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Abstract 
 
 This chapter describes the purpose of computational modeling in a language acquisition 
research domain.  It discusses the types of questions computational modeling is ideally equipped 
to handle, reviews recent informative modeling studies for a variety of linguistic questions, and 
highlights important considerations for designing language acquisition models. 
 
0. Introduction 
 
 Language acquisition research is often concerned with questions of what, when, and how.  
What do children know?  When do they know it?  How do they learn it?   
 Theoretical research describes the what – the knowledge that adult speakers have. How 
many vowel phonemes are there in the language?  How is the plural formed?  Does the verb come 
before or after the object?  These and many other questions must be answered before the child 
can speak the language natively.  This linguistic knowledge is the child’s goal or output state. 
 Experimental work often provides the when – at what point in time the child knows 
certain pieces of knowledge about the language and particular systems as a whole.  The child 
follows a certain logical trajectory, of course.  It would be difficult to discover how the past tense 
of verbs is formed before being able to identify individual words in fluent speech.  Still, this 
logical trajectory does not offer any precise ages of acquisition.  Experimental work can, for 
example, pinpoint when word segmentation occurs reliably and when English children learn the 
regular rule for the past tense.  This gives us the time course of language acquisition.  The child 
can segment words reliably by this age, and apply regular past tense morphology by that age, and 
so on. 
 Then, we come to the how.  How does the child learn the appropriate what by the 
appropriate when?  This is the mechanism of language acquisition.  Modeling work can be used 
for examining a variety of questions involving the language acquisition process.  This is because 
a model is meant to be a simulation of the relevant parts of a child’s language learning 
mechanism.  In a model, we can manipulate some part of the mechanism very precisely and see 
the results on learning.  If we believe the model has captured the salient aspects of a child’s 
language acquisition mechanism, then these manipulations and their effects on learning inform us 
about the nature of that mechanism.  Importantly, some manipulations that we can do within a 
model may be difficult to do with real children.  So, the data we glean through modeling is 
uniquely informative because it would often be exceedingly tricky to get the same data through 
traditional experimental means.  
 
0.1 What We Can Control 
 
  Within a model, we may choose the hypotheses the child considers for a particular 
problem.  For example, consider the structure of language that generates the observable word 
order.  Should a child only entertain hypotheses that are hierarchical (that is, they involve 
clustering words into larger units like phrases)? Or, could the child also consider linear 
hypotheses (where words of a sentence are viewed as a single large group that has no special 
divisions within it)?  This definition of the child’s hypothesis space would be very hard to 
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implement in a traditional experimental setup – how could we control the ideas the child has 
about the pattern of data presented? 
 Within a model, we may also constrain the data children use for learning.  Though the 
input consists of all available data in the linguistic environment, the child’s data intake may or 
may not include all of that data.  For example, consider word order. There are many languages 
that seem to alter the “basic” word order of the language in certain linguistic contexts. In German, 
many theoreticians believe the basic order is Subject Object Verb.  However, the word order in 
main clauses is often Subject Verb Object, which is believed to be generated by movement 
options in the grammar. If a child is trying to decide the basic order of the language, Verb-Object 
or Object-Verb, should the child only use data that unambiguously signal one option?  Or, should 
the child use all the available data, and simply guess between the two when the data are 
ambiguous?  As with the hypothesis space definition, this kind of data intake definition is also 
hard to implement in a traditional experiment.  We can’t simply lock children up in a room for a 
few years, only allow them to hear various subsets of data from their native language, and then 
see the effect on their acquisition.  It’s unethical (and a logistical nightmare besides).  But this is, 
in effect, precisely what we can do with our modeled child. 
 Within a model, we can also alter how children use data to update their beliefs in various 
hypotheses.  Turning again to word order, suppose the child has encountered data signaling Verb-
Object order.  Should this immediately increase the likelihood of the Verb-Object order 
hypothesis?  Or, should the child wait until she has seen more Verb-Object data (what if this data 
was some kind of fluke)?  If the child does update her beliefs based on this data point, how much 
should they be updated?  This kind of manipulation, like the others discussed above, is simply not 
feasible to implement experimentally.  How can we control the way children change their beliefs?  
Once again, modeling provides a way to manipulate this variable in the language acquisition 
mechanism. 
 
0.2 What We Should Consider 
 
 Modeling’s strength is its ability to create a language acquisition mechanism that we have 
complete control over.  In this way, we garner data that we could not get otherwise.  However, the 
point of modeling is to increase our knowledge about the way that human language acquisition 
works, not simply provide a computational or mathematical model capable of solving a particular 
problem.  So, we must be careful to ground our model empirically – that is, we must consider if 
the details of the model are psychologically plausible by looking at the data available on human 
language acquisition.  Are the hypothesis space, the data set, and the update procedures realistic?  
To inform us about how to implement our model, we rely on theoretical work about the nature of 
language and experimental work about children’s knowledge of language.  We can’t design a 
realistic model without these.  Modeling is an additional tool we use to understand language 
acquisition - not a replacement for others we already have.   
 
 
1. Rationale  
 
 Now, why do we model?  We model to answer questions about the nature of language 
acquisition that we can’t easily test otherwise.  But what questions are these exactly? 
 It’s quite useful to step back momentarily, and think about how to characterize the 
general problem of language acquisition.  Marr (1982:24-29) identified three levels at which an 
information-processing problem can be characterized: 
 
 (1) Marr levels of description 
    (a) computational level: describes what the problem to be solved is 



    (b) algorithmic level: describes the steps needed to carry out the solution 
    (c) implementational level: describes how the algorithm is instantiated in the available 
medium 
 
 The insight of Marr was that these three levels are distinct and can be explored 
separately. Even if we don’t understand how the solution can be implemented, we can know what 
the problem is and what considerations a psychologically plausible algorithm needs to have.   
Moreover, understanding the problem at one level can inform the understanding of the problem at 
other levels.  
 This transfers readily to language acquisition.  We can identify the computational-level 
problems to be solved: phoneme identification, word segmentation, word order rules, stress 
contour rules, etc.  A psychologically plausible algorithm will need to include considerations like 
the available memory resources children have, and how much processing is needed to identify 
useful data. The medium where all solutions must be implemented is the brain. 
 Crucially, we don’t need to know how exactly a psychologically plausible algorithm is 
instantiated in neural tissue.  Let’s take stress assignment as a specific example.  We can identify 
that the algorithm must involve processing and assigning stress to syllables, without knowing 
how neurons translate sound waves into the mental representation of syllables.   
 However, it’s not that the levels are completely disconnected from each other.  
Knowledge of the algorithmic level, for instance, can constrain the implementational level for 
stress assignment.  If we know that solution involves recognizing syllables within words, we can 
look for neural implementations that can recognize syllables. 
 Speaking more generally about the language acquisition problem, we can ask questions at 
all three levels.  At the computational level, we can identify the problem to be solved – which 
includes definitions of both the input and the output.  For our stress assignment example, the 
input is the available data in the linguistic environment, organized into syllables.  The output is 
syllables with a certain amount of stress assigned to them.  At the algorithmic level, we can 
identify psychologically plausible algorithms that allow the child to learn the necessary 
information from the available data.  With stress assignment, considerations may include what 
linguistic units probabilistic learning should operate over (syllables, bisyllable clusters, metrical 
feet, etc.).  At the implementational level, we can test the capability of biologically faithful 
models for implementing psychologically plausible algorithms and producing solutions that are 
behaviorally faithful.  Neural networks are a prime example of biologically inspired models that 
attempt to replicate human behavior in this way. 
 
1.1. Some Modeling Caveats: Types of Questions 
 
 A model is meant to provide insight to problems that are not readily solvable.  Testing the 
obvious with a model will, unsurprisingly, give obvious answers.  Suppose for example that we 
have a model that learns the word order of verbs and objects in the language.  A question 
inappropriate for modeling would be something like the following:  “If I give the model 
examples only of Verb-Object order, will the model always learn Verb-Object order?” Unless the 
model incorporates some very strong biases for another word order, the model will of course 
learn Verb-Object order.  So, the output of the model in this case is unsurprising.  No serious 
question will have been answered by a model of this kind.   
 Similarly, modeling doesn’t provide informative answers to uninformative questions.  A 
good rubric of  informativity is theoretical grounding.  An uninformative question might be 
something like this: “If the model’s input consists only of words ending with –yze (like analyze) 
and words ending with –ect (like protect), will it hypothesize that the past tense is formed by not 
changing the word form (analyze becomes analyze, protect becomes protect)?”  This is 
uninformative because there is no theoretical grounding -  no particular behavior from the model 



will tell you anything more about the problem.  If the model doesn’t hypothesize the no-change 
past tense behavior, what will this tell you?  If the model does hypothesize that behavior, what 
will that tell you?  Without a theory that makes predictions one way or the other, all we have 
done by modeling this question is practice our computer programming skills. 
 The main point is that a model provides a way to investigate a specific claim about 
language acquisition, which will involve a non-obvious informative question.  Here’s an example 
of one: Suppose that a language learning theory claims that a child shouldn’t learn from all the 
available data in order to learn the correct generalizations about the language.  Instead, the child 
should only learn from “good data”, where “good” is defined by the learning theory.  If a model is 
provided with data from the language and incorporates the learning theory’s “good data” bias, 
will the model learn the correct generalizations about the language at the same rate children do?   
 This question is grounded theoretically in a claim about the data children use during 
acquisition.  The model is grounded empirically from language data that comes from 
experimental work (such as child-directed speech transcripts) and from the time course of 
language learning that also comes from experimental work.  Moreover, the model provides an 
informative test of the learning theory’s prediction.  If the model learns the correct 
generalizations at the same rate children do, then the learning theory’s “really good data” bias is 
supported.  On the flip side, if the model does not display the correct behavior, then the learning 
theory’s claim is considerably weakened as it does not succeed in a realistic learning scenario.  
For these reasons, this model’s behavior is both non-obvious and informative.  Therefore, this 
kind of question is good to model. 
 
1.2. Some Modeling Caveats: Empirical Grounding 
 
 Regarding the details of model implementation, empirical grounding is vital.  This can 
include using realistic data as input, measuring the model’s learning behavior against children’s 
learning behavior, and incorporating psychologically plausible algorithms into the model.  All of 
these combine to ensure that the model is actually about human learning, rather than simply about 
what behavior a computational algorithm is capable of producing.   
 Let’s examine a particular problem in detail – say, word segmentation.  Realistic data 
would be child-directed speech, which would be the un-segmented utterances a child is likely to 
hear early in life.  This data can come from transcripts of caretakers interacting with very young 
children.  An excellent resource for this kind of data, in fact, is the freely available Child 
Language Data Exchange System (CHILDES) (MacWhinney 2000).  
 Measuring the model’s learning behavior against child learning behavior would include 
being able to segment words as well as children do and being able to learn the correct 
segmentations at the same rate that children do.  Both of these will come from experimental work 
that probes children’s word segmentation performance over time.   
 Psychologically plausible algorithms will include features like gradual learning, 
robustness to noise in the data, and learning incrementally.  A gradual learner will slowly alter its 
behavior based on data, rather than making sudden leaps in performance.  A robust learner will 
not be thrown off when there is noise in the data, such as slips of the tongue or chance data from a 
non-native speaker.  An incremental word segmentation learner is one that learns from data as it 
is encountered, rather than remembering all data encountered and analyzing it all later.  These 
features are derived from what is known about the learning abilities of children – specifically, 
what their word segmentation performance looks like over time (it is gradual, and not thrown off 
by noisy data) and what cognitive constraints they may have at specific ages (such as memory or 
attention limitations).   
 Without this empirical grounding – without realistic data, without measuring behavior 
again children’s behavior, and without a psychologically plausible model – the model is not 
informative about how humans learn.  Since the point of language acquisition research is how 



humans learn, computational models should be empirically grounded as much as possible if they 
are to have explanatory power.  
 Yet, we should not go too far in empirically grounding the model – no model can include 
everything about a child’s mind and linguistic experience.  It’s simply not tractable to do so.  The 
crucial decisions in modeling involve where to simplify.  A model, for instance, may assume that 
children will pay equal attention to each data point encountered.  In real life, this is not likely to 
be the case – there are many factors in a child’s life that may intervene.  Perhaps the child is tired 
or is distracted from the speaker by some interesting object in the environment.  In these cases, 
the data at that point in time will likely not impact the child’s hypotheses about linguistic 
knowledge as much as other data has or will. Yet it would be an unusual model that included a 
random noise factor of this kind.   
 The reason for this excision is that unless there is an extremely pervasive pattern to the 
“attention” noise of the child, the model’s overall behavior is unlikely to be affected by this 
variable.  In general, a model should include only as many variables as it needs to explain the 
resultant behavior pattern.  Too many points of variation will cause the model to again lose 
explanatory power.  Put simply, if too many parameters of the model vary simultaneously, the 
model’s behavior cannot be attributed precisely to the manipulation of these variables.  The cause 
of the model’s behavior is unknown – and so there is no explanatory power. 
 The solution, of course, is very similar to that of more traditional experimental work: 
isolate the relevant variables as much as possible.  The key word is relevant: it’s alright to have 
some model parameters that vary freely or need to be calibrated.  For instance, the input set to the 
model is a certain number of data points, and may not be specified explicitly by the learning 
theory.  The important thing is to assess the effect the value for these additional model parameters 
has on the model’s behavior. For the input set size, does the behavior change if the model 
receives more data points?  If so, then this is a relevant parameter after all.  Does the behavior 
remain stable so long as the input size is above a certain number?  If so, then this is only a 
relevant parameter if the input size is below that threshold. In explaining the model’s behavior, 
this input size variable can be removed as long as it’s above that critical threshold.   
 A good general strategy with free parameters in a model is to systematically vary them 
and see if the model’s behavior changes.  If it doesn’t, then they are truly irrelevant parameters – 
they are simply required because a model needs to be fully fleshed out (for instance, how much 
input the model will encounter).  But these parameters are not part of the real cause of the 
model’s behavior.  However, if the behavior is dependent on the free parameters having some 
specific values or range of values, then these become relevant.  In fact, they may become 
predictions of the model about the real state of the world.  If, for instance, the model only 
performs appropriately if the input size is greater than the amount of data encountered by a child 
in 6 months, then the model predicts that this behavior should emerge later than 6 months after 
the onset of learning. 
 
1.3. Some Modeling Caveats: Free Parameters Within the Model 
 
 Why do models have these free parameters, anyway?  Why not just include only the 
parameters specified by the theoretical claim the model is investigating?  This would be fine if 
theoretical claims about language acquisition were fully fleshed out to the extent that a model 
needs to be.  Unfortunately, they rarely are.  They may not say exactly how much data the child 
should encounter, they may not predict the exact time of acquisition or even the general time 
course, and they will often make no claims about how exactly the child updates his linguistic 
knowledge based on the available data.  These (and many others) are all decisions left to the 
modeler.   
 Variables common to most models are how much data the model processes and whatever 
parameters are involved in updating the model’s beliefs (usually in the form of some equation 



that requires one or more parameters).  The input to the model can usually be estimated from the 
time course of acquisition.  Suppose a child solves a particular learning task within 6 months.  
The amount of data a child would hear in 6 months can be estimated from transcripts of child-
directed speech.   
 The update of the model’s beliefs usually involve probabilistic learning of some kind, 
which in turn involves using some particular algorithm.  Three popular algorithms are Linear 
reward-penalty (Bush & Mosteller 1951, used in Yang 2002, among others), neural networks 
(Rumelhart & McClelland 1986, among others), and Bayesian updating (used in Perfors, 
Tenenbaum & Regier 2006, Pearl & Weinberg 2007, among many others).  No matter the 
method, it will involve some parameters (Linear reward-penalty: learning rate;  neural networks: 
architecture of network; Bayesian updating: priors on hypothesis space).  Again, it’s alright to 
have free parameters in the model – it’s simply up to the modeler to (a) assess their effect on the 
model’s behavior, and in some cases (b) highlight that these are instrumental to the model’s 
behavior and are therefore predictions the model makes about human behavior. 
 
 1.4. Some Basic Questions for Modeling: Summary 
 
 There are three main types of questions for evaluating a model’s contribution to language 
acquisition: questions of formal sufficiency, developmental compatibility, and explanatory power.  
First, formal sufficiency: does the model learn what it’s supposed to learn when it’s supposed to 
learn it from the data it’s supposed to learn it from?  This is evaluated against known child 
behavior and input.  Second, developmental compatibility: does the model learn in a 
psychologically plausible way, using resources and deploying learning algorithms in a way a 
child plausibly could?  This is evaluated against what’s known about a child’s cognitive 
capabilities. Third, explanatory power: what’s the crucial part of the model that makes it work, 
and what does this mean for the theoretical claim the model is testing?  This is evaluated by the 
modeler via manipulation of the model’s relevant parameters.  When these questions can be 
answered satisfactorily, the model contributes something significant to language acquisition 
research. 
     
 
2. Linguistic Variables 
 
 Here we’ll examine more closely the kinds of problems modeling can be applied to.  To 
put it simply, modeling can be used for any linguistic problem where there is a theoretical claim 
about learnability, a defined input set, and a defined output behavior.  This can range from 
identifying phonemes in the language to extracting words from fluent speech to learning word 
order rules to identifying the correct parametric system values for complex linguistic systems.  In 
the remainder of this section, we’ll survey a number of modeling studies for a wide variety of 
language acquisition tasks. 
 
2.1. Phoneme Acquisition 
  
 First, modeling can be applied to the problem of discovering the phonemes of a language.  
Vallabha, McClelland, Pons, Werker, and Amano (2007) did just this, investigating the 
learnability of vowel contrasts in both English and Japanese from English and Japanese vowel 
sound data.  The learning task was well-defined: Can a model learn the relevant vowel contrasts 
for these languages without explicit knowledge about the relevant dimensions of variation and the 
number of distinct vowels?  The data came from English and Japanese mothers speaking to their 
children, and so were a realistic estimation of the data children encounter.  The learning 
algorithms tried within the model were incremental and probabilistic, drawing from similar 



algorithms in computer science.  The performance of this model was quite promising – high 
success rates, depending on the type of learning algorithm used.  The implications for learning 
theory are straightforward: learning probabilistically from noisy data can lead to human-like 
performance in this case, even without defining the hypothesis space very strictly.  However, the 
type of probabilistic learning has a significant effect on how successful learning will be.  A 
prediction from this model might be that the statistical processes underlying human learning will 
be similar to those properties of the algorithm that most closely matches human behavior. 
 
2.2. Word Segmentation 
 
 Modeling can be applied to the problem of how children extract the units we think of as 
words from fluent speech.  Experimental work on artificial languages suggests that certain kinds 
of statistical information can be tracked unconsciously by young children – namely, the 
transitional probability between syllables.  The transitional probability of the syllable sequence 
AB is the probability that  B is the next syllable, given that A is the first syllable.  One question is 
if this strategy will be effective on realistic data.   
 Gambell and Yang (2006) modeled the performance of a transitional probability learner 
on English child-directed speech.   The data came from transcripts of English caretakers speaking 
to children, drawing from CHILDES (MacWhinney 2000).  Of course, the child encounters the 
pronunciations of these utterances, not their written form.  So, Gambell and Yang used a freely 
available pronunciation dictionary, the CMU Pronouncing Dictionary 
(http://www.speech.cs.cmu.edu/cgi-bin/cmudict), to approximate the sounds children heard.  
 It turns out, perhaps surprisingly, that a transitional probability learner actually performs 
quite poorly on the English dataset.  Further exploration by Gambell and Yang showed that when 
a transitional probability learner is armed with additional information about the sound pattern of 
words (called the Unique Stress Constraint), the modeled learner succeeds.  Moreover, the 
Unique Stress Constraint yields success even if the learner doesn’t use transitional probabilities.  
A prediction that comes from this model is that the Unique Stress Constraint is very useful 
knowledge to have – and we can test if children know it before they can identify words in fluent 
speech.  Because this model was explicitly defined, Gambell and Yang were able to manipulate 
the learning procedure very precisely and make informative predictions about strategies children 
might use to solve the word segmentation task. 
 
2.3. Grammatical Categorization 
 
 Modeling can be applied to the grammatical categorization of words. Grammatical 
category information tells the child how the word is used in the language – for instance, nouns 
(but not verbs) can be modified by adjectives: juicy peach (but not juicy eat).  Mintz (2003) 
explored one strategy children might use to identify words that behave similarly: frequent frames.   
 Frequent frames consist of framing words that cooccur very frequently in the child’s 
experience. For example, in she eats it, the frame is she___it and the framed word is eats.  This 
strategy was motivated by  
experimental evidence suggesting that infants can track the cooccurrence of items that are non-
adjacent.  Frequent frames were intended as a means to initially cluster similarly behaving words 
together.  Notably, they don’t rely at all on word meaning, unlike some other theories of 
grammatical categorization.  
 The data used as input for the model came from transcripts of child-directed speech from 
CHILDES (MacWhinney 2000).  The modeling results showed that a frequent frame learner can 
indeed successfully identify words that behaved similarly solely on the basis of their common 
frames.  These categories mapped very well to the “true” grammatical categories like noun and 
verb.  A prediction generated from this model was that children are sensitive to the information in 



frequent frames when learning a word’s grammatical category.  Experimental work by Mintz 
(2006) tested precisely this sensitivity to frequent frames in infants – and yielded promising 
results. 
 
2.4. Morphology Acquisition 
 
 Modeling has been applied to learning morphology - a common problem is the English 
past tense.  The problem itself is one of mapping: given a verb (blink, sing, think), map this word 
form to the appropriate past tense of that verb (blinked, sang, thought).  The input data to models 
is usually realistic estimates of the verbs children encounter during learning, derived from 
resources like CHILDES (MacWhinney 2000). The output of the model is compared against what 
is known from experimental work about how and when children appear to learn certain past tense 
forms.   
 The main point of interest in many morphology models is that there is a division between 
a regular pattern (e.g. blink-blinked) and several irregular patterns (e.g. sing-sang, think-thought).  
Experimental work indicates that many children have a trajectory that involves good performance 
on all the verbs they know, followed by poor performance on only the irregular verbs, which is 
then followed by good performance on all the verbs again.  The ability to generate this learning 
trajectory (good-poor-good performance) is often the output goal for English past tense models.   
 The learning procedures of these models usually take great pains to be psychologically 
plausible, and often vary between neural networks (Rumelhart & McClelland 1986, Plunkett & 
Marchman 1991, Prasada & Pinker 1993, Hare & Elman 1995, Plunkett & Juola 1999, Nakisa, 
Plunkett, & Hahn 2000, among many others) and probabilistic rule-learning models (Albright & 
Hayes 2002, Yang 2002, Yang 2005, among others).   All models are incremental, learning from 
a single data point at a time.  When the models are able to produce the correct learning trajectory, 
it is because of some precise design feature within the model – perhaps the way data is 
representated (ex: Rumelhart & McCelland 1986) or what causes the child to posit a regular rule 
pattern (ex: Yang 2005).   
 The predictions generated from these models pertain to the causal factors of the 
performance trajectory.  For instance, a model by Yang (2005) predicts that the performance 
trajectory depends in a very precise way on the number of regular and irregular verbs encountered 
by the child and the order in which these forms are encountered. This prediction can be assessed 
by examining specific input and performance data from experimental work with children learning 
the English past tense, and seeing if the model’s predictions match children’s behavior. 
 
2.5. Learning Referential Elements 
 
 Modeling has also been applied to learning problems that deal with referential linguistic 
elements such as anaphors, pronouns, and other referring expressions.  The interesting property of 
referential items is that they can only be interpreted if the listener knows what they refer to.  For 
example, the word one in English can be used in a referential manner (sometimes known as the 
anaphoric use of one): “Jack has a red ball.  He wants another one.”  Most adult speakers of 
English interpret the second sentence to mean “He wants another red ball.”  So, the word one 
refers to the words red ball, and the referent of one in the world is (presumably) a ball that is red.  
This means that correct interpretation of one relies on identifying the words one is synonymous 
with (red ball), which then leads to the object in the world one refers to (a ball that is red).  The 
learning problem for the English child is how to interpret anaphoric one when it’s encountered.   
 Several learning models have attempted to tackle this problem, using incremental, 
probabilistic learning algorithms on the data.  Regier and Gahl (2004) and Pearl and Lidz (under 
review) manipulated the data children use as input in their models, and found that the correct 
interpretation can be learned very quickly if children use only a highly informative subset of the 



available input.  Foraker, Regier, Khetarpal, Perfors, & Tenenbaum (2007) created a model that 
learned the words one referred to (e.g. red ball) separately and prior to learning the object in the 
world one referred to (e.g. a ball that is red).   Thus, the predictions from these models are that 
children are sensitive to specific aspects of the available data when learning this kind of 
interpretation rule.  As before, because the hypothesis space and input to these models were 
precisely defined, the models could manipulate both of these and see the results on learning. 
 
2.6. Syntactic Acquisition 
  
 Modeling is also useful for learning the word order rules that make up the syntactic 
system of language.  One example of a word order rule involves the formation of yes/no 
questions in English when the subject is complex.  For instance, take the following sentence: 
“The knight who can defeat the dragon will save the princess.”  The yes/no question equivalent is 
this: “Will the knight who can defeat the dragon save the princess?”  Importantly, the auxiliary 
verb (will, can, do, might, etc.) that moves to the beginning of the question is the auxiliary verb 
from the main clause of the sentence (The knight…will save the princess.).   
 Interestingly, though children know this rule fairly early, the data they encounter has very 
few explicit examples of this rule - importantly, few enough that children’s early acquisition of it 
seems surprising if their hypotheses for possible rules are not constrained (Legate & Yang 2002).  
Reali and Christiansen (2004) questioned whether a probabilistically learning child might 
nonetheless infer the correct rule from other simpler examples of yes/no question formation that 
are more abundantly available in the input.  They designed a model sensitive to certain simple 
statistical information (called bigrams) that a child might plausibly track in the data.  A bigram 
probability refers to how often two words cooccur together in sequence.  In the sentence “She ate 
the peach”, the bigrams are she ate, ate the, and the peach.   Based on the data used as input 
(which was derived from CHILDES), a model tracking bigrams preferred the correct complex 
yes/no question over an incorrect alternative.  
 Kam, Stoyneshka, Tornyova, Sakas, and Fodor (2005), however, worried that this 
model’s success was due to particular statistical coincidences in the specific data set used as 
input, and so would not perform as well on different data sets.  When they tried the same learning 
model on other data sets of child-directed speech, they found this to be so – the model was at 
chance performance when choosing between yes/no question options.  A prediction from these 
two models is that children must be learning the yes/no question formation rule from something 
besides bigram probability.   
 
2.7. Syntactic Acquisition Over Time 
 
 Another study of learning word order rules capitalized on the potential interaction 
between language learning in individuals and language change in a population over time.  Put 
simply, in some cases, language change is thought to happen because individuals don’t quite learn 
the same linguistic knowledge as their predecessors.  The children learn it well enough to 
communicate effectively with the rest of the population, but there may be small changes in the 
probability with which they use certain rules. It is this individual “mis-learning” that causes 
change to the entire population, as the small individual changes compound over time (Lightfoot 
1999).   
 Pearl and Weinberg (2007) designed a model that tracked change in the order of objects 
and verbs.  Historical data showed that the population used Object-Verb order (She peaches eats 
= “She eats peaches”) more predominantly before the change and Verb-Object order (She eats 
peaches) more predominantly afterwards.  Moreover, the change proceeded at a specific rate.  
Their population model was comprised of individuals who learned their probability of using 
Object-Verb/Verb-Object order by listening to other speakers within the population, and children 



learned from other speakers only for a few years after they were born. At no other time was 
change allowed to an individual’s linguistic knowledge, so how children learned strongly 
influenced the rate of change in the population.   
 The population model allowed different individual learning models to be used, and Pearl 
and Weinberg discovered that the population only changed its language usage at the correct rate 
when individuals learned in specific ways.  In particular, individuals needed to learn from a 
subset of the available input, rather than using all the data that was available to them.  The 
prediction generated from this model is that these learning restrictions are not just in place for 
children who live during language change, but are in fact part of the way children learn this 
information even when the language is stable. 
 
2.8. Stress System Acquisition 
  
  Modeling can also cover the acquisition of other complex generative systems, like 
metrical phonology. The system of metrical phonology determines where the stress is in words.  
For instance, the word emphasis has stress on the first syllable ‘em’, and not on the other two: it 
is pronounced EMphasis.  It turns out that this stress pattern is generated by a system that groups 
syllables into larger units called metrical feet, and languages vary on how they group syllables.  
The child’s task is to unconsciously infer the rules that lead to the stress patterns in the observable 
data.   
 A model by Pearl (2008) examined this learning problem for English, which has many 
exceptions to the general rules.  Child-directed English speech from the CHILDES database was 
used as input, and the measure of correct learning in the model was whether the English rules 
could be learned from this data.  The results showed that children could succeed if they learn only 
from highly informative data, and ignore ambiguous data.  In addition, learning success was only 
guaranteed so long as the rules were learned in a particular order.  A prediction generated from 
this model is that English children should learn the English rules in that special order if they are 
in fact using only highly informative data to infer the rules. 
 
2.9. Modeling Study Summary 
 
 This section has highlighted different studies where modeling complements more 
traditional experimental research techniques for learning a variety of linguistic knowledge: 
sounds, words, grammatical categories, morphology, referential elements, and complex systems 
that generate word order and stress patterns.  In each case, the strength of the model is in its 
empirical grounding and its ability to make predictions that can lead to further experimental 
research.  
 
3. Subjects 
 
 The question of subjects corresponds in modeling to what kind of subject the model is of.  
In all the modeling studies mentioned in the previous section, the simulated learner was a normal 
monolingual (L1) speaker learning from monolingual data.  However, modeling can certainly be 
extended beyond the normal L1 learning situation, as long as the appropriate input data is 
available.   

As an example, a second-language (L2) learning model could be set up that learns from 
L2 data.  However, the way to distinguish an L1 model from an L2 model is that the L2 model 
will likely already have linguistic information in place from its own L1.  The way this is 
instantiated in the model will depend on what is known empirically about how L2 learners 
represent their L1 language rules.  The important thing is to ground the model theoretically and 
empirically.  A theoretical grounding will include a description of the knowledge an L2 learner 



has of their L1, how it is represented, and how this representation is altered or augmented by data 
from the L2 language.  An empirical grounding will include the data learners have as input and 
what information they are likely to use to interpret that input (in the L2 learning case, bias from 
the L1).   

More generally, modeling different kinds of subjects requires a detailed instantiation of 
the relevant aspects of those subjects (knowledge known, initial bias, and interpretation bias, for 
instance). If this information is available or can be reasonably estimated, a learning model can 
easily be designed for that subject. 
 In a similar way, the age of the simulated learner can vary.  It is usually set to be the age 
when the knowledge in question is thought to be learned – information available from 
experimental work.  For instance, in the Gambell and Yang (2006) word segmentation model, the 
simulated learner was assumed to be around 8 months.  The age restriction in a model is usually 
instantiated as the model having access to the data children of that age have access to (in the word 
segmentation case, syllables), and processing the data in ways children of that age would be able 
to process it (in the word segmentation case, without access to word meaning). 
 All kinds of learners can be modeled.  The key is the model will only be informative if 
the relevant information about the subject is represented in the model.  So, it is important to 
consider what the relevant information about the subject actually is before designing the model.  
This relates to the next section where we’ll review some practical considerations of model design. 
 
 
4. Description of procedure 
 

For modeling, the relevant experimental procedure is, of course, the model itself.  And 
it’s simply the case that models are often more concrete than the theories they test.  This is both a 
strength and a weakness.  A model’s concreteness is good because it allows us to identify the 
parameters of learning that a theory may be vague about – for example, how much data the child 
processes before learning the relevant information and how fast the child alters her linguistic 
knowledge when learning.  The not-so-good aspect of this concreteness is that the modeler is 
forced to make an estimate about a reasonable value for unknown parameters.   
 
4.1. The Effect of Parameter Values 
 

Sometimes, parameter values for a model can be estimated from available experimental 
data.  For instance, the amount of data a child processes might be roughly equivalent to the 
amount of data the child has encountered by whatever age that knowledge is learned.  Other 
times, the modeler will simply have to choose a value for convenience and see if this strongly 
impacts the results of the model.  The learning rate in the model, for example, usually requires a 
value for specifying how much a single data point impacts the child’s current hypotheses. 

The point is that these parameters affect the outcome of the learning model.  So, the value 
of these parameters may matter.  A good way to check this is to try a range of values for the 
unknown parameters and see the effect on the learning model.  If the model’s behavior remains 
invariant, then these parameters, while necessary for implementing the model, do not really affect 
learning.  In contrast, if the model only succeeds when the parameters have certain values, then 
this is a prediction the model makes about the actual values of these parameters in the learning 
model.  For example, if the learning model only matches children’s behavior when it receives 
more than a certain quantity of input, then the model predicts children need to encounter at least 
that much data before successfully learning the linguistic knowledge in question. 
 
4.2. Control Conditions and Experimental Conditions 
 



From a certain perspective, models are similar to traditional experimental techniques. 
Experimental techniques usually require a control condition and an experimental condition so that 
the results can be compared.  In modeling, this can correspond to trying ranges of parameter 
values for parameters that are not specified by the theory being tested.  If the same results are 
obtained no matter what the conditions, then the variables tested – that is, the parameter values 
chosen for the model – do not affect the model’s results. 

There is another way for models to have a control and test condition that is more 
transparently related to traditional experimental techniques.  This has to do with models that 
simulate a child’s ability to make some kind of generalization.  Suppose a model is simulating a 
child’s ability to categorize sounds into phonemes, as in the Vallabha et al. (2007) study.  The 
model first learns from data in the input set – individual sounds from child-directed speech in the 
sound category study.  To gauge the model’s ability to generalize correctly, the model must then 
be tested.  The sound category model may be given a new sound as input and then output the 
category that sounds belongs to.  The control condition would give the model sounds that were in 
its input – that is, sounds the model has already encountered and, in fact, learned from.  The 
model’s ability to correctly classify these sounds is its baseline performance.  The test condition 
would then give the model sounds that were not in its input – that is, these are sounds that the 
model has not previously encountered.  Its ability to correctly classify them will demonstrate 
whether it has correctly generalized its linguistic knowledge (the way children presumably do), or 
if it is simply good at classifying the data it’s familiar with.   

As we recall, data for models often comes from databases of child-directed speech.  So, 
test condition data may come from a different speaker within that database.  If the model has not 
learned to generalize the way children do, the model may perform well on data from one set of 
speakers (perhaps similar to the data it learned from) but fail on data from other speakers.  This 
was the case for the word order rule model proposed by Reali & Christiansen (2004).  While it 
was successful when tested on one set of data, Kam et al. (2005) showed that it failed when tested 
on another set of data.  This suggests that the model is probably not a good reflection of how 
children learn since they can learn from many different data types and still learn the correct 
generalizations. 

This last point is particularly important for models that import learning procedures 
(usually statistical) from more applied domains in computer science. Many statistical procedures 
are very good at maximizing the predictability of the data used to learn, but fail to generalize 
beyond that data.  So, it is wise for a model that uses one of these procedures to show that it 
performs well on a variety of data sets.  This will underscore the model’s ability to generalize.  
Since this is a property human language acquisition has, a model able to generalize will be more 
informative about the main questions of language acquisition. 
 
4.3. More Practical Details 
 
 In general, a model will require a computer capable of running whatever program the 
model is built in.  In some cases, the program will be a package where the modeler can simply 
change the relevant variables and run it on the computer.  An example of this is the PRAAT 
framework designed by Paul Boersma (Boersma 1999), which allows a modeler to test the 
learnability of sound systems using a particular learning algorithm.  

In general, however, the modeler will need to write the program that implements the 
necessary learning algorithm and describes the relevant details of the simulated learner.  In this 
case, a working knowledge of a programming language is vital – some useful ones are Perl, 
Java/C++, and Lisp.  Knowing at least some of these will give you great flexibility when 
modeling.  Often, it will not take a large amount of programming to implement the desired model 
in a particular programming language.  The trickier part is often in the design of the model itself.   

The modeler must consider what information it is important to represent in the simulated 



learner. How does the learner represent the required information (sounds, syllables, words)?  
Does the learner have access to additional information during learning (meanings of words when 
learning about their sounds, stress contours of words when learning about their meanings)?  How 
does the learner interpret the available data (does the learner need to separate words into 
syllables, does the learner already know what grammatical category words are)?  How will the 
learner learn (bigrams, tracking frequencies of certain information)? As mentioned earlier, 
theories are not usually explicit about all these details – but a model must be.  Therefore, the 
modeler will often spend a good deal of time making decisions about these questions before ever 
writing a single line of programming code. 
 
4.3 Summary of Modeling Procedures 
 

The most crucial aspect of modeling is the decision process behind its design, not the 
details of how it’s programmed.  For this reason, this section has focused on the kinds of 
decisions that are most relevant for language acquisition models.  All these decisions focus on 
how the model will represent both the learner and the learning process.  As theories often do not 
specify all the details a modeler needs to implement the model, the modeler must draw on other 
sources of information to make the necessary decisions – experimental data and electronic 
databases like CHILDES provide some guidance.  But, the modeler’s ingenuity is required to 
successfully integrate whatever information is available into the design of the learning model.  
This is a very real component of using models for language acquisition research. 
 
 
5. Analysis and outcomes 
 
 Modeling results can be presented in numerous ways, depending on what the model is 
testing.  Below, we’ll review some common methods of representing modeling results. 
 
5.1. Models That Extract Information  
 
 For tasks where the model is extracting information, the relevant results are (not 
surprisingly) how well that information is extracted. Two useful measures, taken from 
computational linguistics, are recall and precision.  To understand these two measurements, let’s 
switch momentarily to the task of a search engine like Google.  Google’s job is to identify web 
pages of interest when it’s given a search term (e.g. “goblins”, “1980s fantasy movies”, “David 
Bowie”).  An ideal search engine returns all and only the relevant web pages for a given term.   If 
the search engine returns all the relevant web pages, its recall will be perfect.  If the search engine 
returns only relevant web pages, its precision will be perfect.  Usually, there is a tradeoff between 
these two measurements.  A search engine can achieve perfect recall by returning all the web 
pages on the internet.  However, only a small fraction of these web pages will be relevant, so the 
precision will be low.  Conversely, the search engine might return only a single relevant web 
page.  Its precision will then be perfect (all returned pages were relevant), but its recall is very 
low because presumably there are many more relevant web pages than simply that one.  Both 
precision and recall are therefore relevant for tasks of this nature, and both should be reported. 
 Let’s transfer this to some models we've already discussed.  One example is the word 
segmentation model of Gambell and Yang (2006).   Given a stream of syllables, the model tries to 
extract all and only the relevant words using different learning algorithms.  Precision is calculated 
by dividing the number of real words posited by the number of total words posited.  Recall is 
calculated by dividing the number of real words posited by the total number of real words that 
should have been posited. Often, the more successful strategies have fairly balanced precision and 
recall scores.   



 Another example is the word categorization model of Mintz (2003).  Given a stream of 
words, the model clusters words appearing in similar frequent frames.  Then, these clusters are 
compared against real grammatical categories to see how well they match.  A cluster is assigned 
to a grammatical category such as noun or verb.  Precision is calculated by dividing the number 
of words falling in that grammatical category within the cluster (say, the number of verbs in the 
cluster) by the total number of words in the cluster.  Recall is calculated by dividing the number 
of words falling in that grammatical category within the cluster (all the verbs in the cluster) by the 
total number of that grammatical category in the data set (all the verbs in the corpus).  It turns out 
that precision is nearly perfect, but recall is very low.  So, this learning method is very accurate in 
its classifications, but not very complete in classifying all the words that should be classified a 
particular way. 
 
5.2. Models That Match Children’s Performance 
 
 Some models simulate the trajectory of children’s performance.  So, the results show the 
model’s performance over time.  This can then be matched against what is known about 
children’s performance over time.  A few examples should help illustrate this method. 
 Often, models of English past tense acquisition (e.g.Rumelhart & McClelland 1986, 
Yang 2005, among many others) will try to generate a “U-shaped curve” of performance on 
verbs, which has been observed in children.  Specifically, the model will aim to show an initial 
period where performance on producing verb past tenses is high (many correct forms), followed 
by a period where performance is low (usually due to overregularized forms like “goed”), which 
is then followed by a period where the performance returns to high.  A successful model 
generates this trajectory without having the trajectory explicitly programmed in.  The model then 
aims to explain children’s behavior by whatever factor within the model generated this learning 
trajectory. 
 Another example of matching trajectories comes from the language change study of Pearl 
& Weinberg (2007).  In that study, individual learning controlled the linguistic composition of a 
population of speakers over time.  Data available from historical records suggests that the 
population being modeled changed its linguistic composition at a particular rate.  The purpose of 
the model was to match that rate of change.  When the model can match the historical trajectory, 
then we can again examine what factors caused the model to generate the observed trajectory.  By 
this, we can understand the cause of the actual change observed in the historical population. 
 
5.3. Models That Reach A Certain Knowledge State 
 
 One might also choose to measure how often a model succeeds at learning.  For instance, 
in the Vallabha et al. (2007) study, the model’s goal was to correctly cluster individual sounds 
into larger language-specific perceptual categories.  Different learning algorithms were tested 
multiple times and measured by how often they correctly classified a high proportion of 
individual sounds. The algorithm with a higher success rate was deemed more desirable.  In 
general, this kind of measurement demonstrates the robustness of the learning method.  Ideally, 
we want a learning method that succeeds all the time, since nearly all children successfully 
acquire the knowledge necessary to be a native speaker. 
 
5.4. Models That Generalize  
 
 A related measurement involves testing how often a model makes a correct generalization 
after being trained on data that children learn from.  In the word order studies of Reali & 
Christiansen (2004) and Kam et al. (2005), models learned how to form yes/no questions like “Is 
the king singing?” and “Can the girl who is in the Labyrinth find her brother?” from child-



directed speech.  The test was if the model preferred the correct way of forming a yes/no question 
over an incorrect alternative.   If the model had generalized correctly from its training data, it 
would prefer the correct yes/no question all the time.  As with the previous measurement, this 
measurement demonstrates the robustness of the learning method.  If the model chooses the 
correct option all the time, it can be said to have learned the correct generalization. 
  
5.5. Results Presentation: Summary  
 

The main point of this section is really to highlight that there are a variety of ways to 
present modeling results.  As might be expected, the most effective measure for a model depends 
on the nature of the model – that is, on what learning task it is trying to simulate.  The key is to 
identify the purpose of the model, and then present the results in such a way that they can be 
easily compared to the relevant behavior in children. 
 
 
6. Advantages and disadvantages 
 
 Every model is, of course, different.  However, we can still discuss the main advantages 
and disadvantages of modeling without getting into the nuances of individual models. 

 Put simply, the main advantage of modeling is the ability to manipulate language learning 
in a very precise way and see the results of that manipulation on learning.  In general, the 
manipulation should be something difficult to do with traditional experimental techniques.  For 
example, it would be very tricky for a traditional experiment to manipulate the hypotheses 
children entertain, the interpretive biases they impose on the data, or the update procedure they 
use to shift belief between competing hypotheses.  So, modeling provides an effective way to test 
learning proposals related to these aspects of the learning mechanism. 

The main disadvantage is simply that we can never be absolutely sure that our model is really 
showing how learning works in children’s minds.  Perhaps some crucial information has been left 
out of the simulated child’s knowledge.  Perhaps some critical oversimplifications have been 
made about how the simulated child interprets the available data.  Perhaps the output of the model 
doesn’t have the nuances that children’s behavior does.  This is why modelers strive for as much 
empirical grounding as possible.  The more checkpoints on the model, the more we can believe 
what the model shows us about learning.  This is where drawing from the results of experimental 
work can help.   

In general, there is a dovetailing between experimental work and modeling studies.  
Experimental work can sometimes provide the empirical scaffolding a model needs to get off the 
ground.  In return, models can sometimes provide predictions of learning behavior that can then 
be tested experimentally (for example, Pearl (2008)).  In this way, experimental research and 
modeling research can continue to inform each other.  
 
 
7. Dos and don’ts 

 
Do: 
 - Read history.   

Learn from previous models about what’s reasonable to use as input, algorithms, and 
measures of output.  Consider the strengths and weaknesses of prior models when 
designing your own. 
 
- Listen with care to linguists. 
Linguists can provide you with the theoretical basis for your hypothesis space, and offer 



empirical data to base your model upon.  
 
- Listen with care to psychologists and computational linguists. 
Psychologists will also provide you with empirical data to ground your model.  

Computational  
linguists will provide you with learning methods you can implement within a model, and 
adapt to be psychologically plausible as necessary.   

 
Don’t: 

- Model when it is obvious. 
Models of obvious questions are not informative. 
 
- Forget to ground your model theoretically and empirically. 
Models that don’t use available data (both theoretical and experimental) as checkpoints 
are not as persuasive. 

 
- Overlook that this is a model of human language acquisition. 
Considerations of psychological plausibility should be taken seriously. 
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