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Connectionist and dynamical systems approaches
explain human thought, language and behavior in terms
of the emergent consequences of a large number of
simple noncognitive processes. We view the entities
that serve as the basis for structured probabilistic
approaches as abstractions that are occasionally useful
but often misleading: they have no real basis in the
actual processes that give rise to linguistic and cognitive
abilities or to the development of these abilities.
Although structured probabilistic approaches can be
useful in determining what would be optimal under
certain assumptions, we propose that connectionist,
dynamical systems, and related approaches, which
focus on explaining the mechanisms that give rise to
cognition, will be essential in achieving a full under-
standing of cognition and development.

Emergence of structure in cognition

Emergence is ubiquitous in nature: consider the complex
structure of an anthill. It can have a complex architecture,
with a complex network of passageways leading from deep
underground to 7.5 m into the sky. One might suppose that
ants possess a blueprint for creating such structures, but
something far simpler is in play [1]. Ants are sensitive to
certain gasses within their nests; when these gasses build
up they move grains of dirt to the outside. This activity lets
the gasses escape and has the byproduct of creating the
elaborate structure of the nest.

Likewise, human thoughts and utterances have a rich
and complex structure that, in our view, is also the emergent
consequence of the interplay of much simpler processes. The
emergentist view contrasts with the approach advocated in
the companion article [2], in which cognizing agents are
viewed as optimal inferencing machines, coming to cognitive
tasks with a structured hypothesis space and a prior prob-

E-mail addresses: mcclelland@stanford.edu

ability distribution over hypotheses. Observations provide a
means of evaluating the hypotheses and selecting the one
that has the highest posterior probability. Work within the
structured probabilistic framework is often thought to
address an abstract level of analysis akin to Marr’s compu-
tational level [3], with consideration of the actual cognitive

Glossary

Connectionism: An approach to modeling cognition based on the idea that the
knowledge underlying cognitive activity is stored in the connections among
neurons. In connectionist models, knowledge is acquired by using an
experience-driven connection adjustment rule to alter the strengths of
connections among neuron-like processing units.

Dynamical field theory: Originally formulated as a theory of movement
preparation, in which movement parameters are represented by distributions
of activation defined over metric spaces, the theory has recently been extended
to address cognitive function. Dynamical fields are formalizations of how
neural populations represent the continuous dimensions that characterize
perceptual features, movements and cognitive decisions, and dynamical field
theory specifies how activity in such neural populations evolves over time.
Dynamical system: A mathematical formalization that describes the time
evolution of physical and cognitive states. Examples include the mathematical
models that describe the swinging of a clock pendulum, the flow of water in a
pipe, the movement of the limbs of a walking organism, and the drift that
occurs in working memory towards or away from special points in the state
space.

Emergentist approaches: Approaches to modeling cognition based on the idea
that the structure seen in overt behavior and the patterns of change observed
in behavior reflect the operation of subcognitive processes such as propaga-
tion of activation and inhibition among neurons and adjustment of strengths of
connections between them. In contrast to emergentist approaches, symbolic
approaches, including structured probabilistic models, model cognition
directly at the level of manipulation of symbols and symbolic structures such
as propositions and rules.

Semantic cognition: A cognitive domain encompassing knowledge of the
properties of objects and their relationships to other objects, as well as the
acquisition of such knowledge and its use in guiding inference.

Structured probabilistic models: Models that specify that cognitive activity
involves the use of probabilistic information to select among and specify the
parameters of particular structural forms that specify relationships among
items represented by discrete symbols.

Universal grammar: A hypothetical construct that arose in the context of
generative grammar. A universal grammar, if one existed, would be an
idealized structured representation that captures properties shared by all
natural languages.
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Box 1. Parallel pitfalls of computational-level and
competence approaches

Structured probabilistic inference models include the following

elements:

e Formulation of any given problem as one of probabilistic
inference.

e Commitment to selecting the correct knowledge structure over
which probabilities can be assessed and updated.

e Abstraction from details of behavior and brain because the theory
is usually pitched at Marr’s computational level.

A broader perspective on this approach is provided by looking at
its closely-related precursor, Chomsky’s competence-based ap-
proach to linguistics [4], whose foundational assumptions included
the following:

e Formulation of the goal of the field as characterizing a language
user’s knowledge.

e Commitment to selecting the correct grammar as the representa-
tion that explains such facts.

e Abstraction from details of behavior and brain because the theory
is pitched at the competence level.

In both cases, the goal is an abstract characterization; linkage to
performance is a promissory note, seldom redeemed in practice.

Thus, structured probabilistic models of cognition can be under-
stood as competence theories. As such they inherit problems that
have become apparent with this approach, including:

e The problem formulation is not neutral. If learners are not trying
to ‘select the correct grammar’ or ‘the correct structure’ for a
domain, and approach the problem as if they were, this would be
misleading.

e The commitment to a form of knowledge representation is not
neutral. Commitments to particular choices can lead researchers
into a blind alley. Commitment to grammar formalisms radically
constrains how other issues are addressed. Acquisition becomes
the problem of converging on a grammar, performance the
question of how grammar is used and neurolinguistics the study
of how grammar is represented in the brain. The role of
grammatical theory has greatly diminished over the years
because of the research program'’s lack of progress.

Treating levels of analysis as independent is counterproductive. It

might be difficult or impossible to relate the high-level computa-

tional/competence theory back to facts about behavior and the
brain. Conversely, considering implementation/performance is-
sues can lead to a different high-level formulation of a problem.

e The levels of description and competence/performance ap-
proaches also introduce an uncomfortable extra degree of free-
dom with respect to data. Facts that are consistent with the theory
are embraced whereas facts that conflict with the theory are
relegated to as yet undeveloped ‘algorithmic-implementational’
or ‘performance’ theories.

L]

processes being deferred until the computational-level
theory is fully worked out.

The danger, of course, is that if the high-level descrip-
tion is wrong — that is, if the behaving child or adult were
not actually engaged in the formulation and selection of
hypotheses — then focusing on these constructs would be
misleading. It could give rise to an enterprise, similar to
Chomsky’s competence theory of universal grammar [4], in
which researchers focus on searching for entities that
might exist only as descriptive abstractions, while ignoring
those factors that actually shape behavior (Box 1).

Explanations of behavior that ignore mechanism and
implementation are likely to fall short. For example, a
recent study [5] has found that people can exploit a causal
framing scenario to make normatively correct, explicit
inferences in a contingency learning task if they are given
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Box 2. The units problem in language and cognition

Language is usually characterized in terms of discrete units such as
phonemes, morphemes and sentences. Such units are compatible
with probabilistic inference models that employ structured repre-
sentations. For example, recognizing a speech sound could be
construed as a Bayesian inference problem in which the hypotheses
are alternative phonemes and the task is to pick the one that is most
probable given the input [35]. The utility of this approach depends in
part on the validity of the units as descriptions of linguistic structure.
Herein lies a problem.

All of these units can be intuitively motivated using apparently
clear cases: phonemes are illustrated by minimal pairs such as PEN
and TEN, and morphemes are minimal units of meaning as in
FARM-FARMER. Such units provide useful terminology for describ-
ing and comparing. However, it would be a mistake to take them as
the units involved in acquiring and using language.

In actual spoken language, units such as phonemes and syllables
are matters of degree. There is almost no ‘t’ in ‘softly’, but more of
one in ‘swiftly’ [36]; words such as ‘memory’ have more than two
syllables but less than three [37]. Morphology presents a similar
problem. There are cases in which the meaning of a complex word
seems to be compositional (prefabricate), others where there is no
compositionality at all (corner), and still others (predict, prefer) in
which the parts seem to contribute to, but do not fully determine,
the meaning of the whole [38]. Data suggest that people are
sensitive to the gradations, in that intermediate cases produce
intermediate morphological priming effects [39], indicating that
morphological status is a matter of degree. For years, syntactic
theory treated sentences as grammatical or ungrammatical. How-
ever, the borderline cases are legion [40]. In light of such
observations, many linguists have turned to formalisms that admit
degrees of well formedness [41,42]. However, these systems still
generally require commitments to a set of units over which degrees
of well formedness can be computed. Similar issues arise in all
efforts to create a taxonomy of concepts or meanings for words.

In connectionist models, there is no fixed vocabulary of repre-
sentational units. The internal representations are graded patterns
with varying degrees of distinctness, compositionality and context
sensitivity [43-45]. These characteristics make connectionist models
different from a mere ‘implementation’ of an idealized linguistic
theory.

ample time to make explicit predictions. However, when
the same contingencies govern events to which partici-
pants must respond very quickly, they seem to learn
according to a process akin to simple connection weight
adjustment. Thus, different mechanisms seem to underlie
learning of the very same probabilistic contingencies in the
explicit prediction versus quick response variants of the
task, yet the statistical structure of the two tasks, and thus
the computational-level analysis of what would be optimal
in the two situations, is the same.

To be clear, the disagreement between emergentist
approaches and structured probabilistic approaches is
not about the relevance of probability in characterizing
human behavior: both approaches share an emphasis on
statistical regularities in the learning environment and on
variability in human performance. Indeed, emergentist
models often optimize their probabilistic behavior by learn-
ing to match probabilistic outputs to the statistical struc-
ture of the experiences on which they are trained [6,7]. The
disagreement is also not about advocating a purely bottom-
up versus top-down research strategy because it is our view
that science is best served by pursuing integrated accounts
that span multiple levels of analysis simultaneously.
Rather, the dispute between the two approaches concerns
the utility of treating cognition as if its goal and outcome is
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Box 3. Examples of emergent phenomena in language, development and cognition

Language

Past-tense inflection and single word reading: Systematic linguistic
knowledge (e.g. the past tense of BAKE is BAKED) is often attributed
to the operation of explicit rules, with violations (TAKE/TOOK)
relegated to separate, item-specific storage [46]. Connectionist
approaches in domains including past-tense inflection [47,48] and
single word reading [44,49] have emphasized instead that linguistic
structure is graded rather than all-or-none, and that the relevant
empirical phenomena are better captured by an integrated system in
which all types of items are represented and processed.

Sentence processing: Classical approaches assume an innate
module imbued with Universal Grammar as the basis for acquisition
of syntactic knowledge. However, ElIman [21,50] addressed the
acquisition of syntax in a simple and generic connectionist model
call the Simple Recurrent Network (SRN) (Figure I). Work by Elman
and others has shown how SRNs can assign representations to words
that capture their syntactic and semantic roles in sentences and
respect subtle regularities including long-distance dependencies
without explicit syntactic rules [51]. Related models learn to
comprehend sentences and stories ([52,53]; see also Rohde, D.L.T.,
2002, unpublished PhD thesis, School of Computer Science, Carnegie
Mellon University).

Development

Stage transitions: It has been common to characterize development
as occurring through a series of discrete stages. However, there are
many signs that stage transitions are graded rather than discrete
[54,55]. Connectionist models address such transitions as conse-
quences of nonlinearities in multilayer networks. Effects of connec-
tion-weight changes in such networks exhibit accelerations and
plateaus capturing stage-like phenomena [56,57].

U-shaped developmental trajectories: Young babies held upright
seem to walk, but this behavior ceases long before self-supported
walking. Classical accounts explain the disappearance as reflecting
development of top-down inhibition [58]. More recent research shows
that the disappearance reflects an increase in the mass of the child’s
legs as they develop [69]. The emergentist approach correctly predicts
that walking can be evoked after its apparent disappearance with
appropriate adjustments to counterbalance the effects of increased
leg mass.

Cognitive processes

Semantic cognition: A connectionist model [60] accounted for
apparent modular representation of living things versus artifacts
as an emergent consequence of representation of visual and
functional properties, and greater importance of functional properties
for artifacts and of visual properties for living things (see also
[20,27]).

the selection of one or the other structured statistical
model, whether it be a probabilistic grammar, a mutation
hierarchy, or a specific causal Bayes network [8-10]. From
our perspective, the hypotheses, hypothesis spaces and
data structures of the structured probabilistic approach
are not the building blocks of an explanatory theory.
Rather, they are sometimes helpful but often misleading
approximate characterizations of the emergent con-
sequences of the real underlying processes. Likewise, the
entities over which these hypotheses are predicated — such
as concepts, words, morphemes, syllables and phonemes —
are themselves best understood as sometimes useful but
sometimes misleading approximations (Box 2).

The remaining sections consider two very different
cognitive domains that have been modeled as emergent
phenomena using connectionist and dynamical systems
approaches. In each case, we argue that it is unnecessary,
and could even lead research astray, to characterize the
situation in terms of structured probabilistic inference. In
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Executive functions and short-term memory: The control of
behavior by task and previous context is disrupted in individuals
with brain lesions in a wide range of brain areas, even though such
control has been ascribed to special modules in the frontal lobes [61].
Botvinick and Plaut [62] observed that when complex behaviors have
been acquired by a generic SRN, diffuse damage leaves stereotyped
action patterns intact but distrupts ‘control’ by task and context,
indicating that such control could be an emergent function distributed
over contributing brain areas. Their model also learns hierarchically
structured tasks without explicitly representing hierarchical structure.
Botvinick and Plaut [63] applied a similar model to a range of short-
term memory phenomena that other approaches interpret as
evidence for slots in short-term memory. In their model, the
phenomena arise without explicit slots.
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Figure I. EIman’s simple recurrent network. Each rectangle represents a pool of
simple processing units, and each dashed arrow represents a set of learnable
connections from the units in one pool to the units in another. A stream of items
is presented to the input layer of the network, one after another. For each item,
the task is to predict the next item. The pattern on the hidden layer from
processing the previous item is copied back to the context layer, thereby
allowing context to influence the processing of the next incoming item.
Reproduced, with permission, from Ref. [21].

Box 3 we list examples of other linguistic, developmental
and cognitive domains where the phenomena have been
captured within emergentist approaches.

The A-not-B error: absence of a hypothesis or emergent
consequence of the dynamics of motor behavior?

The A-not-B task was introduced by Piaget [11] to measure
the development of the object concept: the belief that
objects exist independent of one’s own actions. In the
canonical form of the task (Figure 1), after searching for
an object at one location, then seeing it hidden at a new
location, 8-10-month-old infants reach back to that first
location, whereas older infants reach correctly to the new
location. Although the A-not-B task has not been an expli-
cit focus of research within the structured probabilistic
framework, the situation is traditionally described in a
way that is fully consistent with it: on this view, the
phenomenon reflects the absence of (or perhaps a low
prior probability for) the hypothesis that the object exists
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Figure 1. On the A trials, an experimenter hides an object repeatedly in one location, for example under a lid to the infant’s right. The infant watches the object being hid, a
delay of several seconds is imposed, and then the hiding box is pushed close to the infant and the infant is allowed to reach to the hiding location and retrieve the object.
This is repeated several times: hiding under the rightmost lid, delay, infant retrieval of the object. On the crucial B trial, the experimenter hides the object in a new adjacent
location, under a second lid to the infant’s left. After the delay, the infant is allowed to reach. Bottom left: a DFT simulation of activation in the dynamic field on a B trial. The
activation rises at the B location during the hiding event, but then, because of the cooperativity in the field and memory for previous reaches, activation begins to rise at A
during the delay and the start of the reach inhibits the activation at B resulting in a simulated reach to A. Bottom right: a baby in a posture-shift A-not-B task.

independently of the infants’ actions; younger infants,
lacking such a hypothesis, reach to the place where their
actions previously led them to find the object [11,12].
Experimental data favor an alternative, emergentist
account of performance in the A-not-B task that has been
developed within Dynamic Field Theory (DFT) [13,14].
This account explains the error through general processes
of goal-directed reaching (and indeed is a variant of one
model of adult reaching behavior). The model consists of a
dynamic field, shown in Figure 1, which corresponds to the
activation within a population of neuron-like units, each
dynamically representing the direction of a reach. The field
integrates multiple sources of relevant information: the
immediate events (e.g. hiding the toy), the lids or covers on
the table, and the direction of past reaches. The internal
activations that produce a directional reach are themselves
dynamic events, with rise times, decay rates, amplitudes
and varying spatial resolution. Consequently, the model
predicts — and experiments have confirmed - fine-grained
stimulus, timing and task effects [13,14]. Because the
explanation derives from general models of goal-directed

action that are not specific to this task nor to this devel-
opmental period, the model makes predictions (tested and
confirmed) about similar phenomena (and perseverations)
at ages younger than, and considerably older than, the
typical age range examined in the standard task [15,16].
Indeed, using this model as a guide, experimenters can
make the error come and go predictably: by changing the
delay, by heightening the attention-grabbing properties of
the covers or the hiding event, and by increasing and
decreasing the number of prior reaches to A [13,14,16,17].

The DFT-based model accounts for a wide range of
findings showing that variables unrelated to beliefs about
the existence of objects can affect the A-not-B error. The
model has also been used to predict (correctly) that a reach
back to A will occur in some situations when there is no toy
hidden [17]. Furthermore, because the dynamic field is
viewed as a motor planning field, and thus is tied to the
body-centric nature of neural motor plans [17], the model
also makes the novel prediction that perseverative errors
should disappear if the motor plan needed for reaching to B
is distinctly different from that for reaching to A [18]. One
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Figure 2. Top left: the connectionist network used by Rogers and McClelland [20], first used by Rumelhart and Todd [69], to explore the emergence of structure from
experience. The network is trained by presenting item-context input pairs (e.g. ‘canary’ ‘can’) and then propagating activation forward (to the right) to activate units
standing for possible completions of simple three-term propositions. Learning occurs by comparing the output to a pattern representing the valid completions (in this case,
‘move’/'grow’/'fly’/'sing’), then adjusting connection weights throughout the network to reduce the discrepancy between the network’s output and the valid completions.
Learning occurs gradually, producing a differentiation progressive differentiation of items at the Representation layer and also influencing the patterns that emerge at the
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experiment achieved this by shifting the posture of the
infant ([17,19]; Figure 1).

Because the error can occur even when no object is
hidden and can disappear with changes to the infant’s
posture, explanations based on beliefs about objects seem
largely irrelevant to understanding A-not-B behavior.
What is developing is a complex dynamic system, and it
is this system that governs intelligent behavior, not the
concepts, hypotheses or inferences that some ascribe to the
infant’s thinking.

Connectionist vs. structured probabilistic approaches to
semantic cognition

We consider next a domain that both approaches have
addressed, that of semantic cognition. Under the struc-
tured probabilistic approach [9], the acquisition of seman-
tic knowledge is viewed as the inductive problem of
deciding which of several alternative conceptual structures
is most likely to have generated the observed properties of
a set of items in a domain. This computation requires
specification of considerable initial knowledge: (i) knowl-
edge of the hypothesis space, the space of possible concepts
and structures for relating concepts; (ii) prior distributions
over the concepts and the structures. A similar approach
has been taken to characterizing language acquisition [8].

Our fundamental disagreement with this approach con-
cerns the fact that the alternative structured representa-
tions over which a probabilistic choice must be made
generally do not, and perhaps cannot, adequately capture
real-world domain structure [20]. For example, a hierarch-
ical taxonomic model that has been fit to natural kinds [9]
fails to take account of the presence of partial homologies
across separate branches of the hierarchy, such that pre-
datory birds, fish and mammals tend to share one set of
properties whereas the prey of each kind tend to share
others. Although the assignment of parallel structures
might capture the strict homology, partial homologies
would have to be force-fit. Similarly, a context-free gram-
mar could provide a better fit to a corpus of sentences than
some alternatives [8], but such grammars miss subtler
probabilistic dependencies easily captured in connectionist
models [21,22].

Connectionist models take a fundamentally different
approach: the task of the model is not to choose from a
set of prespecified alternative structures, but to learn a set
of real-valued weights on connections among neuron-like
processing units that support the generation of appropri-
ate, context-sensitive, conditional expectations. Discrepan-
cies between predicted and observed outcomes provide
feedback for learning, in the form of gradual weight adjust-
ment (Figure 2). Related items tend to evoke similar
internal representations, thereby supporting generaliz-
ation, although the system can use context to learn differ-
ent similarity relations among the same sets of items when
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appropriate [20]. Similar approaches are used in connec-
tionist models of semantic learning and language acqui-
sition [21,22].

Although the continuous space of possible weight sets
for a given connectionist network could be seen as analo-
gous to the ‘hypothesis space’ of the structured probabil-
istic approach, there are several key differences. First,
unlike the structured probabilistic approach [9], there is
no restriction to a set of possible structure types, so that
structures that do not exactly match any idealized type can
be represented. Second, there is never a discrete decision to
select one structure over another: the network’s current set
of weights can approximate one structure or a blend of
structures. Third, learning simply involves the gradual
refinement and elaboration of knowledge based on each
new experience, and thus is far more constrained than the
arbitrarily complex computation typically allowed by
structured probabilistic approaches for computing the
optimal structure from the entire corpus of relevant experi-
ences.

A final point of comparison concerns inductive biases
that play a role in both approaches. Whereas the hypoth-
esis spaces of the structured probabilistic approach impose
both general and domain-specific (content-based) biases,
work within the connectionist approach has typically
focused on the discovery of structure using only domain-
general biases derived from properties of the learning
procedure and network architecture [7,20]. Although con-
tent-based constraints can be built into connectionist
models, connectionist work has focused on generic con-
straints that foster the discovery of structure, whatever
that structure might be, across a range of domains and
content types [7,20]. Yet, despite using only domain-gen-
eral constraints, the connectionist model of semantic learn-
ing [20] explains evidence others [23,24] use to argue that
children rely on innate domain-specific constraints. The
model can acquire domain-specific patterns of responding:
it can rely, for example, on shape over color for semantic
judgments in one domain but on color over shape in
another (see also [25]). Similar to children [26], the model
can exploit different types of similarity among the same set
of items in different contexts (e.g. taxonomically-defined
similarity for biological properties, but a one-dimensional
similarity space for judgments about size; Figure 2). The
model also exhibits patterns of conceptual change that
mirror phenomena reported in the literature, including:
(i) a progressive differentiation in development (Figure 2),
(ii) the advantage of basic level concepts in many situations
but (iii) the elimination of the basic-level advantage in
expertise, (iv) transient overgeneralization and illusory
correlations in development and (v) the progressive dis-
integration of semantic knowledge in semantic dementia
[27,28]. Models cast at a competence level have not
addressed most of these phenomena.

Hidden layer, where representations are shaded by context. As learning progresses over successive sweeps through the set of item-context-output training patterns, the
network first differentiates the plants from the animals and later differentiates the different types of animals and different types of plants. Upper right: the middle panel
shows the similarity structure learned among a larger set of items in the Representation layer. The flanking panels show how this structure is reorganized in different
contexts across units in the Hidden layer. Note that in the ‘can’ context, the plants are all represented as similar because they all do the same thing (they grow). Bottom
right: naming response of the network when the input is ‘goat’ at different points in training. Note the transient tendency to activate ‘dog’ before the correct response ‘goat’
is acquired. In this instance, the network was trained in an environment where dogs were more frequent than other types of animal. Before ‘dog’ is differentiated from other
animal types, the network treats all animals the same, naming them all with the most common animal name ‘dog’. As differentiation occurs the correct name of ‘goat’ is

finally learned. All panels reproduced, with permission, from Ref. [20].
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Box 4. Outstanding questions

What types of network architectures best promote the discovery
of structure?

To what extent are generic constraints sufficient to enable
acquisition of domain-specific structure?

When does the advantage of imposing a specific structural form
on knowledge outweigh the disadvantages? Does expertise
increase or decrease conformity to specific structural forms?
When do humans truly engage in explicit hypothesis selection,
and how can we distinguish such cases from situations in which
they are gradually adapting implicit forms of knowledge such as
connection weights in response to experience?

In short, the need to select among a prespecified set of
alternative structure types in [9] forces semantic repres-
entation into an ill-fitting procrustean bed; the connec-
tionist model of semantic cognition shows that this is
unnecessary. Although further development of this model
will certainly be required (Box 4; [29]), the model in its
current form already shows that conceptual knowledge can
emerge from a constrained learning process, without prior
domain-specific knowledge and without requiring prespe-
cification of possible knowledge structures or selection
among them.

Conclusion

Far from being functionally equivalent or simply different
levels of description, different theoretical frameworks lead
to different conclusions about the nature of cognitive de-
velopment, the kind of questions that a cognitive theory
should address, and how explanations of different domains
of behavior should be unified. The structured probabilistic
approach takes the stand that it is crucial to specify the
goal of cognitive processes at an abstract, computational or
competence level of analysis before it makes sense to be
concerned with the performance characteristics of particu-
lar algorithms or hardware implementations. Although
this stance does not preclude explicit implementation,
the properties of the machinery that implements the com-
putations are not considered theoretically relevant. By
contrast, the emergentist approach to understanding cog-
nition, exemplified by dynamical systems and connection-
ist models, emphasizes the importance of specifying the
actual mechanisms that underlie human cognitive per-
formance, ultimately in terms of their neural implementa-
tion. The latter approach welcomes consideration of more
abstract levels of description, and numerous research
efforts have benefited considerably from integrating
theories across levels [30,31], but not at the expense of
mechanism (Box 5).

The commitment to mechanism is both principled and
pragmatic. On the principled side, cognitive processing
emerges out of evolutionary and developmental pressures
and constraints that include the limited capabilities of
biologically realizable hardware and the real-time
demands of the environment. For example, biological
vision could not have evolved solely as an in-principle
response to the abstract problem of seeing because it
was also constrained by what could evolve from previsual
biological precursors and it had to operate in real time.
Thus, the fundamental nature of cognitive processing is
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Box 5. Emergentist approaches address function and
mechanism: response to Griffiths et al. [2]

We view Griffiths and colleagues’ arguments for their top-down,
structured probabilistic models approach and against our emergen-
tist one as misguided in at least three important respects.

The characterization of our view

The authors suggest that whereas their approach is ‘top-down’
ours is ‘bottom-up.” Actually, we emphasize function, algorithm and
implementation equally and seek accounts that span levels. We use
dynamical systems and connectionist networks because they
provide tools to address questions at all of these levels, including
function. The ‘function-first’ approach will go astray if it makes
incorrect assumptions about what the functions and goals actually
are. In fact, we question many of their assumptions about function:
for example, that the goal of language acquisition is to induce
grammatical rules, or that the goal of semantics is to induce a
structure representing relations among concepts. If these are not the
right problems, the question of how to solve them optimally is
moot. Mechanistic commitments place important constraints on the
kinds of computations that are easy or natural, and thus provide
information about what functions are actually computed. Thus,
attention to mechanism can provide clues to function and attention
to function can provide clues to mechanism.

The characterization of human abilities

The authors assume that human behavior is rational, and that
cognition is compositional and recursive. In so doing they seem to
overestimate and mischaracterize human cognitive abilities. For
instance, they suggest that people can radically reconfigure their
beliefs on the basis of a single statement—as though hearing a
phrase like “dolphins are not fish but mammals” will dramatically
reorganize the listener’s knowledge about animals. Although people
can memorize arbitrary facts, deep conceptual reorganization occurs
gradually over years, and coexists with knowledge of inconsistent
facts. Human behavior is also notoriously susceptible to biases and
heuristics that can lead to violations of rationality. To the extent that
such behaviors can be explained post hoc by ‘rational’ models, the
models are underconstrained: any pattern of human behavior will
be consistent with some rational analysis of the problem. To be
useful, a theoretical account must explain not only why people excel
at some cognitive abilities but also why they fail at others.

The characterization of the capacities of emergentist models

Several of Griffiths et al’s statements about the limitations of
emergentist models are incorrect. Contra their statements, such
models can: (i) exploit information provided by natural language or
social context [64], (ii) account for rapid learning and generalization
of new words [34,65], (iii) explain why people sometimes generalize
in an all-or-none fashion and sometimes in a graded fashion [66],
(iv) explain nonlinearities in children’s lexical development [67,68],
and (v) explain why people generalize differently in different
contexts [20]. Although emergentist models are constrained in what
they can do easily, we view this as an advantage. The constraints
arise from a commitment to mechanisms similar to those that
implement real minds, thus they provide useful clues as to how real
minds solve important cognitive problems.

shaped by the performance characteristics of the under-
lying mechanism, and approaches that abstract away from
such information run a serious risk of missing critical
aspects of the problem under consideration.

On the pragmatic side, attention to both the strengths
and limitations of specific implementation details has led
to valuable theoretical advances that would have been
unavailable if operating only at a competence level of
analysis. A clear case in point concerns the observation
that distributed connectionist networks suffer ‘cata-
strophic interference’ to old knowledge when forced to
rapidly learn new inconsistent knowledge without the



chance to rehearse the old knowledge [32,33]. Such rapid
learning is possible using very sparse representations, but
this compromises the ability to learn the underlying stat-
istical structure of experiences, thereby undermining
generalization. The competing demands of rapid learning
of new knowledge versus the gradual discovery of under-
lying structure are consequences of the connectionist
implementation of learning and memory. This competition
led McClelland, McNaughton and O’Reilly [34] to propose
that these functions are subserved by distinct but comp-
lementary memory systems — hippocampus and neocortex,
respectively — with the former helping to consolidate
knowledge in the latter over time. There are other possible
implementations of mechanisms of learning and memory
in which there is no conflict between these demands.
Thus there is no basis for understanding the contrasting
properties and coordinated operation of hippocampus
and neocortex without committing to properties of the
mechanism.

In summary, we advocate an integrated approach to
cognition in which functional considerations are grounded
in, and informed by, the performance characteristics of the
underlying neural implementation.
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