). The only difference is that

the intended object O is no longer an observed variable – instead, the child infers

the intended object from the information available and looks to one of the two

objects present. More formally, given a data point that has a referential expression

R=another one, a pronoun Pro=one, a syntactic environment that indicates the

pronoun is smaller than NP (env=<NP), a property mentioned (m=yes), and an

object present that has that property (o-m=yes), we can calculate how probable

it is that a learner would look to the object that has the mentioned property (e.g.,

O=RED BOTTLE), which is what 18-month-olds in the LWF experiment did. For

ease of exposition in the equations below, we will represent the situation where

the object has the mentioned property as O=O-M. We can calculate pbeh by doing

probabilistic inference over the graphical model in Figure 2, as shown in the

equations in (24).

pbeh = p(O = O-M|

R= another one, P ro= one, env =<NP, m= yes, o-m = yes) (24a)

=
p(O = O-M, R= another one, P ro= one, env =<NP, m= yes, o-m = yes)

p(R= another one, P ro= one, env =<NP, m= yes, o-m = yes)

(24b)

=

P
det,mod,C,i,A p(O = O-M, R= another one, P ro= one, env =<NP, m= yes, o-m = yes)P

det,mod,C,i,A,O p(R= another one, P ro= one, env =<NP, m= yes, o-m = yes)

(24c)

When pbeh is calculated, it can be shown that it is equivalent to the quantity in

(25).
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pbeh =
rep1 + rep2 + rep3

rep1 + 2 ∗ rep2 + 2 ∗ rep3
(25)

where rep1, rep2, and rep3 are defined as in (19), m = 1, n = 2.9, and s =

2 (since there are only two salient objects present in the experimental setup). As

before, these quantities intuitively correspond to the different outcomes. For the

target representation where the property is included in the antecedent and the

category is N′ (rep1), the learner must look to the object with the mentioned

property. For any of the incorrect representations (rep2 and rep3) where the

antecedent string is effectively just the noun (e.g., bottle), the learner has a 1

in 2 chance of looking at the object with the mentioned property by accident. The

numerator represents all the outcomes where the learner looks to the object with

the mentioned property, while the denominator also includes the two additional

outcomes where the learner looks to the other object (rep2 and rep3 with incorrect

behavior).

In addition to assessing the probability of the observed 18-month-old behavior

in the LWF experiment, we can also assess the assumption LWF made about

interpreting their experiment: If children look at the object adults look at when

adults have the target representation of anaphoric one, it means that the children

also have the target representation. While this does not seem like an unreasonable

assumption, it is worth verifying that this is true. It is possible, for example, that

children have a different representation, but look at the correct object by chance

(represented in the numerator of (25) as rep2 and rep3). Given this, there are two

related questions that we can ask.

First, is it possible to get adult-like behavior in the LWF experiment without

having the adult representation for one in general (as represented by pincl and

pN ′ )? To answer this question, we can simply look at pbeh compared to pincl and

pN ′ . If pbeh is high when either pincl or pN ′ is low, this suggests that adult-like

behavior does not necessarily implicate the target representation in general.
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Second, is it possible to get adult-like behavior in the LWF experiment without

having the target representation for one at the time the behavior is being gen-

erated? To answer this question, we can calculate the probability (prep|beh) that

the learner has the target representation, given that the learner has produced the

adult behavior (e.g., looking at the object with the mentioned property, O=O-M)

in the experiment. This is, in effect, the contextually-constrained representation

the learner is using, where the context is defined as the experimental setup. More

formally, given that the referential expression is another one (R=another one),

the pronoun is one (Pro=one), the syntactic environment indicates the pronoun is

smaller than an NP (env=<NP), a property was mentioned (m=yes), an object

present has the mentioned property (o-m=yes), AND the child has looked at

the object with the mentioned property (O=O-M), what is the probability that

the representation is the adult representation, where the antecedent = e.g., red

bottle (A=red bottle)? This would mean that the antecedent includes the property

(i=yes), the antecedent does not include the determiner (det=no), the antecedent

includes a modifier (mod=yes), and the antecedent category is N′ (C=N′). This

can be calculated by using probabilistic inference over the graphical model in

Figure 2, as shown in (26).

prep|beh = p(A= red bottle, i= yes, det= no, mod= yes, C =N ′|

R= another one, P ro= one, env =<NP, m= yes, o-m = yes, O = O-M)

(26a)

=
p(A=red bottle,i=yes,det=no,mod=yes,C=N′,R=another one,Pro=one,env=<NP,m=yes,o-m=yes,O=O-M)P

A,i,det,mod,C p(R= another one, P ro= one, env =<NP, m= yes, o-m = yes, O = O-M)

(26b)

When prep|beh is calculated, it can be shown that it is equal to (27).
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prep|beh =
rep1

rep1 + rep2 + rep3
(27)

where rep1, rep2, and rep3 are calculated as in (19), but with s = 2 (again,

because there are only two salient objects to choose from in the LWF experimental

setup). More specifically, given that the object with the mentioned property has

been looked at (whether on purpose (rep1) or by accident (rep2 and rep3)), we

calculate the probability that the look is due to the target representation (rep1).20

6. RESULTS

Table 7 shows the results of the learning simulations over the different input sets

with different values of s (the number of properties salient to the learner when

interpreting the data point) ranging from 2 to 49, with averages over 1000 runs

reported and standard deviations in parentheses.21

A few notable observations can be made. First, with the exception of the Baker

learner, the performance of the learners depends to some degree on the value of s.

This is to be expected as the Baker learner uses only unambiguous<NP data in its

intake22, and since these data were not found in our dataset, this learner effectively

learns nothing. Thus, the Baker learner remains completely uncertain whether one

is N′ when it is smaller than NP (pN ′=0.5) and whether the antecedent includes

the mentioned property (pincl=0.5). Given these general non-preferences, it is

only slightly more likely to look at the correct bottle in the LWF experiment

(pbeh=0.56) and is fairly unlikely to have the adult representation if it happens

to do so (prep|beh=0.23). Specifically, if the Baker learner looks at the bottle with

the mentioned property, it has only a 23% of doing so because it has the same

antecedent as adults do. Thus, learning from unambiguous <NP data alone runs

into an induction problem, as Baker supposed and we have affirmed.

Turning now to the +OtherPro learner, we see fairly consistent overall behavior,

though the exact values of each probability increase slightly as s increases.
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Table 7
Probabilities after learning, using different values of s, which is the

number of properties salient to the learner when interpreting a data point.

Prob Baker R&G/P&L filtered P&L’s EO +OtherPro

s= 2

pN′ 0.50 (<0.01) 0.34 (<0.01) 0.14 (<0.01) 0.34 (0.03)
pincl 0.50 (<0.01) 0.02 (<0.01) <0.01 (<0.01) >0.99 (<0.01)
pbeh 0.56 (<0.01) 0.50 (<0.01) 0.50 (<0.01) 0.99 (<0.01)
prep|beh 0.23 (<0.01) <0.01 (<0.01) <0.01 (<0.01) 0.99 (<0.01)

s= 5

pN′ 0.50 (<0.01) 0.94 (<0.01) 0.16 (0.02) 0.36 (0.04)
pincl 0.50 (<0.01) 0.68 (<0.01) 0.04 (0.01) >0.99 (<0.01)
pbeh 0.56 (<0.01) 0.70 (<0.01) 0.50 (<0.01) >0.99 (<0.01)
prep|beh 0.23 (<0.01) 0.58 (<0.01) <0.01 (<0.01) >0.99 (<0.01)

s= 7

pN′ 0.50 (<0.01) 0.98 (<0.01) 0.18 (0.03) 0.37 (0.04)
pincl 0.50 (<0.01) 0.91 (<0.01) 0.10 (0.05) >0.99 (<0.01)
pbeh 0.56 (<0.01) 0.88 (<0.01) 0.50 (<0.01) >0.99 (<0.01)
prep|beh 0.23 (<0.01) 0.87 (<0.01) 0.01 (0.01) >0.99 (<0.01)

s= 10

pN′ 0.50 (<0.01) 0.99 (<0.01) 0.25 (0.06) 0.37 (0.04)
pincl 0.50 (<0.01) 0.96 (<0.01) 0.38 (0.18) >0.99 (<0.01)
pbeh 0.56 (<0.01) 0.95 (<0.01) 0.53 (0.04) >0.99 (<0.01)
prep|beh 0.23 (<0.01) 0.95 (<0.01) 0.11 (0.11) >0.99 (<0.01)

s= 20

pN′ 0.50 (<0.01) 0.99 (<0.01) 0.34 (0.05) 0.37 (0.04)
pincl 0.50 (<0.01) 0.99 (<0.01) 0.93 (0.03) >0.99 (<0.01)
pbeh 0.56 (<0.01) 0.98 (<0.01) 0.79 (0.07) >0.99 (<0.01)
prep|beh 0.23 (<0.01) 0.98 (<0.01) 0.72 (0.11) >0.99 (<0.01)

s= 49

pN′ 0.50 (<0.01) >0.99 (<0.01) 0.37 (0.05) 0.38 (0.05)
pincl 0.50 (<0.01) 0.99 (<0.01) 0.99 (<0.01) >0.99 (<0.01)
pbeh 0.56 (<0.01) 0.99 (<0.01) 0.94 (0.02) >0.99 (<0.01)
prep|beh 0.23 (<0.01) 0.99 (<0.01) 0.94 (0.02) >0.99 (<0.01)

When a learner includes the indirect positive evidence of unambiguous NP data,

that learner decides that the antecedent should include the mentioned property

(pincl>0.99). This seems intuitively satisfying as this probability is exactly what

unambiguous NP data boost. However, this learner also has a moderate dispref-

erence for believing one is N′ when it is smaller than an NP (pN ′=0.34–0.38).

That is, this learner is inclined to incorrectly believe that one is category N0 in

general, which is not the target state. This means that, given a Syn ambiguous data

point like Look, a bottle! Do you see another one?, the +OtherPro learner would

interpret one’s antecedent as [N0 bottle], rather than as [N ′ [N0 bottle]].23 In
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addition, unlike adults, it would judge utterances like the following grammatical,

since they use one as an N0: *I sat by the side of the river, and you sat by the one

of the road.

Interestingly, this lack of the target state knowledge does NOT prevent the

+OtherPro learner from producing the observed infant behavior in the LWF

experiment (pbeh≥0.99). How can this be? This is due to the linguistic context

in the experiment, where a property is mentioned in the potential antecedent.

Because the learner believes so strongly that a mentioned property must be

included in the antecedent (e.g., the antecedent is red bottle rather than bottle), the

only representation that allows this (e.g., [N ′ red [N ′ [N0 bottle]]]) overpowers

the other potential representations’ probabilities. Thus, the +OtherPro learner

will conclude the antecedent includes the mentioned property, and so it and the

pronoun referring to it (one) must be N′ IN THIS CONTEXT – even if the learner

believes one is not N′ in general. It seems that LWF’s assumption does not

hold – producing adult-like behavior does not necessarily indicate that the learner

has the target representation in general. This is a new – and surprising – result.

Nonetheless, a relaxed version of the LWF assumption does appear to hold. In

particular, when the child produces adult-like behavior, the probability that the

child has the target representation at the time the interpretation is being made

is very high (prep|beh ≥ 0.99). As described above, this is due to believing a

mentioned property must be included in the antecedent. Thus, LWF’s assumption

is true in linguistic contexts where a property is mentioned in the potential

antecedent, such as their experiment, and any unambiguous <NP, Sem-Syn

ambiguous, and unambiguous NP data points.

A reasonable question is whether this somewhat surprising behavior is due

solely to the data intake of the +OtherPro learner, or is instead partially due to

the probabilistic learning model that we have assumed underlies learning and

generation of child behavior. One way to evaluate this is by examining the results

of the other two learning strategies that have previously been investigated to see

how they compare with previous results for those learning strategies.
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For both the R&G/P&L filtered learner and the P&L EO learner, we find

their results depend non-trivially on the value of s, which determines how

suspicious a coincidence it is that the intended referent just happens to have the

mentioned property. We examine the R&G/P&L filtered learner first. Previous

studies (Regier & Gahl 2004, Pearl & Lidz 2009) found that this filtered learner

has a very high probability of learning one is N′ when it is smaller than NP

(pN ′ ≈ 1) and a very high probability of including a mentioned property in

the antecedent (pincl ≈ 1), even with s values as low as 2. We find this is true

when s=7 or above; however, when s=5, the learner is much less certain that the

mentioned property should be included in the antecedent (pincl=0.68); when s=2,

the learner is inclined to believe one is N0 (pN ′=0.34) and is nearly certain that

the mentioned property should NOT be included in the antecedent (pincl=0.02).

Similarly, when s=7 or above, the learner reliably reproduces the observed infant

behavior (pbeh=0.88–0.99) and likely has the target representation when doing so

(prep|beh=0.87–0.99). Yet, when s has lower values, the results are quite different

(s=5: pbeh=0.70, prep|beh=0.58; s=2: pbeh=0.50, prep|beh=0.02).

If we examine P&L’s EO learner, we again find variation in the overall

pattern of behavior. Pearl & Lidz (2009) found that this learner has a very low

probability of learning one is N′ when it is smaller than NP (pN ′ ≈ 0), and

a very high probability of including a mentioned property in the antecedent

(pincl ≈ 1), even with s values as low as 5. When s=20 or 49, we see something

close to this behavior where a dispreference for one as N′ (pN ′=0.34–0.37)

occurs with a strong preference for including the mentioned property in the

antecedent (pincl=0.93–0.99). However, for s≤10, low values of pN ′ occur with

low values of pincl (pN ′=0.14–0.25, pincl=<0.01–0.38). Though Pearl & Lidz

(2009) don’t assess this learner’s ability to generate the LWF experimental results,

it is likely their learner would behave as we see the learners with s=20 or 49

do here – specifically, because pincl is so high, there is a high probability of

generating the LWF behavior (pbeh=0.79–0.94) and a strong probability of having

the target representation when doing so (prep|beh=0.72–0.94). This is the same
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behavior we found in the +OtherPro learner. However, the P&L EO learner differs

by failing to exhibit this behavior this when s≤10: The learner is at chance for

generating the LWF behavior (pbeh=0.50–0.53) and is unlikely to have the target

representation if it happens to do so (prep|beh=<0.01–0.11).

6.1 The causes of learner behavior

Why do we see these differences in learner behavior, compared to previous stud-

ies? The answer appears to lie in the probabilistic learning model. In particular,

recall that there is a tight connection between syntactic and semantic information

in the model (Figure 2), as both are used to determine the linguistic antecedent. In

particular, each ALWAYS impacts the selection of the antecedent when a property

is mentioned, which was not true in the previous probabilistic learning models

used by R&G and P&L. This is reflected in the update equations for the Sem-

Syn ambiguous data, where both φincl and φN ′ involve the current values of pincl

and pN ′ , as do all the equations corresponding to the probabilities of the different

representations (recall the equations in (19)). This means that there is an inherent

linking between these two probabilities when Sem-Syn data are encountered.

For example, if pincl is very high (as it would be for high values of s), it can

make the value of φN ′ higher for Sem-Syn ambiguous data (and so increase pN ′

more).24 This subsequently gives a very large boost to pN ′ , thus increasing the

power of these kind of data. In other words, when s is high enough, the suspicious

coincidence is very strong, and thus both pincl and pN ′ benefit strongly – each

Sem-Syn ambiguous data point effectively functions as if it were an unambiguous

<NP data point.

However, the opposite problem strikes when s is low and the coincidence is

not suspicious enough. When this occurs, pincl is actually decreased slightly if

pN ′ is not high enough. For example, in the initial state when pN ′=0.5, pincl=0.5,

and s=2, seeing a Sem-Syn ambiguous data point leads to a pincl of 0.409. This

causes subsequent Sem-Syn ambiguous data points to have even less of a positive
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effect on pincl – which eventually drags down pN ′ . For example, if this same

learner encounters 20 Sem-Syn ambiguous data points in a row initially, its pincl

will then be 0.12 and its pN ′ 0.48. Thus, when s is low, the power of Sem-Syn

ambiguous data is significantly lessened, and can even cause these data to have

a detrimental effect on learning. This is why R&G/P&L’s filtered learner fails

for low s values. The situation is worse when Syn ambiguous data are included

in the mix, as for P&L’s EO learner – not only are the Sem-Syn ambiguous data

insufficiently powerful, but the Syn ambiguous data cause pN ′ to plummet.

Notably, when unambiguous NP data are added into the mix for the +OtherPro

learner, pincl is only ever increased every time one of these data points is

encountered. Thus, even if s is very low, these data points compensate for

the insufficiently helpful Sem-Syn ambiguous data. Due to the linking between

pincl and pN ′ in the Sem-Syn ambiguous data update, the high pincl value will

cause Sem-Syn ambiguous data points to act as if they were unambiguous <NP

data points, and so pN ′ is also increased. This is why the +OtherPro learner is

not susceptible to changes in its behavior when s changes. Still, because this

benefit to pN ′ only occurs when Sem-Syn ambiguous data are encountered, and

these are relatively few, the final pN ′ value is still fairly low (0.34–0.38). If we

remove the Sem-Syn ambiguous data from the +OtherPro learner’s dataset (i.e.,

it only encounters Syn ambiguous and unambiguous NP data points, as well as

uninformative data points), we can see a final pN ′ that is much lower (pN ′=0.13),

even though pincl=>0.99.

We additionally note that these results are not due to the particular duration

of the learning period we chose. Figure 3 shows a sample trajectory for the

+OtherPro learner with s=7, which converges on its final probabilities fairly

quickly – little change occurs after the first few hundred data points. This is true

for all the learners and all s values. Thus, we would not predict the behavior of

any of the learners to alter appreciably if they were exposed to more data, unless

those data were very different from the data they had been learning from already

or they were able to use those data in a very different way.
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Figure 3
A sample trajectory of +OtherPro probabilities over the learning period, with s=7.

6.2 Summary of results

To summarize, we find that indirect positive evidence has a significant beneficial

impact on learning and allows a learner to reliably generate the anaphoric one

behavior observed in 18-month-olds. The behavior of the learner that uses indirect

positive evidence is robust because it can leverage unambiguous NP data to

compensate for (or further enhance the effectiveness of) the Sem-Syn ambiguous

data. In contrast, learners who are restricted to only direct positive evidence and

indirect negative evidence are greatly affected by how suspicious a coincidence

Sem-Syn ambiguous data points are. Our results are similar to previous results

for the R&G/P&L filtered and P&L EO learners for certain values of s. However,

because of the way semantic and syntactic information are integrated in the

probabilistic learning model we present here (i.e., both information types are

given equal weight), our results deviate from prior results with these learners for

other values of s. In particular, we find a higher pN ′ than Pearl & Lidz (2009) did

with their integrated probabilistic learning model for the P&L EO learner with
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high values of s. We also find low values of pN ′ and pincl for the R&G/P&L

filtered learner when s is very low.

More surprisingly, we also find that evaluating learners based on their ability

to replicate experimental results LWF found with 18-month-olds leads to an

unexpected result: Learners WITHOUT the target representation can still produce

the target behavior. Specifically, even if a learner does not believe one is N′

in general, if that learner believes a mentioned property should be included in

the linguistic antecedent, that learner can still generate the target behavior in

the LWF experiment. This suggests a more complicated relationship between

underlying knowledge and observed behavior. Specifically for anaphoric one, it

is possible to correctly interpret one in certain linguistic contexts and have the

target representations in those contexts, even if the target representation is not the

preferred representation in general.

7. DISCUSSION

7.1 General discussion of results

Through this modeling study, we have provided new information about the acqui-

sition of knowledge concerning English anaphoric one. First, using a learning

strategy that draws on indirect positive evidence, a child would be able to produce

the behavior at 18 months that was thought to indicate the target knowledge state,

presumably solving the induction problem. However, surprisingly, this behavior

can be produced without reaching the target state – instead, a child with an

immature context-dependent representation of one could produce the observed

behavior. This suggests that the link between observed behavior, interpretation,

and representation may not be as clear cut as once thought. Even though

children demonstrate they have the adult interpretation some of the time (by

displaying adult-like behavior), this does not necessarily mean they have the adult

representation all of the time. We have provided an example learning strategy

that would lead to the adult-like interpretation in the the context of the LWF
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experiment, but would not lead to the adult representation for other utterances,

like those in Syn ambiguous data.

This suggests an update of the induction problem characterization. If we want

the target state to remain unchanged, then the learning period may not be restricted

to 18 months. Instead, it could be that children achieve the target knowledge state

later on. If so, this means they may have access to additional data, knowledge,

and learning capabilities to solve the induction problem that we did not allow the

learners modeled here. We briefly discuss one example of this kind of solution in

section 7.4.1. More generally, it would suggest a two-stage acquisition trajectory

for anaphoric one, with the first stage completed by 18 months and the second

stage completed sometime afterwards.

More broadly, the results here also demonstrate how using indirect positive

evidence may be useful for investigating solutions to induction problems. In

particular, by relaxing the direct evidence assumption, we may find that the

behavior we observe in children can be explained, given the data in children’s

input.

With respect to testing proposals for the contents of UG, we have also described

how specific characterizations of induction problems motivate specific proposals.

In particular, when a learning strategy succeeds, we can examine the learning

biases that comprise it and discuss whether they are likely to be in UG. We thus

examine the biases that are part of the indirect positive evidence learning strategy

used by the +OtherPro learner in section 7.2. In addition, we discuss alternate

learning strategies that might be useful for the induction problem characterization

explored here, as well as alternate characterizations of the induction problem that

alter the target and/or initial state, and how this impacts the debate about the

contents of UG.
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7.2 The learning biases of the +OtherPro learning strategy

The +OtherPro learning strategy includes two biases that enrich the initial state of

the learner:

(a) Use Bayesian inference.

(b) Learn from other pronoun data.

The bias to use Bayesian inference to leverage information in the data has been

part of proposed learning strategies before, specifically the strategy of R&G and

P&L that restricted the data intake. Since Bayesian inference can be used for other

kinds of data besides language data, it is unlikely to be a domain-specific strategy

(though it is likely innate). This means it would not be a UG learning bias.

The bias to learn from other pronoun data clearly concerns language data, and

so would be domain-specific. But is it innate or derived? It is possible that this

bias results from innate knowledge that referential pronoun data can be treated

as an equivalence class. If this were true, this would be a UG learning bias.

Conversely, it could be possible to derive this bias from prior linguistic experience

with the pronouns of English. In particular, while one does not have an identical

distribution to other referential elements like it (e.g., another one, but not another

it), the distribution overlaps significantly (e.g., I see one, I see it, etc.). If a child

was sensitive to this distributional data, it may be possible to derive the knowledge

that these data are relevant for learning about anaphoric one, and so can serve as

indirect positive evidence.

While we have no evidence that discerns between these two options, the study

here can be seen as either providing a different characterization of the contents

of UG or providing a non-UG way to generate the behavior we see in 18-month-

olds. In particular, if the second bias is innate, this is then a specific proposal

about the contents of UG that differs from the original Baker proposal: Instead

of explicitly limiting the hypothesis space, the desired behavior can be produced

by broadening the data intake. If this second bias is instead derived, this is a

non-UG learning strategy that will produce the desired behavior, in addition to
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the potentially non-UG one proposed by the R&G/P&L filtering strategy which

restricts the data intake.

7.3 Other learning strategies

7.3.1 Using data more effectively

The Bayesian learning model we used was able to track suspicious coincidences.

Specifically, our learning model looked at the referent and the properties that

referent had, comparing them to the property that was mentioned. The magnitude

of the suspicious coincidence was determined only by how many other properties

there were in the learner’s consideration (i.e., the impact was inversely propor-

tional to the chance that the referent had the mentioned property out of all the

salient properties it could have had, implemented with parameter s).

However, there may be more nuanced ways to interpret how suspicious a

coincidence is.25 For example, consider Sem-Syn ambiguous data (e.g., Look – a

red bottle! Oh look – another one!, when the referent is a red bottle). These data

may present a stronger suspicious coincidence if another object is present that

does not have the mentioned property (e.g., a purple bottle), but the speaker

specifically indicates (say, by gesture or gaze) that the object with the mentioned

property is intended (e.g., a red bottle). This could be an additional cue that the

mentioned property is relevant (red), because there was another object present

that didn’t have that property and the speaker specifically didn’t pick that other

object. Given this, data points like this might have update values closer to that

of unambiguous data (which has φincl = φN ′ = 1), since it is more likely that

the mentioned property is included in the antecedent (pincl) and so more likely

that the category is N′ (pN ′). Without a corpus analysis that includes this kind

of situational information, it is unclear how frequent these “more influential”

Sem-Syn ambiguous data are. However, this effect can be simulated with high

values of s, since high values of s cause Sem-Syn ambiguous data to have an

impact more like unambiguous <NP data. As we saw in table 7, the learners that
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were able to use some of the data (i.e., not the Baker learner) with s=49 had two

kinds of behavior: The R&G/P&L filtered learner had the target behavior and the

target representation for one, while the P&L EO and +OtherPro learners had the

target behavior but a context-dependent representation. Thus, these data would

not significantly alter the overall pattern of results we have found here.

7.3.2 Using sophisticated contextual cues

Another source of information involves more sophisticated contextual cues. Some

examples are shown below in (28):

(28a) I hate that red bottle – do you have another one?

(28b) I want this red bottle, and you want that one.

(boldface indicates emphasis)

Many adults would interpret the referent of one in both cases as a BOTTLE that

is not red. For (28a), this is perhaps based on the verb hate, and the inference

that someone would not ask for another of something they hate . For (28b), this is

perhaps based on the contrastive focus that occurs between red and that. In both

cases, this involves an inference that draws from information beyond the default

syntactic and semantic representation. In (28a), this is an inference about when

a speaker would use hate in this way; in (28b), this is an inference about when

speakers use contrastive focus. The default interpretation of one seems to include

the modifier (see 29). In (29a), it seems the speaker is requesting another red

bottle. In (29b), while there is contrastive focus with that, it doesn’t interfere with

the interpretation of one’s antecedent as red bottle.

(29a) I love that red bottle – do you have another one?

(29b) I want this red bottle, and you want that one.

(boldface indicates emphasis)

We note that we did not find any occurrences of data like (28a) in our corpus

analysis, which suggests that young children probably do not encounter these data
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very often.26 In addition, it is unclear how sensitive very young children (younger

than 18 months, for example) would be to this additional contextual information,

and how well they would be able to make the pragmatic inferences that adults

would make. Incorporating this additional contextual information when forming

an interpretation is clearly something children must eventually learn to do since

adults do it, but we assume that the initial target state for learning is the default

interpretation where the mentioned property is included in the antecedent. It

would be useful to assess when children have the adult interpretations for non-

default anaphoric one examples like those in (28), as this would allow us to further

fine-tune the acquisition trajectory.

7.4 Alternate induction problem characterizations

There are different ways to characterize the learning problem concerning

anaphoric one, only one of which we have explored here. Below we briefly discuss

two additional ways which are similar, but crucially differ on the target state,

or both the initial state and the target state. We highlight when and how these

characterizations lead to different proposals about the contents of UG.

7.4.1 A different target state

Another characterization of this learning problem focuses on the syntactic repre-

sentation alone, where one is N′ when it is smaller than NP. The target state of this

characterization can be described as follows, updated from the characterization

explored in the current study:

(iv) TARGET STATE:

Knowledge: In utterances like the example in (4), one is category N′.

–{and its linguistic antecedent includes the modifier.}

This was actually the target state in Baker’s original formulation of the induc-

tion problem. Recently, Foraker et al. (2009) (henceforth F&al) have investigated

a learning strategy that could be used to solve this characterization of the learning
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problem. Unlike the other strategies explored here, this learner only learned

from syntactic data, rather than also using the semantic information available.

Similar to the indirect positive evidence strategy explored in this study, F&al

removed the bias to learn only from direct evidence. Similar to all the strategies

investigated here, Bayesian inference was used. In addition, F&al’s learning

strategy employed subtle conceptual knowledge in order to identify the category

of one. Specifically, their learner was able to distinguish syntactic complements

from syntactic modifiers, where a syntactic complement is “conceptually evoked

by its head noun” and indicates the noun string is N0, while a modifier is not and

indicates the noun string is N′. Figure 4 shows the syntactic structure associated

with modifiers and complements, where a modifier like with dots is sister to N′

and a complement like of the road is sister to N0.
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Figure 4
Phrase structure trees corresponding to a modifier and a complement.

Because of this, one (being N′) cannot appear with complements, since

complements adjoin with N0. This is why one of the road is ungrammatical (30a),

while one with dots is grammatical (30b).

(30a) *Lily waited by the side of the building while Jack sat by the one of the

road.

(30b) Lily was fond of the ball with stripes while Jack preferred the one with
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dots.

Thus, the initial state for F&al’s learning strategy would be updated as follows:

(i) Initial state:

Knowledge: Syntactic categories exist, in particular N0, N′, and NP.

–Knowledge: Anaphoric elements like one take linguistic antecedents of the

same category.

–Bias: Only direct evidence of one is useful.

Bias: Only unambiguous evidence of one is useful.

+Bias: Only syntactic data are useful.

+Bias: Use Bayesian inference.

+Bias: Learn from all linguistic elements that take complements or

modifiers.

+Knowledge: Complements conceptually evoke their head noun while

modifiers do not.

+Knowledge: Syntactic category N0 is sister to a complement, not a

modifier.

Thus, simple nouns (known to be N0 and project to N′) can appear with both

complements (side of the road) when they are N0 and modifiers (ball with dots)

when they are N′, while one only occurs with modifiers (one with dots). F&al’s

learning strategy can track the complement-modifier distribution of linguistic

elements such as one and compare it to other elements that are syntactic category

N0. In particular, a Bayesian learner can note the absence of one being used with

complements. This then indicates that one is not N0, but rather N′. While there

were not many informative one data points in their data, F&al’s ideal Bayesian

learner was able to learn the correct syntactic category for one.

But what of the additional biases and knowledge in the initial state required to

achieve this solution? We consider each in turn. The bias to use only syntactic

data is clearly domain-specific, but could perhaps be derived from the target state

concerning only the syntactic representation – syntactic data could be the natural

choice for informative data in this case. The bias to use Bayesian inference is
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likely innate, but also likely domain-general since Bayesian inference can be used

in many cognitive domains. The bias to learn from all linguistic elements taking

complements or modifiers is the indirect positive evidence bias. Similar to the

indirect positive evidence bias the +OtherPro learning strategy used, it could be

specified innately that these elements should be heeded, and so be a UG bias.

Conversely, it could be derived somehow, perhaps from noticing salient properties

of nominal categories. The semantic knowledge that complements conceptually

evoke their head nouns seems to be clearly domain-specific, as does the syntactic

knowledge relating N0 to complements. While it is possible that this knowledge

is derived somehow, we could not think of an obvious way to do so – thus, these

knowledge components would likely be part of UG.

From this, we see that considering this version of the induction problem leads

to a different proposal for the contents of UG. At the very least, detailed semantic

and syntactic knowledge is required concerning complements and modifiers, and

it is also possible that the bias to pay attention to the indirect positive evidence

offered by other linguistic elements taking complements and modifiers is part of

UG. Still, the target state is reachable, given this enriched initial state. Since this

learning strategy does not consider the semantic component of anaphoric one nor

calculate a preference for including a mentioned property in the antecedent, it is

unclear how well it would match the behavior of 18-month-olds observed in the

LWF experiment, however.

7.4.2 A different initial and target state

Another characterization of the induction problem assumes different syntactic

categories than the ones in the characterization we examined here. In particular,

we assumed the following: (i) noun phrases are category NP, (ii) modifiers are

sister to N′, and (iii) complements are sister to N0. This would give the structure

for the noun phrase a delicious bottle of wine represented in the left side of Figure

5, and shown in bracket notation in (31a). However, an alternate representation of
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noun phrases is available (Bernstein 2003, Longobardi 2003)27, shown in (31b)

and the right side of Figure 5. It assumes the following: (i) noun phrases are

category DP (Determiner Phrase), (ii) modifiers are sisters to N′ and children of

NP, and (iii) complements are sisters of N′.

(31a) [NP a [N ′ delicious [N ′ [N0 bottle] [PP of wine]]]]

(31b) [DP a [NP delicious [N ′ [N ′ [N0 bottle]] [PP of wine]]]]
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Figure 5
Phrase structure trees corresponding to the bracket notation in examples (31) and (32) for a

delicious bottle of wine.

Practically speaking, this means that the learner must learn that the antecedent

of anaphoric one can be category NP (e.g., delicious bottle of wine) or category

N′ (e.g., bottle of wine) but never category N0 (e.g., bottle in (32)), when it is

smaller than DP. This means there are three syntactic categories smaller than an

entire noun phrase (DP), and a child must learn that only two of them are valid

antecedents for one. Moreover, in the LWF experiment, a child should have the

preference that one’s antecedent is category NP, so that it can include the modifier

(i.e., red bottle is an NP in this representation).

(32) I have a delicious bottle of wine...

(a) ...and you have one, too. [one = delicious bottle of wine, category NP]

(b) ...and you have a flavorful one, too. [one = bottle of wine, category N′]

(c) ...*and you have a flavorful one of beer. [one 6= bottle, category N0]
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The initial and target states for the induction problem can then be updated as

follows:

(i) INITIAL STATE:

Knowledge: Syntactic categories exist, in particular N0, N′, NP, and DP.

Knowledge: Anaphoric elements like one take linguistic antecedents of

the same category.

Bias: Only direct evidence of one is useful.

Bias: Only unambiguous evidence of one is useful.

(iv) Target state:

Knowledge: In utterances like the example in (4), one is category NP

and so its linguistic antecedent includes the modifier.

While we have not implemented a learning strategy that uses this syntactic

representation, we can easily speculate on the results we might find with an

indirect positive evidence strategy like the +OtherPro strategy proposed here, as

there are still many similarities in the induction problem. As before, this strategy

would update the initial state as follows:

(i) INITIAL STATE:

Knowledge: Syntactic categories exist, in particular N0, N′, NP, and DP.

Knowledge: Anaphoric elements like one take linguistic antecedents of the

same category.

–Bias: Only direct evidence of one is useful.

–Bias: Only unambiguous evidence of one is useful.

+Bias: Use Bayesian inference.

+Bias: Learn from other pronoun data.

When faced with Syn ambiguous data (e.g., Look – a bottle! Oh, look – another

one!), there is still a two-way ambiguity (N′ vs. N0), since bottle projects to both

N′ and N0. When given data compatible with two hypotheses, a Bayesian learner

will prefer the hypothesis that covers a smaller set of items. This is the N0 category

hypothesis, since all noun strings (like bottle) are included in both hypotheses, but

noun+complement strings (like bottle of wine) are additionally included in the N′

53



L. PEARL & B. MIS

hypothesis. This means that the Syn ambiguous data will cause the learner to

prefer N0, as our learner did here. Thus, Syn ambiguous data remain misleading

about the syntactic category of one (i.e., category = N0).

In addition, both Sem-Syn ambiguous data and unambiguous NP data would

lead a learner to assume the category is NP when a modifier is present (e.g.,

red bottle). This is because both these data types28 increase the probability that

the mentioned property is included in the antecedent (pincl). In this syntactic

representation, only category NP can include modifiers when one is smaller than

DP. Therefore, the learner will likely perform well in the LWF experiment, as

long as pincl is high. This is again similar to the behavior the +OtherPro learning

strategy produced (as well as the behavior of the filtered learners when s was

sufficiently high).

Because no data favor N′, we would expect that the learner disprefers one

as N′ at the end of learning. Instead, the learner assumes one is NP (e.g.,

antecedent = red bottle) in contexts like the LWF experiment that have a property

mentioned and assumes one is N0 in general when no property is mentioned.

This is qualitatively the same result that we have found here, and would still

predict a two-stage acquisition trajectory. Moreover, the learning biases involved

are the same as before for the +OtherPro strategy, and so the implications for UG

remain the same as discussed above in section 7.2. This is an example where the

same learning strategy will work over multiple characterizations of an induction

problem. Thus, the distinction between these characterizations does not affect the

proposal for the contents of UG.

8. CONCLUSION

In this paper, we have explicitly characterized an induction problem concerning

English anaphoric one that has been used to motivate specific proposals for

the contents of UG. In particular, we noted how theoretical assumptions about

the knowledge representation and experimental data concerning the acquisition
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trajectory have been used to specify different components of this induction prob-

lem. We then demonstrated that a probabilistic learning strategy using indirect

positive evidence that comes from data containing other referential pronouns can

produce the behavior observed experimentally in young children – even when

the target knowledge state has not been reached. This suggests that imma-

ture representations may persist longer than realized, with children producing

adult-like behavior even though their representations are not adult-like. This in

turn motivates an alternate form of the induction problem where acquisition

of anaphoric one knowledge proceeds in stages, and the learning period for

anaphoric one is longer than previously thought. In addition, we described how

explicit computational models implementing different strategies can be used to

offer concrete proposals for the contents of UG. In particular, indirect positive

evidence does not necessarily negate the need for innate, domain-specific learning

biases – it may, however, alter the exact form those biases take. We believe this

general approach of broadening the data intake for language acquisition may be

fruitful for identifying what is and is not necessarily part of UG.
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APPENDIX 1

Frequency of different pronouns in the input

Since the +OtherPro learner uses all informative referential pronoun data, we

included all available referential personal pronouns in our corpus analysis instead

of focusing only on anaphoric one. Table 8 shows the breakdown of the pronouns

observed in the Eve corpus (Brown 1973). We note that not all these pronouns

belonged to informative data points (where informative is defined as in section

5.2.2).

Table 8
Pronoun frequencies in the Brown-Eve corpus.

Pronoun Frequency %
it 1538 53.7%
he 321 11.2%
one<NP 302 10.5%
them 182 6.4%
she 165 5.8%
they 142 5.0%
her 80 2.8%
him 76 2.7%
one=NP 52 1.8%
itself 3 0.1%
himself 1 <0.1%
total 2862 100%

From this distribution, we can see that it is the most frequent pronoun, which

makes up the bulk of the unambiguous NP examples in the +OtherPro data intake.
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FOOTNOTES

1 The induction problem in language acquisition is often referred to as the “Poverty of the Stimulus”

(Chomsky 1980a,b, Crain 1991, Lightfoot 1989), the “Logical Problem of Language Acquisition”

(Baker 1981, Hornstein & Lightfoot 1981), or “Plato’s Problem” (Chomsky 1988, Dresher 2003).

2 The * will be used to indicate ungrammaticality.

3 Interestingly, indirect positive evidence is similar to what linguistic parameters are meant to

do in generative linguistic theory – if multiple linguistic phenomena are controlled by the same

parameter, data for any of these phenomena can be treated as an equivalence class, where learning

about some linguistic phenomena yields information about others (Chomsky 1981, Viau & Lidz

2011, Pearl & Lidz in press). The knowledge of the linguistic parameter is part of the initial state,

and allows a broader set of data to be utilized.

4 There are cases where the bottle interpretation could become available (and so a purple bottle

would be a valid referent since it is in fact a bottle), and these often have to do with contextual

clues and special emphasis on particular words in the utterance (Akhtar et al. 2004). The default

interpretation, however, seems to be that one’s antecedent is red bottle. We discuss the non-default

interpretations more in section 7.3.

5 We note that while we use the labels N′ and N0, other theoretical implementations may

use different labels to distinguish these hierarchical levels. The actual labels themselves are

immaterial – it is only relevant for our purposes that these levels are distinguished the way we

have done here, i.e., that red bottle and bottle are the same label (N′ here), while bottle can also be

labeled with a smaller category label (N0 here). However, see discussion in section 7.3 for what

happens with alternate theoretical representations that additionally differentiate red bottle from

bottle.

6 Though see Tomasello (2004) for a critique of LWF’s interpretation of their experiment and Lidz

& Waxman (2004) for a rebuttal.

7 Moreover, LWF confirmed that infants responded similarly when the utterance was Look, a red

bottle! Now look – do you see another red bottle?, suggesting that they had correctly inferred that

the antecedent of one in the original utterance was red bottle. In addition, infants did not have this

looking preference with control utterances such as Look, a red bottle! Now look – what do you

see now?, which suggests that they were using the language in the original utterance to determine

which object to look at (in that case, the object indicated by the linguistic antecedent red bottle).

8 For ease of exposition, when we refer to knowledge of “anaphoric one” henceforth, we will mean

knowledge of anaphoric one in examples such as (2), (4), and (8).

9 Note that this proposal only deals with the syntactic category of one and does not provide a solution

for how to choose between two potential antecedents that are both N′, such as red bottle: [N′ red

59



L. PEARL & B. MIS

[N′ [N0 bottle]]] vs. bottle: [N′ [N0 bottle]]. It does, however, rule out the potential antecedent

[N0 bottle].

10 In particular, they suggest that a learner who learns only when the current utterance’s referent

is ambiguous would ignore Syn ambiguous data while still heeding unambiguous and Sem-Syn

ambiguous data (see Pearl & Lidz (2009) for more explicit discussion of this proposal, and how it

derives from domain-general learning principles).

11 This shows that one clearly has some categorical flexibility, since it can be both NP and smaller

than NP. However, it appears to be conditional on the linguistic context, rather than being a

probabilistic choice for any given context. For example, it is not the case that in examples like

(14) one can alternate between NP and N′. Instead, in (14) it is always NP, while in unambiguous

utterances like (9), it is always N′. We will assume (along with previous studies) that children

prefer referential elements to have as few categories as possible (ideally, just a single category),

which is why they must choose between N′ and N0 when one is smaller than NP for ambiguous

examples like (4), (10), and (11).

12 Some of these variables take on an additional value of “not applicable” in certain cases, but

otherwise take on one of only two values.

13 In particular, two combinations are invalid. The first is the combination of mod=no and i=yes.

Though the referential intent is to include the mentioned property in the antecedent (i=yes), there

is no place syntactically for the property to go, as no modifier is possible (mod=no), as is the case

for category N0. The second invalid combination is mod=yes and i=no: Though the referential

intent is not to include the property, the syntax requires a modifier to be present – and this is

impossible as no property can fill the modifier slot.

14 Note that if no property was mentioned (m=no), the decision as to whether an object present has

the mentioned property is moot (o-m=N/A), as is the decision to include the mentioned property

in the antecedent (i=N/A).

15 Before seeing any data at all, the learner effectively imagines that one data point has been observed

in favor of one value of the variable (α=1) and one data point has been observed in favor of the

other value of the variable (β=1). These numbers are quickly overwhelmed by actual observations

of data.

16 We discuss how to determine the values of these free parameters in section 5.2.2 below.

17 See Appendix 1 for a more thorough breakdown of the corpus analysis we have conducted here.

18 Specifically, 2,874 of the 17,521 utterances from the Eve corpus were referential data points

containing a pronoun, which is approximately 16.4%. The number of utterances children would

hear between 14 and 18 months is approximately 1,000,000*4/18, which is 222,222. We multiply
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222,222 by 16.4% to get the number of referential pronoun data points heard during this period,

which is 36,452, and we round that to 36,500.

19 The actual numbers P&L found from their corpus analysis of N′ strings were 119 noun+modifier

N′ strings to 346 noun-only N′ strings, which is a ratio of 1 to 2.9.

20 Note that this is the same equation as (18) (the only difference is the value of s). This has

some intuitive appeal since rep1 in (19) corresponds to the target representation which has the

mentioned property included in the antecedent, while the other two representations do not.

21 Note that averaging over 1000 runs means that the learner’s input distribution was drawn from the

distribution in Table 6 for each run, but the order of data types encountered may differ from run to

run.

22 We note that this is the Baker learner which does not already know one is category N′. Since we

are comparing data intake sets, it seemed reasonable to show what would happen when learning

only from the data the Baker learner considers relevant.

23 Note that the +OtherPro learner would have still have adult-like behavior (believing the antecedent

string = bottle, and so the referent is a BOTTLE).

24 See (19) for a reminder of why this happens.

25 Thanks to the UChicago audiences for pointing the ideas in this section out.

26 Our corpus was not marked for contrastive focus, so it is unclear how often data like (28b) appear.

27 Thanks to Greg Kobele for noting this.

28 Assuming s is high enough for the Sem-Syn ambiguous data.
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