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Abstract

Word frequencies in natural language follow a highly skewed Zipfian dis-
tribution, but the consequences of this distribution for language acquisition
are only beginning to be understood. Typically, learning experiments that
are meant to simulate language acquisition use uniform word frequency dis-
tributions instead. We examine the effects of Zipfian distributions using two
artificial language paradigms—a standard forced-choice task and a new or-
thographic segmentation task in which participants click on the boundaries
between words in contexts. Our data show that learners can identify word
forms robustly across widely varying frequency distributions. In addition, al-
though performance in segmenting individual words is driven solely by their
frequency, a Zipfian distribution facilitates word segmentation in context:
The presence of high-frequency words creates more chances for learners to
apply their knowledge in processing new sentences.

Keywords: Word segmentation; statistical learning; Zipfian frequency
distributions.

1 Introduction

Humans and other animals extract information from the environment and
represent it so that they can later use the knowledge for effective recognition
and inference (Fiser, 2009). One striking example of this phenomenon is that
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adults, children, and even members of other species can utilize distributional
information to segment an unbroken speech stream into individual words
after a short, ambiguous exposure (Saffran et al., 1996a,b; Aslin et al., 1998;
Hauser et al., 2001). In a now-classic segmentation paradigm, Saffran et al.
(1996b) played adults a continuous stream of synthesized speech composed
of uniformly-concatenated trisyllabic words. After exposure to this stream,
participants were able to distinguish the original words from “part-words”—
length-matched strings that also occurred in the exposure corpus, albeit with
lower frequency and lower statistical consistency. This work on “statistical
learning,” combined with similar demonstrations with infants, suggests that
learners can use the statistical structure of sound sequences to find coherent
chunks in unsegmented input (Chomsky, 1955; Harris, 1955; Hayes & Clark,
1970; Wolff, 1977; Pinker, 1984).

While the results of statistical learning experiments are impressive, it is
still unknown how these findings relate to natural language learning (Yang,
2004; Johnson & Tyler, 2010). Recent research has begun to close this gap.
The outputs of the statistical segmentation process are now known to be
good targets for word-meaning mapping (Graf Estes et al., 2007), and exper-
iments with natural languages suggest that the processes observed in artificial
language experiments generalize to highly controlled natural language sam-
ples (Pelucchi et al., 2009). In addition, statistical segmentation has been
shown to be scaled up to variation in sentence and word lengths (Frank et al.,
2010b) as well as to larger lexicons (Frank et al., under review). Nevertheless,
there are many links between statistical segmentation and natural language
learning that need to be tested.

One key difference between standard segmentation paradigms and natural
language is the distribution of word frequencies. The empirical distribution of
lexical items in natural language follows a Zipfian distribution (Zipf, 1965), in
which relatively few words are used extensively (e.g., “the”) while most words
occur only rarely (e.g., “toaster”). In a Zipfian distribution, the absolute
frequency of a word is inversely proportional to its rank frequency. For this
reason, this kind of distribution is often characterized as having “a long tail,”
in which a small number of word types have very high token frequencies while
many more types have relatively low frequencies.1 While Zipfian distributions

1Here and below, we make use of the distinction between word types—distinct word
forms—and word tokens—individual instances of a type.
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are ubiquitous across natural language,2 their consequences for learning are
only beginning to be explored (Yang, 2004; Goldwater et al., 2006; Mitchell
& McMurray, 2009; Ellis & O’Donnell, 2011).

An early and influential proposal suggested that learners could succeed
in statistical segmentation tasks by computing the transitional probability
(TP) between syllables (Saffran et al., 1996b). Learners could then posit
boundaries between units in the speech stream where TP was especially low.
(The underlying intuition is that minima in TP are likely to occur at word
boundaries because there is uncertainty in what words follow other words,
while within words the order of syllables is predictable.) In experiments
on segmentation, stimuli are generally created by randomly concatenating
a small set of words with a uniform frequency distribution so that every
word follows every other word, ensuring that transition matrices between
individual syllables are well-populated (Saffran et al., 1996a,b; Frank et al.,
2010b). Thus, in standard experiments, comparisons between TPs are easy
to make because all transitions were well-estimated.

In a Zipfian language, however, the same TP procedure would result in
highly sparse transition matrices. A majority of words are infrequent (e.g.,
“toaster” or “lucubrated”) and their combination will be vanishingly rare,
while some combinations of frequent words have high transitional proba-
bility between them (e.g., “of the” is very high) despite the presence of a
word boundary. In fact, given the collocational structure of natural language
(Goldwater et al., 2009), the within-word transitional probabilities for low-
frequency words can potentially be lower than the between-word transitional
probability for high-frequency words. When transitional probability models
are instantiated computationally and applied to corpus data, they perform
very poorly both in absolute terms and in comparison to other models (Yang,
2004; Brent, 1999). The sparsity of transition matrices in Zipfian languages
may be to blame.

The poor performance of TP-style models in corpus evaluations leaves
open two theoretical possibilities for human learners. First, human learners
may use statistical learning mechanisms (which compute TPs) only to learn
a small set of word forms, and hence they may not need to be particularly

2Zipfian distributions are ubiquitous across many other phenomena (e.g., city popula-
tions) as well; even randomly generated texts exhibit a Zipfian word frequency distribution
(Li, 1992). Here we take it for granted that natural languages have this structure without
attempting to explain its presence.
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effective (Swingley, 2005). This view is consistent with a large body of evi-
dence suggesting that infants quickly learn to make use of lexical, prosodic,
and phonotactic cues for segmentation (Mattys & Jusczyk, 2001; Jusczyk
et al., 1999; Johnson & Jusczyk, 2001; Blanchard et al., 2010; Shukla et al.,
2011). This viewpoint—that a heuristic, TP-based strategy allows learners
to begin the segmentation process—seems to support the general prediction
that segmentation should be more difficult (or at very least, not facilitated)
by Zipfian frequency distributions because of the use of TPs.

Second, learners may rely on a more robust statistical learning method.
In fact, non-TP computational proposals for statistical learning make a differ-
ent prediction for segmentation performance in Zipfian environments. Orbán
et al. (2008) propose a distinction between transition-finding models (like
TP models) and “chunking” models, which look for a partition of the in-
put stream into statistically coherent sequences. A number of recent models
of word segmentation fall into the chunking category, including incremental
(Brent & Cartwright, 1996), Bayesian (Brent, 1999; Goldwater et al., 2009),
and memory-based (Perruchet & Vinter, 1998) models. These models (and
some corresponding psychological evidence) suggest that segmentation per-
formance should be robust to—or even facilitated by—Zipfian distributions.

One reason that Zipfian distributions might facilitate segmentation in a
chunking model is because the frequent repetition of words in Zipfian lan-
guages could help learners remember them. Some chunking models hypoth-
esize that learners store word representations in memory and match these
memory representations up with the input to segment new utterances. In
these models, stored representations will decay unless the corresponding word
is heard frequently (Perruchet & Vinter, 1998). A Zipfian distribution makes
it highly likely that a few of the most frequent words appear consistently
across sentences, guaranteeing that at least a few words will be learned and
retained with high reliability.

Another method by which Zipfian distributions might facilitate segmen-
tation is via a bootstrapping effect. If a novel word occurs adjacent to a
familiar word, it may be segmented more effectively because one boundary
is already known. A Zipfian distribution would facilitate a bootstrapping ef-
fect because a small number of high-frequency words provide known context
for many low-frequency words. We distinguish contextual bootstrapping—in
which hearing the word sequence ABC, containing the known word A and
novel word B, facilitates the identification of B in the future—and contextual
facilitation—in which B is better segmented in this string due to the adja-
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cency of A but is not necessarily segmented more accurately in the future.
Brent & Cartwright (1996) proposed a contextual bootstrapping model

called INCDROP that segmented utterances by detecting familiar items and
recognizing them as meaningful chunks, while storing the remaining chunks
of the utterance as novel words. For example, if look were recognized as
a familiar unit in the utterance lookhere, then the remaining portion, here,
would be inferred as a potential lexical unit. This model, and a number that
have followed it (Brent, 1999; Goldwater et al., 2009; Perruchet & Vinter,
1998), make use of contextual bootstrapping in more or less direct ways, but
all suggest that knowledge of familiar words should help in recognition of
new ones.

Several psychological studies have tested, with mixed results, whether
known words facilitate the segmentation of nearby words. Dahan & Brent
(1999) tested for contextual bootstrapping effects in adult word segmentation
experiments and found some evidence for them, although primarily at the
beginnings and ends of sentences. Bortfeld et al. (2005) found that 6-month-
olds were able to find new words more easily when they were presented
adjacent to words that were already familiar to them (e.g., the child’s own
name). Hollich et al. (2001), however, failed to find evidence that a familiar
context (e.g., words like “flower”) aided 24-month-olds in segmenting new
words.

Isolated words are also often assumed to create a strong contextual boot-
strapping effect, and a number of studies have investigated their role in seg-
mentation. Brent & Siskind (2001) found that 9% of caregiver utterances
consisted of words produced in isolation, and 27% of these cases were imme-
diate repetition of words used in neighbouring utterances (e.g., “Want some
milk? Milk?”). Building on this descriptive work, experimental evidence sug-
gests that exposure to words in isolation establishes familiarity with these
words, which serve as “anchors” in subsequent segmentation (Conway et al.,
2010; van de Weijer, 2001; Cunillera et al., 2010; Lew-Williams et al., 2011).
Thus, several lines of empirical work point toward a potential advantage
of a Zipfian distribution, where a limited number of words readily acquire
familiarity due to their disproportionate input frequencies.

To summarize, previous literature leaves us with two different predictions
about the effects of the Zipfian word frequency distribution in natural lan-
guage on word segmentation performance. Under heuristic transition-finding
models, Zipfian distributions provide sparser input, making the segmenta-
tion problem more difficult. Under chunk-finding models, Zipfian distribu-
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tions provide frequent chunks that may even allow learners to engage in con-
textual bootstrapping: using known contexts to segment novel words more
effectively. We present data from two experiments investigating adult learn-
ers’ performance in artificial language word segmentation tasks that compare
Zipfian and uniform frequency distributions. Our data show that learners can
identify words in languages with widely varying frequency distributions, con-
sistent with models of segmentation that posit a frequency-based chunking
procedure. In addition, our data suggest that Zipfian languages provide a
specific advantage for word recognition in context: in such languages, new
words tend to occur next to high-frequency words that are already known.

2 Experiment 1

We first asked whether learners could learn the forms of words from un-
segmented input with a Zipfian word-frequency distribution. To test this
question, we made use of the paradigm originated by Saffran et al. (1996b)
to measure statistical word segmentation in adult learners. In this paradigm,
learners listen passively to a sample of unsegmented, monotone synthesized
speech and then are asked to make two-alternative forced-choice judgments
about which of two strings sounds more like the language they just heard.
We used the version of this paradigm adapted by Frank et al. (2010b), which
includes several features of natural language, such as silences between sen-
tences and words of varying lengths.

2.1 Methods

2.1.1 Participants

We posted 259 separate HITs (Human Intelligence Tasks: experimental
tasks for participants to work on) on Amazon’s Mechanical Turk service. We
received 246 HITs from distinct individuals (a mean of 30 for each token
frequency and distribution condition). Participants were paid $0.75 and the
task took approximately 7–10 minutes.

2.1.2 Stimuli

We constructed 8 language conditions by controlling patterns of frequency
distribution (uniform vs. Zipfian) and the numbers of word types contained
in lexicon (6, 12, 24, 36 types). Within each language condition, we created
16 language variants with different phonetic material. This diversity was
necessary to ensure that results did not include spurious phonological effects.

6



0
40

80
12
0

0
40

80
12
0

0
40

80
12
0

0
40

80
12
0

6 types

0
40

80
12
0

12 types

0
40

80
12
0

24 types
0

40
80

12
0

36 types

0
40

80
12
0

Figure 1: Word frequencies in uniform (top) and Zipfian (bottom) conditions of Exper-
iment 1. The horizontal axis shows distinct word types, and the vertical axis shows the
frequency of each of these types.

Words were created by randomly concatenating 2, 3, or 4 syllables (word
lengths were evenly distributed across each language). Stimuli were synthe-
sized using MBROLA (Dutoit et al., 1996) at a constant pitch of 100 Hz
with 225 ms vowels and 25 ms consonants. Each syllable was used in one
word only. Sentences were generated by randomly concatenating words into
strings of four words. The total number of word tokens was 300 and the
number of sentences was 75 in all the languages. The token frequencies of
words in each language were either distributed uniformly according to the
total type frequency (e.g., 50 tokens each for a language with 6 word types)
or given a Zipfian distribution such that frequency was inversely proportional
to rank (f ∝ 1/r). Frequency distributions for each language are shown in
Figure 1.

For the test phase, a set of length-matched “part-words” were created
for each word by concatenating the first syllable of the word with the last
syllables of another word. These part-words were used as distractors; they
appeared in the training input but with lower frequency than the target
words.
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Figure 2: Average proportion of correct responses by number of word types in the uniform
and Zipfian distribution conditions. Open and closed dots represent individual participants
and are stacked to avoid overplotting. Solid, dashed, and dotted lines represent means,
standard errors, and chance (50%), respectively.

2.1.3 Procedure

Before the training phase began, participants were instructed to listen
to a simple English word and type it in to ensure that sound was being
played properly on the participants’ system. Participants then moved to the
training phase, where they were instructed to listen to a made-up language,
which they would later be tested on. To ensure compliance with the listening
task for the duration of the training phase, subjects needed to click a button
marked “next” after each sentence to proceed through the training phase. In
the test phase of the 2AFC condition, participants heard 24 pairs of words,
consisting of a target word and a length-matched “part-word.” After listening
to each word once, they clicked a button to indicate which one sounded more
familiar (or “word-like”) in the language they had learned.

2.2 Results and Discussion

Figure 2 illustrates accuracy of responses in the 4 types of languages in
each of the uniform and Zipfian distribution conditions. There was not a
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strong numerical effect of the distribution condition. Replicating previous
results (Frank et al., 2010b), performance decreased as the number of types
increased, but participants performed slightly above chance even in the most
difficult 36-type condition; this is a surprising and intriguing result given
that each word in the uniform condition was heard on average only 8 times.

We conducted a mixed-effects logistic regression analysis (Breslow & Clay-
ton, 1993; Gelman & Hill, 2006; Jaeger, 2008), fit to the entire dataset to
avoid issues of multiple independent comparisons. This model attempted to
predict the odds of correct answers on individual trials; we then used com-
parison between models to find the appropriate predictors. Our first model
included effects of distribution and number of types; we found no effect of
distribution (Zipfian distribution p > .1) but a highly significant effect of
number of types (β = −.021, p < .0001). Further exploration revealed that
better model fit was given by the logarithm of number of types as a pre-
dictor rather than raw number of types (χ2 = 9.49, p < .0001). Thus, the
log number of types was the only significant predictor of performance in this
model.

In our second set of models, we introduced as additional trial-level pre-
dictors the frequency of the target and distractors for each trial (calculated
from the input corpus for each language). In this model, we found that once
these factors were added, there was no gain in model fit from the overall log
number of types in the language (χ2(1) = .11, p > .7). Instead, there were
two main effects: a positive coefficient on log token frequencies (the more
times a word is heard, the better performance gets: β = .35, p < .0001), and
a negative coefficient on log distractor tokens (the more times a distractor is
heard in the corpus, the worse performance gets: β = −.51, p < .01). We
also found a positive interaction of the two (bad distractors are worse if the
target is low frequency: β = .14, p < .01). The general relation is plotted
in Figure 3, showing mean proportion of accuracy according to the log input
frequency of the target words. In this final model, there was still no effect of
distribution conditions (i.e., uniform vs. Zipfian) (β = .05, p > .4).

To summarize, participants represented target words equally well after
being exposed to languages with very different frequency distributions and
contingency statistics. The only factors that affected performance were the
log frequency of targets and distractors, independent of distribution condi-
tion.
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Figure 3: Probability of a correct 2AFC answer plotted by binned token frequency. Closed
dots indicate uniform condition, and open dots indicate Zipfian condition. Dashed line
shows chance, while the dotted and alternating lines give best fit lines for performance as
a function of log token frequency.

3 Experiment 2

If learners accumulate evidence for words as they appear in the input,
they should detect some words earlier than others based on token input fre-
quencies. When presented in a sentential context, these early representations
of some words may serve as anchors facilitating discovery of words that share
boundaries with them. We referred to these kinds of effects as contextual fa-
cilitation and contextual bootstrapping, with facilitation referring to effects
on segmentation of words in an initial known context, and with bootstrapping
referring to effects of seeing a word in a known context on later segmenta-
tion performance. Experiment 2 tests the hypothesis, formed on the basis of
previous work (Dahan & Brent, 1999; Bortfeld et al., 2005; Cunillera et al.,
2010; Lew-Williams et al., 2011), that Zipfian contexts could promote these
kinds of effects.
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To conduct this test, we used an orthographic segmentation paradigm
developed by Frank et al. (2010a, under review). A 2AFC asks only about a
comparison between a particular target and its paired distractor; this method
might hence be relatively insensitive to contextual effects. In contrast, the or-
thographic segmentation paradigm—where participants click on a transcript
of a sentence to indicate where they think word boundaries fall—might be
more sensitive to the kind of contextual effects we were looking for.

In our version of this orthographic segmentation task, participants were
exposed to a language following either a Zipfian or a uniform distribution.
After hearing each sentence, they were asked to give explicit judgements as
to where they would place word boundaries. The experiment consists of 50
sentences (trials) and no discrete test phase—instead each sentence gave us
information about participants’ knowledge of the language, allowing us to
construct a time course of learning for each participant and condition.

3.1 Methods

3.1.1 Participants

We posted 281 separate HITs on Mechanical Turk. We received 250
complete HITs from distinct individuals. Participants were paid $0.50 for
participation. Because of the increased complexity of the task, we applied an
incentive payment system to ensure participants’ attention: they were told
they would receive an additional $1.00 if they scored in the top quartile.

3.1.2 Stimuli

The process of generating stimuli was nearly identical to the 8 conditions
in Experiment 1. Four word type conditions (with 6, 9, 12, and 24 word
types, respectively) were generated and crossed with the two distribution
patterns (uniform or Zipfian). These languages were used to generate 200
word tokens in 50 sentences. We chose to reduce the maximum number of
word types (24 vs. 36) due to the complexity of the task and more limited
overall amount of input. Participants were randomly assigned to one of the
8 conditions. Each sentence contained 3–5 words; we varied the number
of words in sentences so that there was not a predictable number of word
boundaries in any given sentence.

3.1.3 Procedure

After a synthesized sentence was played, participants were asked to in-
dicate word boundaries in a corresponding transcription presented visually.

11



Each syllable was separated by a button that could be toggled. The partic-
ipants were given one practice trial on an English sentence presented in the
same format and prevented from continuing until they segment it correctly.
All the syllables were spelled with one letter representing a consonant fol-
lowed by one or two letters depending on the length of the vowel (e.g., ka, ta,
pee). Participants could play back each sentence as many times as needed.
Average time spent on the 50 trials was 16 minutes.

3.2 Results and Discussion

We were interested in participants’ performance on individual words based
on the words’ frequencies and contexts. We thus created a binary dependent
variable for success in segmenting each word: 1 if the word was segmented
correctly (with a boundary at each edge and no boundaries at any inter-
nal syllable breaks) and 0 otherwise. Average segmentation results across
trials are shown in Figure 4.3 Participants who were exposed to Zipfian
distributions generally achieved higher performance, especially in languages
with more word types. Participants in the Zipfian condition outperformed
those who heard languages with uniform distributions from the earliest trials
on. When the lexicon contained only six types of words, participants who
were exposed to a uniform distribution achieved a comparable level of per-
formance by the time they finished, but participants hearing uniform token
distributions never caught up when languages had more types.

We created a mixed logistic model to predict word-by-word performance
(Table 1). As in Experiment 1, we found a strong main effect of log input
frequency of the target word (β = 0.46, p < 10−10). The length of the target
word (β = −1.35, p < 10−15) and the length of the sentence (β = −1.0,
p < 10−7) were significant predictors of correct segmentation of the target
word. (The large effect of word length is likely due to the fact that longer
words contain more syllables and hence more opportunities for incorrectly
placed boundaries.)

3The measure we used here is known as “token recall” in the literature on evaluating
segmentation models (Brent, 1999; Goldwater et al., 2009). Other work in this area has
used precision and recall for tokens, as well as precision and recall measured for individual
boundary judgments. We computed each of these measures, as well as the harmonic mean
of precision and recall for each (F-score). The overall picture for all of the measures was
almost identical to Figure 4. We thus focus on token recall, a measure that is related
to comprehension (since the overall number of tokens correctly segmented will determine
how many of them can be recognized and interpreted).
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the Zipfian conditions. Lines show a non-linear fit by a local smoother (loess).

13



T
ab

le
1:

O
n

e
m

ix
ed

lo
gi

t
m

o
d

el
fo

r
E

x
p

er
im

en
t

2
,

sh
ow

in
g

co
n
te

x
tu

a
l

fa
ci

li
ta

ti
o
n

eff
ec

ts
b

u
t

n
o
t

co
n
te

x
tu

a
l

b
o
o
ts

tr
a
p
p

in
g

eff
ec

ts
(s

ee
te

x
t

fo
r

m
or

e
d

et
ai

ls
).

R
a
n
d
o
m

e
ff

e
ct

s
N

am
e

V
ar

ia
n
ce

S
td

.D
ev

ia
ti

on
C

or
re

la
ti

on
P

ar
ti

ci
p
an

t
ID

(i
n
te

rc
ep

t)
0.

54
0.

73
L

og
to

ke
n

fr
eq

(t
ar

ge
t)

0.
45

0.
67

-0
.1

91
F

ix
e
d

e
ff

e
ct

s
C

o
effi

ci
en

t
S
td

.
E

rr
or

z-
va

lu
e

p-
va

lu
e

In
te

rc
ep

t
1.

54
0.

50
3.

06
<

0.
00

3
**

D
is

tr
ib

u
ti

on
(Z

ip
f)

0.
28

0.
35

0.
79

0.
43

W
or

d
ty

p
es

(6
,9

,1
2,

24
)

0.
01

0.
02

0.
69

0.
49

D
is

tr
ib

u
ti

on
×

W
or

d
ty

p
es

<
0.

01
0.

02
0.

05
0.

96
L

og
to

ke
n

fr
eq

u
en

cy
(t

ar
ge

t)
0.

46
0.

07
6.

77
1.

33
×

10
−
1
1

**
*

L
og

to
ke

n
fr

eq
u
en

cy
(p

re
v
io

u
s)

0.
15

0.
03

4.
31

1.
63
×

10
−
5

**
*

L
og

to
ke

n
fr

eq
u
en

cy
(f

ol
lo

w
in

g)
<

0.
01

0.
03

0.
04

0.
97

W
or

d
le

n
gt

h
(s

y
ll
ab

le
s)

-1
.3

5
0.

10
-1

3.
75

<
2
×

10
−
1
6

**
*

S
en

te
n
ce

le
n
gt

h
(s

y
ll
ab

le
s)

-1
.0

0
0.

20
-5

.1
2

3.
02
×

10
−
7

**
*

14



We used this model to investigate a contextual facilitation effect: that
high familiarity with particular items would improve segmentation accuracy
for their neighboring words. To test this hypothesis, we included the cumu-
lative log frequency—number of times heard in the input prior to the target
word—of the words on the both sides of the target words as predictors.4

The cumulative frequency of the previous word was a significant predictor
(β = 0.15, p < 10−4): the more frequently the left neighbour word had been
heard so far, the more likely it was for the target word to be segmented cor-
rectly. The absence of a similar effect on the right-hand side (p > .9) may
be due to the directionality of the segmentation process. Participants in our
task might be placing boundaries moving from the left edge (the onset of a
sentence) to the right edge, making the information from the preceding word
more important.

We next used the model to test for a contextual bootstrapping effect: that
having been seen in supportive contexts (e.g., next to high-frequency items)
leads to better segmentation in future exposures. To do so, we constructed
another model which included a predictor that measured the degree of sup-
port given by the previous contexts in which the target word had been seen.
This predictor was composed of the average log frequency of all the words that
had appeared on either side of the target word prior to the current exposure.
The frequency-based predictors we used to investigate the two contextual
effects—contextual facilitation and bootstrapping—are highly collinear and
cannot be tested in a single model (Gelman & Hill, 2006; Jaeger, 2008). For
this test, we thus removed the contextual facilitation predictors.

If being flanked by high-frequency neighbours can improve recognition,
words that have neighbors with higher average frequency should be seg-
mented more correctly than those which have a history of adjacency with
low-frequency words. As with the contextual facilitation predictors, our
model showed such an effect for the words on the left of the target word
(β = 0.18, p = .014) but not for the words on the right (β = −.03, p = .72).
Both contextual facilitation and contextual bootstrapping models dramati-
cally increased goodness-of-fit compared to models that did not include con-
textual predictors (ps < 10−16), but the contextual facilitation model had

4Note that this predictor is only available for words that fall in the middle positions
of sentences, hence the dataset used in this and following models is a subset of the full
dataset. Coefficients for effects shared across both models were comparable, however.
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overall lower Akaike’s Information Criterion values (AIC: 13,331 vs. 13,344
respectively, with the same number of parameters in each model), suggesting
that it fit the data somewhat better.

To summarize, we found highly reliable effects of contextual facilitation
and contextual bootstrapping. As in Experiment 1, however, there was no
overall effect of distribution condition (uniform vs. Zipfian) beyond frequency
effects at the token level.

4 General Discussion

We presented two artificial language word segmentation experiments,
comparing performance in word recognition and word segmentation in lan-
guages with uniform and Zipfian frequency distributions. Both experiments
showed that the major determinant of performance was the frequency with
which words were heard. Once frequency was accounted for, we observed
no remaining effect of distribution condition, suggesting that the sparsity
of Zipfian languages posed no problem for learners. Thus, our results sup-
port a view of “statistical learning” that—although sensitive to statistical
coherence—is largely a process driven by consistent exposure to frequent
chunks (Perruchet & Vinter, 1998; Frank et al., 2010b, under review).

Nevertheless, when we examined word segmentation in context, we saw
that performance for Zipfian languages was considerably higher. This result
highlighted a simple fact about Zipfian languages: in these languages, lis-
teners are repeatedly exposed to a small number of high-frequency words,
giving them many chances to learn these words and use them in segmenting
incoming sentences. When the words were uniformly distributed, learners
could not reliably segment sentences until they became sufficiently famil-
iar with the entire lexicon (Experiment 2). The highly skewed distribution
of word frequencies thus supports an efficient entry into the task of word
segmentation.

Furthermore, our results suggest that established familiarity with high-
frequency words helps learners segment adjacent material. We distinguished
two effects stemming from this observation: contextual facilitation effects—
in which adjacent high-frequency words help learners segment words in the
moment—and contextual bootstrapping effects—in which a history of these
supportive contexts leads to longer-term learning. In our dataset, we saw
reliable evidence for both types of effects, explaining the overall advantage
that learners had in the Zipfian conditions.
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Our results are thus compatible with previous work on contextual fa-
cilitation and bootstrapping (Bortfeld et al., 2005; Brent & Siskind, 2001;
Cunillera et al., 2010; Lew-Williams et al., 2011). In fact, they may suggest
a way to reconcile some conflicting developmental results. Since contextual
facilitation and bootstrapping effects are small relative to direct frequency
effects, these effects may have been easier to observe in the Bortfeld et al.
(2005) study, which used very high-frequency names, rather than the Hollich
et al. (2001) study, which used familiar but much lower frequency nouns.
Nevertheless, more research with infants and children is necessary to under-
stand whether contextual effects play a large role in children’s early word
segmentation performance.

The contrast between the two paradigms we used—word recognition judg-
ments and explicit orthographic word segmentation—highlights an important
assumption of previous work on segmentation: that the goal of word learning
is to attain a large vocabulary of word types. In fact, language learners are
likely pursuing multiple simultaneous goals. One is to build a vocabulary of
word types; the other is to interpret word tokens as they are heard (Frank
et al., 2009). The higher performance we observed in the Zipfian conditions of
Experiment 2 was a consequence of this distinction. While Zipfian contexts
did not have any particular effects on segmentation accuracy per se, the fact
that new material in these conditions tended to contain many high-frequency
tokens means that segmentation was considerably more accurate. Thus, Zip-
fian languages support word segmentation in context, allowing learners to
begin parsing and interpreting the language they hear much more quickly
than they would otherwise be able to.
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