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Abstract

Discourse coherence is strongly associated
with text quality, making it important to nat-
ural language generation and understanding.
Yet existing models of coherence focus on in-
dividual aspects of coherence (lexical overlap,
rhetorical structure, entity centering) and are
trained on narrow domains. We introduce algo-
rithms that capture diverse kinds of coherence
by learning to distinguish coherent from inco-
herent discourse from vast amounts of open-
domain training data. We propose two models,
one discriminative and one generative, both
using LSTMs as the backbone. The discrimi-
native model treats windows of sentences from
original human-generated articles as coherent
examples and windows generated by randomly
replacing sentences as incoherent examples.
The generative model is a SEQ2SEQ model that
estimates the probability of generating a sen-
tence given its contexts. Our models achieve
state-of-the-art performance on multiple coher-
ence evaluations. Qualitative analysis suggests
that our generative model captures many as-
pects of coherence including lexical, temporal,
causal, and entity-based coherence.1

1 Introduction

Modeling the discourse coherence of a text (the way
parts of a text are linked into a coherent whole) is
essential for tasks like summarization (Barzilay and
McKeown, 2005), text planning (Hovy, 1988; Marcu,
1997) question-answering (Verberne et al., 2007), and
even applications like psychiatric diagnosis (Elvevåg
et al., 2007; Bedi et al., 2015).

Various frameworks exist, each tackling aspects of
coherence. Lexical cohesion (Halliday and Hasan,

1System, code and datasets available upon publication.

1976; Morris and Hirst, 1991) models chains of
words and synonyms. Psychological models of dis-
course (Foltz et al., 1998; Foltz, 2007; McNamara et
al., 2010) generalize lexical cohesion via LSA em-
beddings of sentences. Relational models like RST
(Mann and Thompson, 1988; Lascarides and Asher,
1991) define relations that hierarchically structure
texts. Entity grid models (Barzilay and Lapata, 2008)
model the referential coherence of entities moving in
and out of focus across a text. None of the models
fully captures the rich semantic, discourse, and infer-
ential links between coherent text units. Furthermore,
previous work has been difficult to scale up and apply
in open domains.

We propose to capture many of these aspects of dis-
course coherence (e.g., lexical, causal, entity focus)
in neural net frameworks. We present two models: a
discriminative model that induces coherence in an un-
supervised manner from large datasets of real world
texts by treating human generated texts as coherent
examples and texts with random sentence replace-
ments as negative examples; and a generative model
that uses sequence-to-sequence models (Sutskever
et al., 2014) (SEQ2SEQ) to model the likelihood of
generating a sentence based on its context.

We evaluate the models on two text-ordering
datasets, one from the literature (Barzilay and La-
pata, 2008), and a new larger open-domain one. The
discriminative model achieves state-of-the-art per-
formance on the domain specific dataset presented
in Barzilay and Lapata (2008), pushing the state-of-
the-art result to 96% accuracy, significantly outper-
forming all previous models. The generative model
obtains the best result on a large open-domain set-
ting, including on the difficult task of reconstructing
paragraph order, and qualitative evaluation suggests
that it captures multiple types of coherence.
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2 Related Work

There are many frameworks for discourse coherence:

Lexical Coherence Coherence is strongly cued by
words: words linked by identity, synonymy or other
lexical relations forming chains across discourse seg-
ments (Halliday and Hasan, 1976). Early models
used tools like thesauri (Morris and Hirst, 1991).
Later work used Latent Semantic Analysis (LSA)
embeddings (Foltz et al., 1998; Foltz, 2007), repre-
senting sentences with LSA vectors and measuring
coherence with the cosine similarity of adjacent sen-
tences, with the goal of capturing more subtle lexical
relations that might not be available in thesauri.

Structured Discourse Relations Early work used
discourse relations like Rhetorical Structure Theory
(Mann and Thompson, 1988), a manually defined set
of discourse relations between clauses, or Discourse
Representation Theory (Lascarides and Asher, 1991))
a formal semantic model of discourse contexts, coref-
erence and scope, to create coherent paragraphs in
text planning (Hovy, 1988; Moore and Paris, 1989).

Entity Grid Models Many recent coherence mod-
els are based instead on centering theory, a model
of which entity is in focus at a point in the discourse,
and how smoothly that focus shifts from sentence to
sentence depending, e.g., on the syntactic positions
in which entities appear (Grosz et al., 1995; Walker
et al., 1998; Strube and Hahn, 1999; Poesio et al.,
2004). The most influential such model is the entity
grid model of Barzilay and Lapata (2008), in which
sentences are represented by a vector of coreferent
discourse entities along with their grammatical roles.
Probabilities of entity transitions between adjacent
sentences are concatenated to document vector repre-
sentation, used as the input to machine learning clas-
sifiers. Entity grid models have been extended with
coreference (Elsner and Charniak, 2008), named enti-
ties (Eisner and Charniak, 2011), discourse relations
(Lin et al., 2011), and entity graphs (Guinaudeau and
Strube, 2013).

Neural Net Models Recent work focuses instead
on representing sentences as dense, real-valued vec-
tors (Ji and Eisenstein, 2014; Bhatia et al., 2015),
such as by learning sentence representations as part
of supervised RST discourse parsing (Li et al., 2014;
Ji and Eisenstein, 2014).

Our proposed discriminative model extends the
coherence model of Li and Hovy (2014), a neural
classifier trained on small domain-specific datasets
(earthquake and accidents) using negative sampling
at the sentence level. The algorithm we present sig-
nificantly outperforms the classifier of Li and Hovy
(2014).

The proposed generative model uses a SEQ2SEQ

backbone to generate a sentence from its contexts.
SEQ2SEQ models have been successfully applied
to a variety of NLP tasks including machine trans-
lation (Sutskever et al., 2014), dialogue generation
(Vinyals and Le, 2015), and abstractive summariza-
tion (Rush et al., 2015). Our idea of predicting the
current sentence based on the previous one is similar
to skip-thought models (Kiros et al., 2015) that build
an LSTM encoder-decoder model by predicting to-
kens in neighboring sentences. We use the mutual
dependency between the two consecutive sequences
to measure coherence. This idea of modeling the mu-
tual dependency between two sequences for neural
generation has been explored by Li et al. (2015) for
dialogue generation.

The two models we propose can also be viewed as
the a kind of generalization of the skip-gram model
(Mikolov et al., 2013a; Mikolov et al., 2013b) to the
sentence level. The generative model that predicts
the next sentence based on the previous sentence
is comparable to the skip-gram algorithm’s predict-
ing the next word given its context using a softmax
function. The discriminative model is comparable to
the negative sampling strategy (Goldberg and Levy,
2014) which has been widely used in training word
embeddings.

3 Models

In this section, we describe the two models for coher-
ence modeling, which are respectively suitable for
different scenarios in real world applications.

3.1 The Discriminative Model

Notations Let C denote a sequence of coherent
texts taken from original articles generated by hu-
mans. C is comprised of a sequence of sentences
C = {sn−L, ..., sn−1, sn, sn+1, ..., sn+L} where L
denotes the half size of the context window. Each
sentence s is comprised of a sequence of words
s = {w1, w2, ...}. Each word w is associated with



Figure 1: Illustrations of coherent (positive) vs not-coherent (negative) training examples for Concatenation Context
Model.

a K dimensional vector hw and each sentence is as
well associated with a K dimensional vector xs.

The model we propose is demonstrated in Figure
1. We treat cliques taken from the original articles as
coherent positive examples and cliques with random
replacements of center sentence sn as negative ones.
Each clique C is thus associated with a binary vari-
able yC indicating whether it is from original human
generated articles or from random replacements.

Each clique C is associated with a (2L+ 1)×K
dimensional vector by concatenating the represen-
tations of its constituent sentences2. The sentence
representation is obtained from LSTMs. For word
compositions, we use the representation output from
the last time step to represent the entire sentence.
By concatenating representations of its constituent
sentences, we obtain a (2L + 1) × K dimensional
vector for C. We then map the (2L+ 1)×K repre-
sentation to a K dimensional vector using nonlinear
composition:

L(C) = tanh(W · [xsn−L , ..., xsn , ..., xsn+L ]) (1)

where W ∈ RK×(2L+1)K . To model negative inco-
herent examples, we resort to noise contrastive esti-
mation (Gutmann and Hyvärinen, 2010). Let p(yC =
1|C) denote the possibility that clique C is coherent.
Correspondingly, p(yC = 0|C) = 1− p(yC = 1|C)

2To classify first/last sentences and include their context,
we would need special beginning/ending sentence vectors; for
simplicity, we treat all elements in beginning/ending sentence
vectors as zero.

denotes the probability that the clique with sentence
randomly sampled and incoherent. The probability
that the current pair is coherent, i.e., p(yC = 1|C) is
given by:

log p(yC = 1|C) = log
1

1 + exp(−UT · L(C))
(2)

where U ∈ R1×K . For a given C, let C ′ denote the
collection of negative cliques generated by replacing
the middle sentence sN . The loss function is then:

Loss = log p(yC = 1|C) +
∑
C′

log p(yC′ = 0|C ′)

(3)
The proposed model can be viewed as an extension
of Li and Hovy’s (2014) model but is practical at
large scale3.

Training Word vectors and LSTM parameters are
randomly initialized from the uniform distribution
[-0.1,0.1]. Since the model does not require softmax
for word prediction, we keep a relative large vocab-
ulary of the top 200,000 most frequent words. We
adopt stochastic gradient decent with min-batch size
128 and clip the gradients if the norm of gradient
vectors exceed 5. We set the number of negative ex-
amples to 10, 5 of which are sampled from the same
document, and the rest from random documents. We
use a dropout rate of 0.2 in training and employ no

3Li and Hovy’s (2014) recursive neural model operates on
parse trees, which does not support batched computation and is
therefore hard to scale up.



regularizers. We run 7 epochs with initial learning
rate of 1.0. After 4 iterations, we begin halving the
learning rate after each epoch.

3.2 The Generative Model
In a coherent context, a machine should be able to
guess the next utterance given the previous one. We
therefore propose measuring the degree of coherence
using the likelihood of observing a sentence given its
context.

Given two consecutive sentences [si, si+1], we
measure the coherence by combining the likelihood
of generating si given si+1 and generating si+1 given
si:

L(si, si+1) =
1

2
[log p(si|si+1) + log p(si+1|si)]

(4)
Eq.4 measures the mutual dependency between the
two consecutive sentences. Both p(si|si+1) and
p(si+1|si) can be computed using SEQ2SEQ models
(Sutskever et al., 2014). SEQ2SEQ models define a
distribution over outputs y and sequentially predict
tokens using a softmax function:

p(y|x) =
nT∏
t=1

exp(f(ht−1, eyt))∑
w′ exp(f(ht−1, ew′))

where f(ht−1, eyt) denotes the activation function
between ht−1 and ewt , where ht−1 is the represen-
tation output from the LSTM at time t− 1. Each
sentence concludes with a special end-of-sentence
symbol EOS. Commonly, the input and output each
use different LSTMs with separate sets of composi-
tional parameters to capture different compositional
patterns. During decoding, the algorithm terminates
when an EOS token is predicted.

We separately train two models: p(si+1|si) that
predicts the next sentence based on the previous one
from the original passages and and p(si|si+1) that
predicts the previous sentence given the next sen-
tence. p(si|si+1) can be trained in the similar way
as p(si+1|si) with sources and targets swapped. To
avoid the model favoring shorter sequences, the log
likelihood is divided by the length of the sequence.

Training We adopt a deep structure with four
LSTM layers for encoding and four LSTM layers
for decoding, each of which consists of a different set
of parameters. Each LSTM layer consists of 1,000

Dataset words sentences words per sent.
Wikipedia 2.1B 142M 14.8

Table 1: Statistics for the Datasets.

hidden neurons, and the dimensionality of word em-
beddings is set to 1,000. We keep a vocabulary of the
top 50,000 most frequent words. Other training de-
tails are given below, broadly aligned with Sutskever
et al. (2014): LSTM parameters and embeddings
are initialized from a uniform distribution in [-0.1,
0.1]; Stochastic gradient decent is implemented us-
ing a fixed learning rate of 0.1; Batch size is set to
128; Gradient clipping is adopted by scaling gradi-
ents when the norm exceeded a threshold of 5. We
run 8 epochs in total and start halving the learning
rate after 5 epochs.

4 Experimental Results

In this section, we describe experimental results.
We first evaluate the proposed model on the task
of sentence ordering using two datasets, a standard
domain-specific dataset (Barzilay and Lapata, 2008)
and a newly constructed open-domain dataset from
Wikipedia. Next we propose the task of paragraph
reconstruction that reconstruct an original paragraph
from its constituent sentences whose order has been
permuted.

4.1 Sentence Ordering, Domain-specific Data

Dataset We first evaluate the proposed algorithms
on a dataset widely adopted in sentence ordering
and predicate on the assumption that an article is al-
ways more coherent than a random permutation of
its sentences (Barzilay and Lapata, 2008; Louis and
Nenkova, 2012; Elsner et al., 2007; Lin et al., 2011).
The corpus consists of 200 articles each from two
domains: NTSB airplane accident reports (V=4758,
10.6 sentences/document) and AP earthquake reports
(V=3287, 11.5 sentences/document), split into train-
ing and testing. For each document, pairs of permuta-
tions are generated4. Each pair contains the original
document order and a random permutation of the
sentences from the same document.

We use reduced versions of both our models to
4Permutations downloaded from people.csail.mit.

edu/regina/coherence/CLsubmission/.



Model Accident Earthquake Average
Our Discriminative Model 0.930 0.992 0.956

Our Generative Model 0.755 0.930 0.842
Recursive Neural Models (Li et al. 2014) 0.864 0.976 0.920

Entity Grid Model (Barzilay and Lapata, 2008) 0.904 0.872 0.888
HMM (Louis and Nenkova, 2012) 0.822 0.938 0.880

HMM+Entity (Louis and Nenkova, 2012) 0.842 0.911 0.876
HMM+Content (Louis and Nenkova, 2012) 0.742 0.953 0.847

Graph (Guinaudeau and Strube, 2013) 0.846 0.635 0.740
Foltz et al. (1998)-Glove 0.705 0.682 0.693
Foltz et al. (1998)-LDA 0.660 0.667 0.664

Table 2: Results from different coherence models. Baseline numbers from prior work (except for Foltz et al. (1998)) are
reprinted from the best performance reported in those papers.

allow fair comparison with baselines. We therefore
do not use the massive Wikipedia training set, hold-
ing the datasize constant and training only on the
earthquake/traffic training set. For the discriminative
model, we generate noise negative examples from
random replacements in the training set, with the
only difference that random replacements only come
from the same document. We use 300 dimensional
embeddings borrowed from GLOVE (Pennington et
al., 2014) to initialize word embeddings. Word em-
beddings are kept fixed during training and we up-
date LSTM parameters using AdaGrad (Duchi et al.,
2011). For the generative model, due to the small size
of the dataset, we train a one layer LSTM SEQ2SEQ

model with word dimensionality and number of hid-
den neurons set to 100.

We report performances from the following widely
used baselines in coherence literature.

(1) Entity Grid Model: The grid model (Barzi-
lay and Lapata, 2008) represents the sentence as a
column of a grid of features and applies machine
learning methods (e.g., SVM) to identify the coher-
ent transitions based on entity features. Results are
directly taken from Barzilay and Lapata’s (2008) pa-
per.

(2) HMM: A hidden-markov model described in
Louis and Nenkova (2012) models the cluster tran-
sition probability in the coherent texts. Results are
from their paper.

(3) Graph Based Approach: Guinaudeau and
Strube (2013) extended the entity grid model to a
graph representing the text that embeds entity transi-
tion information needed for local coherence compu-
tation (Guinaudeau and Strube, 2013).

(4) Li and Hovy (2014): A recursive neural model
computes sentence representations based on parse
trees. Negative sampling is used to construct negative
incoherent examples. Representations of neighboring
sentences are concatenated and fed into a neural clas-
sification, outputting whether a clique of sequences
is coherent or not. Results are from their paper

(5) Foltz et al. (1998) computes the semantic re-
latedness of two text units as the cosine similarity
between their LSA vectors. The coherence of a dis-
course is the average of the cosine of adjacent sen-
tences. We used this intuition, but with more modern
embedding models: (1) 300-dimensional Glove word
vectors (Pennington et al., 2014), embeddings for
a sentence computed by averaging the embeddings
of its words (2) Sentence representations obtained
from LDA (Blei et al., 2003) with 300 topics, trained
on the Wikipedia dataset using Gibbs sampling. We
compute coherence as the average cosine between ad-
jacent sentences. Since embeddings are pre-trained,
these models do not make use of training data.

Results are reported in Table 2. The proposed
discriminative model significantly outperforms the
model presented in Li and Hovy (2014) as well as
all non-neural baselines. It achieves roughly 100%
accuracy on the earthquake dataset and 93% on the
accident dataset, marking a significant advancement
in the benchmark. The generative model does not
perform competitively on this dataset. This is due to
the small size of the dataset, leading the generative
model to overfit.

The simple LSA method of calculating cosine simi-
larity between adjacent sentences, adopted from Foltz
et al. (1998), does not yield competitive results, con-



firming that while simple centroids of word embed-
dings may do a good job of modeling lexical coher-
ence, lexical coherence is only one component of
discourse coherence.

4.2 Evaluating Ordering on Open-domain
Since the dataset presented in Barzilay and Lapata
(2008) is quite domain-specific, we propose testing
coherence with a much larger, open-domain dataset:
Wikipedia. We created a test set by randomly se-
lecting 984 paragraphs from Wikipedia dump 2014,
each paragraph consisting of at least 16 sentences.
The training set is the 80 million sentences. We en-
sure that there is no overlap between the training set
and the test set. Based on this dataset, we define the
following tasks for evaluation:

4.2.1 Binary Permutation Classification
We adopt the same strategy as in Barzilay and La-

pata (2008), in which we generate permutations for
the original Wikipedia paragraphs. We follow the
protocols described in the subsection above to com-
pare the degree of coherence between the original
texts and their permutations. Each pair whose origi-
nal paragraph’s score is higher than its permutation is
treated as being correctly classified, else incorrectly
classified. Models are evaluated using accuracy.

Baselines Our baselines consist of the Glove and
LDA updates of the lexical coherence baselines
(Foltz et al., 1998). We also implement the Entity
Grid Model (Barzilay and Lapata, 2008) using the
Wikipedia training set. For each noun in a sentence,
we extract its syntactic role (subject, object or other).
We use a wikipedia dump parsed using the Fanse
Parser (Tratz and Hovy, 2011). Subjects and objects
are extracted based on nsubj and dobj relations in
the dependency trees. (Barzilay and Lapata, 2008)
define two versions of the Entity Grid Model, one
using full coreference and a simpler method using
only exact-string coreference; Due to the difficulty of
running full coreference resolution over 80 million
Wikipedia sentences, we follow other researchers in
using Barzilay and Lapata’s simpler method (Feng
and Hirst, 2012; Burstein et al., 2010; Barzilay and
Lapata, 2008).5 We also employ the uni-directional

5Our implementation of the Entity Grid Model is built upon
public available code at https://github.com/karins/
CoherenceFramework.

Model Accuracy
Our Generative Model (bi-directional) 0.886

Our Generative Model (uni-directional) 0.842
Our Discriminative Model 0.715

Entity Grid Model 0.686
Foltz et al. (1998)-Glove 0.597
Foltz et al. (1998)-LDA 0.575

Table 3: Performance on the open-domain binary classifi-
cation dataset of 984 Wikipedia paragraphs.

baseline in which the coherence score is computed us-
ing only p(si+1|si), i.e., predicting the next sentence
given the previous one.

Results Figure 3 presents results on the binary clas-
sification task. Once again, purely lexical meth-
ods (Foltz et al., 1998) do not yield compelling re-
sults. Contrary to the findings on the domain specific
dataset in the previous subsection, the discriminative
model does not yield compelling results, performing
only slightly better than the entity grid model. We
believe the poor performance is due to the sentence-
level negative sampling used by the discriminative
model. Due to the huge semantic space in the open-
domain setting, the sampled instances can only cover
a tiny proportion of the possible negative candidates,
and therefore don’t cover the space of possible mean-
ings. By contrast the dataset in Barzilay and Lap-
ata (2008) is very domain-specific, and the semantic
space is thus relatively small. By treating all other
sentences in the document as negative, the discrimina-
tive strategy’s negative samples form a much larger
proportion of the semantic space, leading to good
performance.

The proposed generative model performs signifi-
cantly better than all other baselines. Compared with
the dataset in Barzilay and Lapata (2008), overfitting
is not an issue here due to the great amount of training
data. In line with our expectation the bi-directional
model which models the bidirectional dependency be-
tween the two consecutive sentences outperforms the
uni-directional model which only handles the case of
predicting the next sentence.

4.2.2 Paragraph Reconstruction
The accuracy of our models on the binary task

of detecting the original sentence ordering is very
high, on both the prior small task and our large open-
domain version. We therefore believe it is time for



First Sent Being Given
Our Generative Model (bi-directional) 0.216
Our Generative Model (uni-directional) 0.208
Entity Grid Model 0.153
Lexical Model (Glove) 0.084

No Clue Being Given
Our Generative Model 0.175
Entity Grid Model 0.124

Table 4: Performances of the proposed models on the
open-domain paragraph reconstruction dataset.

the community to move to a more difficult task for
measuring coherence.

We suggest the task of reconstructing an origi-
nal paragraph from a bag of constituent sentences,
which has been previously used in coherence evalu-
ation (Lapata, 2003). More formally, given a set of
permuted sentences s1, s2, ..., sN (N the number of
sentences in the original document), our goal is return
the original (presumably most coherent) ordering of
s.

Because the discriminative model calculates the
coherence of a sentence given the known previous
and following sentences, it cannot be applied to this
task since we don’t know the surrounding context.
Hence, we only use the generative model. We explore
the following two settings:

(1) The first sentence of a paragraph is given: for
each step, we compute the coherence score of placing
each remaining candidate sentence to the right of the
partially constructed document. We use beam search
with beam size 10.6

(2) No clue is given: we employed the graph based
method described in Lapata (2003). We first con-
struct a graph where the each vertex denotes a sen-
tence and the edge weight u→ v denotes the coher-
ence score of sentence v coming after u. Note that
weight values for u → v and v → u are different.
We initialize the vertex list V using all vertexes in the
graph. Similar to Lapata (2003), we employ a greedy
search model. The greedy algorithm first picks the
edge u → v with the highest coherence score, and
deletes all the outgoing edges from vertex u and
all incoming edges to vertex v. u, v are removed
from the vertex list V . Next, for each time step,
let vleft and vright respectively denote the left-most

6Not guaranteed to find the optimal solution since this gener-
ation task is known to be NP-complete (0).

and right-most node in the partially constructed para-
graph. The greedy model chooses whether to expand
the paragraph to the left and to the right by comparing
maxv′∈V S(v′, vleft) with maxv′∈V S(vright, v

′), where
the former denotes the maximal coherence score of
placing a remaining sentence to the left of the par-
tially constructed paragraph and the latter denotes the
maximal score of appending a sentence to the right
of the paragraph. The newly selected node is added
to the paragraph and removed from the vertex list V .
We repeat this process until V is empty.

We use the Entity Grid model as a baseline for
both the settings. LSA-style cosine similarity based
lexical methods are symmetric regarding the next
sentence and the previous sentence. We therefore can
not tell which sentence should come first. We thus
only use it as a baseline in the first-sentence-being-
given setting.

Evaluating the absolute positions of sentences
would be too harsh, penalizing orderings that main-
tain relative position between sentences through
which local coherence can be manifested. We there-
fore use Kendall’s Tau (Lapata, 2003; Lapata, 2006),
a metric of rank correlation for evaluation. Kendall’s
τ is computed based on the number of inversions in
the rankings as follows:

τ = 1− 2# of inversions
N × (N − 1)

(5)

where N denotes the number of sentences in the orig-
inal document and inversions denote the number of
interchanges of consecutive elements needed to re-
construct the original document. Kendall’s τ can be
efficiently computed by counting the number of inter-
sections of lines when aligning the original document
and the generated document. We refer the readers to
Lapata (2003) for more details.

Results are reported in Figure 4. The generative
model outputs both the Entity Grid model and the
lexical model by a large margin. In line with our
expectations, better scores are observed in the first-
sentence-given setting than the no-clue-given setting,
We again observe a performance boost from the bi-
directional model over the uni-directional model.

4.3 Qualitative Analysis
To investigate which kinds of coherence the model is
capable of handling, we examine some relevant exam-
ples, annotated with the (log-likelihood) coherence



score from the generative model. Each of the exam-
ples above/below was chosen in advance, before we
trained our model, hence were not “cherry-picked”.

Case 1: Lexical Coherence
Pinochet was arrested. His arrest was unexpected. -4.25
Pinochet was arrested. His death was unexpected. -4.68
Mary ate some apples. She likes apples. -5.66
Mary ate some apples. She likes pears. -6.16
Mary ate some apples. She likes Paris. -6.72

The model can handle lexical coherence, correctly
favoring the 1st over the 2nd, and the 3rd over the
4th examples.

Case 2: Temporal Order
Washington was unanimously elected president in the
first two national elections. He oversaw the creation
of a strong, well-financed national government. -3.48
Washington oversaw the creation of a strong, well-
financed national government. He was unanimously
elected president in the first two national elections.
-4.52

Case 3: Causal Relationship
Bret enjoys video games; therefore, he sometimes is
late to appointments. -7.59
Bret sometimes is late to appointments; therefore, he
enjoys video games. -7.64

The model also does well at the much more com-
plex task of dealing with temporal and causal rela-
tionships. From its training the model is exposed to
the general preference of natural text for temporal
order, and even for the more subtle causal links.

Case 4: Centering/Referential Coherence
Mary ate some apples. She likes apples. -5.66
She ate some apples. Marry likes apples. -7.64

The model can handle simple cases of referential
coherence.
Example3: -3.72
John went to his favorite music store to buy a piano.
He had frequented the store for many years.
He was excited that he could finally buy a piano.
He arrived just as the store was closing for the day.
Example4: -4.55
John went to his favorite music store to buy a piano.
It was a store John had frequented for many years

He was excited that he could finally buy a piano..
It was closing just as John arrived.

In these examples from Miltsakaki and Kukich
(2004), the model successfully captures the fact that
the second text is less coherent due to rough shifts.
The model, in mapping sentences to semantic vector
space successfully captures a representation of entity
focus and its subtle syntactic cues.

5 Conclusion

We investigate the problem of discourse coherence,
treating natural texts as coherent and permutations as
non-coherent, and training large neural models that
achieve state of the art performance on coherence,
including on large open-domain test sets. The per-
formance and our qualitative analysis suggest that
the distributed sentence representations built by the
model capture some of the implicit linguistic compo-
nents of coherence. Our model outperforms LSA
baselines, suggesting it models lexical coherence
well, and seems to capture semantic coherence like
temporal and causal relations, which prior models
like LSA and grid-based models are not designed to
capture. The model also outperforms grid-based mod-
els, suggesting it may do well at capturing coherence
based on entity focus across a discourse.

SEQ2SEQ models have achieved recent success in
many generation tasks. The fact that our generative
model does well at the open-domain tasks, including
paragraph reconstruction despite its known difficulty
(0), suggests that SEQ2SEQ models can also play an
important role for modeling discourse coherence.
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