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Latent semantic analysis
Nicholas E. Evangelopoulos∗

This article reviews latent semantic analysis (LSA), a theory of meaning as well as a
method for extracting that meaning from passages of text, based on statistical
computations over a collection of documents. LSA as a theory of meaning
defines a latent semantic space where documents and individual words are
represented as vectors. LSA as a computational technique uses linear algebra
to extract dimensions that represent that space. This representation enables
the computation of similarity among terms and documents, categorization of
terms and documents, and summarization of large collections of documents using
automated procedures that mimic the way humans perform similar cognitive tasks.
We present some technical details, various illustrative examples, and discuss a
number of applications from linguistics, psychology, cognitive science, education,
information science, and analysis of textual data in general. © 2013 John Wiley & Sons,
Ltd.
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INTRODUCTION

The field of cognitive linguistics, an overarching
perspective on language and how our mind

understands it (see Ref 1 for an overview), has
extensively studied cognitive semantics, a more
focused perspective that examines the fundamental
steps by which language shapes concepts (see Ref
2 for an introduction). A number of theories that
are broadly housed under the umbrella of cognitive
semantics, such as the mental spaces theory3 or
the conceptual metaphor theory,4 have studied the
construction of meaning and the representation of
knowledge using language as the main fabric. Another
subgroup of theories, housed under cognitive lexical
semantics, including the principled polysemy model5

or diachronic prototype semantics,6 which refers
to the historical change of meaning in semantic
categories, have specifically studied word meaning.

This article reviews latent semantic analysis
(LSA), a collection of theoretical and computational
approaches that emerged at Bellcore labs in an
information retrieval context but was subsequently
followed by psychological work in discourse
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processing. In true interdisciplinary fashion, LSA is
a theory of meaning as well as a method for extracting
that meaning by statistically analyzing word use
patterns, and brings together researchers from
computer science, information retrieval, psychology,
linguistics, cognitive science, information systems,
education, and many other related areas. The main
premise of LSA as a theory of meaning, pioneered
by psychology professor Thomas Landauer, is that
meaning is constructed through experience with
language.7 This is a sociolinguistic perspective of
the construction of meaning that is compatible with
Etienne Wenger’s idea of communities of practice,
where meaning is negotiated through active, give-and-
take participation.8

Throughout the 1990s and into the 2000s,
LSA was demonstrated to be able to model var-
ious cognitive functions, including the learning
and understanding of word meaning,9–13 especially
by students,13,14 episodic memory,15–17 semantic
memory,18 discourse coherence,19–21 and the com-
prehension of metaphors.22–25 On the basis of these
abilities, the implementation of LSA as a methodolog-
ical enhancement in the quantification of textual data
resulted in improvements in information retrieval,
document comparisons, document categorization and
quantification of textual data as a preprocessing
step in predictive analytics. Practical applications
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of LSA outside cognitive science include informa-
tion retrieval in electronic libraries,26–28 intelligent
tutoring systems,29–31 automatic essay grading,32,33

automatic document summarization,34,35 listening to
the voice of the people in e-government,36 and the
extraction of the intellectual core of a scientific disci-
pline in discipline research studies.37–39 In this review,
we first present some mathematical details of LSA
which we illustrate with the help of small examples,
and then discuss its implication for cognitive science
and related fields.

TECHNICAL ASPECTS OF LSA
The mathematical foundation of Latent Semantic
Analysis is the Vector Space Model40 (VSM), an alge-
braic model for representing documents as vectors in a
space where dictionary terms are used as dimensions.
Using matrix notation, VSM represents a collection of
d documents (a corpus) in a space of t dictionary terms
as the t × d matrix X. The term dimensionality of
matrix X is finalized with the application of two main
term reduction techniques: term filtering, where cer-
tain trivial terms (stop-words) such as ‘the’, ‘of’, ‘and’,
etc. are excluded, and term conflation, which includes
reducing terms to their stem either uniformly (stem-
ming) or separately for each part of speech (lemmati-
zation). The entries in X, initially the frequency counts
of occurrence of term i in document j, are subjected
to transformations that aim at discounting the occur-
rence of frequent terms and promoting the occurrence
of less frequent ones. Commonly used frequency trans-
formations, also known as term weighting, include the
term frequency–inverse document frequency (TF–IDF)
transformation and the log-entropy transformation,
where the first part in the transformation name
(TF or Log, respectively) refers to a local weight-
ing component and the second part (IDF or entropy,
respectively) to a global weighting component. A
number of variants of transformation formulas have
been used in the literature.41 Term frequency trans-
formation typically also includes normalization, so
that the sum of squared transformed frequencies
of all term occurrences within each document is
equal to 1.

Similarities among Terms and Documents in
the VSM
The quantification of a document collection as the
term-by-document matrix X allows for the calcu-
lation of term-to-term and document-to-document
similarities. This is possible because documents are
represented as vectors in the term space. At the same

time, terms are represented as vectors in the docu-
ment space. A commonly used similarity metric is
the cosine similarity, defined as the cosine of the
angle formed by two vectors. The cosine of 0◦ is
1, indicating a maximum similarity between the two
vectors, and cosines of small angles are close to 1,
indicating that the vectors have a large degree of
similarity. Using linear algebra, the cosine can be
expressed as the inner (dot) product of the two vec-
tors divided by the product of their lengths. In the
case of normalized vectors, i.e. when the sum of
squares of the components is equal to 1, the cosine is
equal to the dot product. For example, for a set of q
documents represented in the term space by the nor-
malized matrix Q, the pairwise cosine similarities to
the d documents represented by X are obtained as the
q × d matrix R:

Sim (Q, X) = R = QTX. (1)

Representation of Terms and Documents in
LSA
Note that in expression (1), document-to-document
similarities are computed based on inner products of
columns in Q and columns in X, therefore when two
documents have no common terms their similarity
will be equal to zero. But what if the document
contains terms that are similar in meaning to the query
terms? What if it contains terms that are synonyms
to the query terms? What if it roughly touches upon
a similar concept implied by the query without even,
technically speaking, including any synonym term?
What if the document is a metaphor for the query?
To address such questions, a different approach to
representing terms and documents is needed, one that
takes into account not only terms that are literally
present in the documents, but also terms that are
related to the terms that actually appear, through a
statistical analysis of all term usage patterns observed
throughout the corpus. Such an approach was intro-
duced in the late 1980s under the name of LSA.42 In
LSA, term frequency matrix X is first subjected to a
matrix operation called singular value decomposition
(SVD). SVD decomposes X into term eigenvec-
tors U, document eigenvectors V, and singular
values !:

X = U!VT . (2)

The SVD in Eq. (2) reproduces X using a space of
latent semantic dimensions. The relative importance
of these dimensions in terms of being able to explain
variability in term-document occurrences is quantified
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in the r elements of the diagonal matrix !, r ≤ min(t,
d), called singular values, which are the square
roots of common eigenvalues in the simultaneous
principal component analysis of terms as variables
(with documents as observations) and documents as
variables (with terms as observations). Keeping the k
most important dimensions (i.e., associated with the k
highest singular values) and discarding the remaining
r–k produces a truncated version of the term frequency
matrix Xk:

Xk = Uk!kVT
k . (3)

Matrix Xk is a least-squares best approximation of the
original matrix X such that the sum of squared dif-
ferences between respective elements in X and Xk, or
the Frobenius norm of X–Xk, is minimized.43 Matrix
Xk transforms the original term frequencies by taking
into account a hidden topic structure on which terms
and documents are projected.43 For example, when
the column in X that represents a given document
literally shows only the occurrence of terms mass,
gravity, and Newton, with certain frequency weights,
the corresponding column in matrix Xk will show
some non-zero value that is significantly above the
noise level for the term physics, if enough documents
in the corpus that mention the previous three terms,
or other terms associated with them, also mention
physics. It is this ability of Xk to place mass, gravity,
and Newton, in the context of physics that has enabled
a number of applications of LSA in various areas. The
exact way the frequencies in X are translated into
modified frequencies in Xk depends, of course, on the
choice of semantic aggregation level k. Assuming the
existence of a larger number documents where mass,
gravity, Newton, and physics appear together in vari-
ous combinations, and a smaller number of documents
where some of these terms appear together with chem-
istry, latent semantic dimensions at smaller k values
will tend to be related to all five terms, whereas higher
order dimensions will tend to distinguish between
the physics group and the chemistry group. Thus, a
smaller k value may associate mass, gravity, and New-
ton with a broader sciences context where terms such
as physics and chemistry are both quite likely to occur,
whereas a larger k value may result in a finer definition
of contexts where the three terms in our example are
associated with physics, but not with chemistry. The
choice of optimal k is mostly treated empirically in
the literature, with one review study44 listing reported
dimensionality values ranging anywhere from 6 to
1936, making it clear that optimal dimensionality
depends on the specific corpus and other design aspects
of a study. Another study approaches the dimension-
ality problem probabilistically.45

Similarities among Terms and Documents in
Latent Semantic Analysis
Referring back to the pairwise comparison between
a set of q documents (queries) and a set of d
documents, term and document representation in
the latent semantic space produces modified cosine
similarities. Formatted as a q × d matrix Rk, these are
now computed as

Simk (Q, Xk) = Rk = QTXk. (4)

The products of SVD include term loadings U!

and document loadings V!, which associate terms
and documents, respectively, with the latent semantic
factors (dimensions). Similarity between terms i and
j is then computed by considering the inner (dot)
product between rows i and j in factor loading matrix
Uk!k which, statistically, corresponds to correlation
between terms i and j:

Simk
(
ti, tj

)
=

k∑

m=1

UimUjm!2
mm. (5)

A more standard approach to the calculation of term-
to-term similarities is to consider cosine similarities,
rather than just dot products. As term vectors are
not normalized, cosine similarities require the division
of the RHS in Eq. (5) by the product of the two
term vector lengths, ||ti||||tj||. Term to term similarities
can be illustrated using the University of Colorado’s
LSA@CU Boulder system,46 where the user can submit
queries for computation of similarities among terms
and documents, using a number of available latent
semantic spaces. See Ref 47 for more details on
how to use the LSA@CU Web site. Table 1 shows
similarity results for terms opportunity, freedom, and
depression, against terms good and bad. These results
indicate that the corpus used for these calculations,
which was a collection of general readings up to the
first year of college (d = 37,651 documents), and the
selected level of semantic granularity (300 factors),
tend to associate opportunity and freedom mostly
with good, and depression mostly with bad. On a deep
conceptual level, this finding is likely to resonate with
most readers: in our daily interactions with members
of our communities we tend to consider freedom as
a ‘good’ thing, so we frequently mention it together
with the term good, or next to other ‘good’ things.
The general reading collection analyzed by LSA@CU
reflects a similar world view which is quantified in
Table 1.

Similar to what is done for the comparison
of terms, similarity between documents i and j is
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TABLE 1 Illustration of Term-to-Term Similarities Using the
LSA@CU System

Term Similarity to Good Similarity to Bad

Opportunity 0.30 0.12

Freedom 0.14 0.07

Depression 0.04 0.16

computed by considering the dot product of rows i
and j in factor loading matrix Vk!k:

Simk
(
di, dj

)
=

k∑

m=1

VimVjm!2
mm. (6)

The selection of optimal threshold values for
similarities given by Eqs. (4)–(6), such as those shown
in Table 1, is another open problem in the LSA
literature. Certain studies have suggested considering
a cosine similarity value as significant when it exceeds
0.65, others when it exceeds 0.40,48 others go as low
as 0.18.49 In any case it appears to be a function of
document size, the level of semantic aggregation k,
and the conceptual contrast among documents in the
corpus.

Rotations of LSA Dimensions
Relatively few studies have focused on the
interpretation of the LSA dimensions. The original
dimensions extracted from Eq. (2) have typically
a complex correspondence with dictionary terms,
which are the carriers used by humans when they
communicate concepts. Some authors consider that
‘LSI dimensions represent latent concepts’45 and
‘topics play much the same role as dimensions do in
LSA’.27 Some studies have performed labeling50,51 of
LSA dimensions using various post-LSA approaches.
One such approach involves dimension rotations37

that produce new, rotated term loadings Uk!kMk
and document loadings Vk!kMk, where Mk is
an orthonormal matrix, i.e. MkMk

T = Mk
TMk = Ik,

with Ik being the identity matrix of rank k.
Mk can be obtained through a computational
procedure that aims at simplifying the term-dimension
correspondence, for example using the varimax
rotation procedure, which is commonly used in the
social sciences in factor analysis. Such rotations can
produce alternative dimensions that are interpretable
by humans36,37,49 without affecting the frequency
values in Xk, the similarity values in Eqs. (4)–(6),
or the formation of term and document clusters, since
the relative positioning of term and document vectors

remains unaffected by rotations of the dimension
space.

Rotation of the LSA dimensions gives rise to
an exploratory factor analysis (EFA) approach to
LSA, where the goal of the study is to interpret and
understand the latent semantic dimensions themselves,
rather than use them to understand associations
among terms and documents. In this approach LSA
is used as a method for topic extraction. This is fully
implemented in the commercial package SAS Text
Miner, versions 4.2 and thereafter.52 For a comparison
of clustering and EFA approaches to LSA, see Ref 49.
After rotating the LSA dimensions, comparisons of
query (new) documents to corpus documents remain
unchanged as given in Eq. (4). However, there is an
opportunity to associate the q query documents in Q
with the k rotated factors, through the q × k query
loadings matrix Lk, computed as

Lk = QTUkMk. (7)

A SMALL ILLUSTRATIVE EXAMPLE
In order to illustrate LSA, we compiled a small
collection of 18 articles from WIREs Cogn Sci,
addressing three existing topic classes: Reasoning
and Decision Making, Linguistics, and Philosophy.
Table 2 lists the selected 18 articles by abbreviated
title, page reference, and topic as identified by the
original authors. Corresponding original publication
abstracts were downloaded from the Wiley Online
Library. Three of the 18 abstracts, corresponding to
documents CS106, CS206, and CS306 (see Table 2)
were held out and the remaining 15 were analyzed
with the EFA approach to LSA with varimax rotations
of the term loadings, as implemented in SAS Text
Miner.52 After parsing, stop word removal, and
stemming, the 15 abstracts yielded a vocabulary
of 139 stemmed terms, including decision-, mental,
philosophi-, grammar-, acquisi-, linguist-, etc. As
an illustration, the raw 139 × 15 term frequency
matrix was transformed using a TF–IDF variant
where IDF2i = log2(d/ni), with ni equal to the total
frequency of term i in this small corpus of 15
documents, and d = 15. The resulting X matrix
was subjected to SVD as shown in Eq. (2). The
15 extracted eigenvalues (obtained by squaring the
diagonal elements in !) ranged from 0.50 to 2.39.
Five of those eigenvalues exceeded 1.0, however, for
the purposes of this illustration, k = 3 dimensions
were retained in producing the truncated SVD in
Eq. (3). Selected values from the 139 × 3 rotated
term loadings matrix Uk!kMk, obtained through
varimax rotation of the term loadings Uk!k, are
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TABLE 2 A Collection of 18 Articles from WIREs Cogn Sci, Addressing Three Topics

Doc ID Title WIREs Cogn Sci Ref Topic

CS101 An integrative cognitive neuroscience theory [ . . . ] 2011, 2:55–67 Reasoning & DM

CS102 Judgment and decision making 2010, 1:724–735 Reasoning & DM

CS103 Decision making under risk and uncertainty 2010, 1:736–749 Reasoning & DM

CS104 From thinking too little to thinking too much [ . . . ] 2011, 2:39–46 Reasoning & DM

CS105 Are groups more rational than individuals? [ . . . ] 2012, 3:471–482 Reasoning & DM

CS106 Values and preferences [ . . . ] 2011, 2:193–205 Reasoning & DM

CS201 Statistical learning and language acquisition 2010, 1:906–914 Linguistics

CS202 First language acquisition 2011, 2:47–54 Linguistics

CS203 The gestural origins of language 2010, 1:2–7 Linguistics

CS204 Language and conceptual development 2010, 1:548–558 Linguistics

CS205 Language acquisition and language change 2010, 1:677–684 Linguistics

CS206 Second language acquisition 2011, 2:277–286 Linguistics

CS301 Functionalism as a philosophical theory [ . . . ] 2012, 3:337–348 Philosophy

CS302 Philosophical issues about concepts 2012, 3:265–279 Philosophy

CS303 Desire: philosophical issues 2010, 1:363–370 Philosophy

CS304 Philosophy of mind 2010, 1:648–657 Philosophy

CS305 Representation, philosophical issues about 2010, 1:32–39 Philosophy

CS306 Levels of analysis: philosophical issues 2012, 3:315–325 Philosophy

given in Table 3. Rotated factor F3.1 appears
to be related to discourse on decision making
research, F3.2 to discourse on linguistics, including
grammar and language acquisition, and F3.3 to
philosophical views of mental phenomena including
concept representation. Document loadings were
rotated using the same rotation matrix to produce
the 15 × 3 matrix Vk!kMk, shown in Table 4. To
avoid a visual cluttering of Table 4, we only show
document loadings that are at least 0.30 and indicate
the remaining loadings as ‘<0.3’. The highest of the
truncated loadings is equal to 0.2520. Table 4 suggests
that the extracted rotated factors F3.1, F3.2, and F3.3,
correspond well with the publication topics Reasoning
and Decision Making, Linguistics, and Philosophy,
respectively. An alternative LSA implementation
using the log-entropy frequency transformation
wij = log2(tfij + 1)Gi, where Gi is the entropy of term

i, given as Gi = 1 +
d∑

j=1

(
pij log2 pij/ log2 d

)
, produced

equivalent document loadings with very similar values
that resulted in the same document partition over the
three factors. In general, the two transformations often
produce similar results.

In order to better understand the effect of LSA,
we show selected entries from the original matrix
X and the corresponding entries in the truncated

matrix Xk in Table 5. Even though only three of
the five documents CS201-CS205 literally contain the
term grammar-, by associating all five documents
with the linguistics factor, which is in turn highly
associated with grammar, LSA produces estimated
frequencies in Xk that show grammar- appearing in
all five documents with about equal weights (see the
grammar- column in the truncated matrix part of
Table 5). The term philosophi- originally appears
in CS102, and in only two of the five documents
CS301–CS305. After associating CS102 with factor
F3.1, and not the philosophy-related factor F3.3, LSA
discounts the appearance of philosophi- in CS102,
and promotes the appearance of the same term in
documents CS301–CS305 with about equal weights
(see the philosophi- column in the truncated matrix
part of Table 5). Finally, the appearance of psychologi-
, originally in documents CS101, CS102, and CS302,
is changed to an appearance of that term in all five
documents of the CS101–CS105 group, as well as the
five documents in the CS301-CS305 group, since LSA
associates psychologi- with both the decision making
factor F3.1 and the philosophy factor F3.3. Our
illustration example concludes with a presentation
of loadings for the three query documents CS106,
CS206, and CS306, in Table 6. Given the small size
of our corpus, and the fact that these three documents
were held out of LSA, their association with the three
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TABLE 3 Selected Top Loading Terms for the Three Rotated Factors
F3.1, F3.2, and F3.3

Term F3.1 F3.2 F3.3

decision- 1.0023

individu- 0.3742

make- 0.3489

research- 0.3471

. . . . . .

languag- 0.8379

system- 0.3607

grammar- 0.3491

acquisi- 0.3107

linguist - 0.2972

current- 0.2795

learn- 0.2769

. . . . . .

concept- 0.6674

represent- 0.3927

theori- 0.3455

mental- 0.2915

philosophi- 0.2619

. . . . . .

factors F3.1–F3.3 is not ideal, but still close to what
one would expect.

LSA AND COGNITIVE SCIENCE

LSA as a Theory of Meaning
A large number of researchers in philosophy,
psychology, linguistics, and cognitive science have
tried to propose an adequate theory of word meaning.
For LSA, meaning is a relationship among words.12,16

In its daily processing of large volumes of utterances
that provide context for various words, the human
mind builds a mental model of latent semantic
dimensions and keeps updating it, dynamically
representing words as vectors in that space. The
meaning of a predicate in a predication sentence
of the argument–predicate form (e.g. noun–verb) is
then produced by selectively combining appropriate
features of the argument. This mechanism has
been demonstrated to be able to model metaphor
interpretation, causal inference, similarity judgments,
and homonym disambiguation.9 Ref 27 provides
an extensive literature review of LSA applications
related to cognitive science and the modeling of
human memory, including semantic priming, textual
coherence, word sense disambiguation, analogical

TABLE 4 Simplified Document Loading Matrix

Document F3.1 F3.2 F3.3

CS101 0.3729 <0.3 <0.3

CS102 0.7274 <0.3 <0.3

CS103 0.5940 <0.3 <0.3

CS104 0.6657 <0.3 <0.3

CS105 0.7298 <0.3 <0.3

CS201 <0.3 0.6230 <0.3

CS202 <0.3 0.5427 <0.3

CS203 <0.3 0.5276 <0.3

CS204 <0.3 0.5979 <0.3

CS205 <0.3 0.5707 <0.3

CS301 <0.3 <0.3 0.5513

CS302 <0.3 <0.3 0.3246

CS303 <0.3 <0.3 0.6021

CS304 <0.3 <0.3 0.5856

CS305 <0.3 <0.3 0.6246

reasoning, etc. LSA applications in cognitive science
focus on mental models for word association (e.g.
semantic networks),53 rather than the success in
retrieving associated words, which would be the focus
in information retrieval LSA applications. LSA as
a theory of meaning is rooted in the distributional
hypothesis in linguistics, according to which the more
similar the contexts in which two words appear, the
more similar their meanings.54,55

Looking at word meaning from a higher, more
philosophical point of view goes back to Plato’s
paradox, the fact that humans know much more than
what appears to be present in the information to
which they have been exposed. At an early stage of
LSA’s introduction to the literature, a solution to this
paradox was proposed: humans learn the meaning of
words through a complex multidimensional system
of word similarities, built from their exposure to
contexts of language use, and calibrated for its optimal
dimensionality through a mechanism of induction.13

LSA and Semantic Proximity
LSA was extensively used in studies that model
human memory, for example, free recall and memory
search. For example, the semantic proximity effect
was observed in studies where subjects are presented
with lists of random nouns and asked to perform free
recall: the similarity of two words as measured by
LSA has a positive correlation with the probability
that the words will be recalled one after another by
the study subjects.15 Applications of the use of LSA in

© 2013 John Wiley & Sons, Ltd.



WIREs Cognitive Science Latent semantic analysis

TABLE 5 Selected Entries from the Original Matrix X and from the Truncated Matrix Xk

From the Original Matrix X From the Truncated Matrix Xk

Document grammar- philosophi- psychologi- grammar- philosophi- psychologi-
CS101 0 0 0.159 0.025 0.061 0.051
CS102 0 0.096 0.117 0.015 0.035 0.057
CS103 0 0 0 0.021 0.030 0.048
CS104 0 0 0 −0.019 0.041 0.055
CS105 0 0 0 −0.020 0.041 0.058
CS201 0 0 0 0.129 −0.014 0.003

CS202 0.279 0 0 0.112 −0.013 0.004

CS203 0.094 0 0 0.108 0.013 0.015

CS204 0 0 0 0.124 −0.021 0.000

CS205 0.264 0 0 0.118 −0.008 0.004

CS301 0 0 0 0.012 0.107 0.048
CS302 0 0.669 0.407 −0.005 0.069 0.037
CS303 0 0 0 0.005 0.121 0.059
CS304 0 0.185 0 −0.013 0.123 0.062
CS305 0 0 0 −0.001 0.128 0.064

TABLE 6 Query Loadings on the Rotated LSA Factors

Query Document F3.1 F3.2 F3.3

CS106 0.0769 0.0919 0.030

CS206 0.1038 0.136 0.122

CS306 0.0922 0.1556 0.201

modeling semantic proximity include essay grading,
and the design of experiments that investigate the way
humans perceive word meaning (Box 1).

BOX 1

AN ILLUSTRATIVE LSA APPLICATION TO
THE MEASUREMENT OF COGNITIVE BIAS

Daniel Kahneman, recipient of the 2002 Nobel
Prize in Economic Sciences, describes cognitive
bias using the following vignette: Description
1: Steve is very shy and withdrawn, invariably
helpful but with little interest in people or in
the world of reality. A meek and tidy soul,
he has a need for order and structure, and a
passion for detail.56 In order to demonstrate
one way of using the University of Colorado’s
LSA@CU Boulder system,46 we computed LSA-
based similarity between Description 1 and the
terms librarian and farmer. Using the first k = 5
factors in a 300-factor space created from a

collection of general readings up to sixth-grade
level, similarities are 0.73 (to librarian) and 0.51
(to farmer). As the first five components of
meaning derived by the particular corpus create
a very stereotypical view of the world, ‘Steve’
is considered closer to being a librarian. Taking
into account additional components of meaning,
‘Steve’ gets closer to being a farmer: when
20 factors are considered, similarity to librarian
drops to 0.05, and similarity to farmer increases
to 0.52. An increase of the number of factors to
50 or more results in both librarian and farmer
terms being irrelevant to the description, since
the factor space gets closer to the space of the
original dictionary terms, and the description
does not literally contain ‘librarian’ or ‘farmer’.
The pattern persists across different collections
of cumulative general readings that include up
to the ninth grade, 12th grade, and first year in
college.

CONCLUSION
In the last two decades, LSA has demonstrated its
ability to model various psycho-linguistic phenomena
and proven its value as a useful statistical technique
for the extraction of meaning from text. LSA has been
used by psychologists, cognitive scientists, as well as
researchers in education, linguistics, and many other
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related areas to model cognitive functions such as
word meaning, memory, and speech coherence. In
this review we summarize some technical details from
the LSA literature that include the creation of a latent
semantic space, the calculation of similarity metrics
among terms and documents, and the interpretation
of the latent semantic dimensions. Corresponding
computations are illustrated with the help of a small
example. Selected software packages that implement
these computations are briefly listed as a note at the
end of the article.

We conclude with the observation that
publication activity related to LSA continues at
an ever increasing pace, resulting in an increasing
interdisciplinary coverage of LSA’s application
domain, and an increasing level of sophistication and
methodological rigor at which it is used in research
studies. The goal of this focused introduction is to
encourage the reader to explore LSA’s strong potential
and contribute to its increasing body of knowledge.

Limitations of Latent Semantic Analysis include
its disregard for sentence-level individual document

meaning that stems from word order, which is an
inherent limitation of all bag-of-words models, and
the scarcity of software solutions that implement LSA.
Possible future uses of LSA include tensor (high-order)
SVD applications that go beyond term-by-document
representations and make use of multi-dimensional
spaces and, perhaps, cognitive science applications
that focus on the interpretability of the latent semantic
space.

A NOTE ON LSA IMPLEMENTATION
SOFTWARE
A number of software packages are available to
assist the user in building LSA spaces. On one end
of the range of choices one can find proprietary
commercial packages. These include, among others,
SAS Text Miner offered by SAS Institute.52 Open
access choices include an LSA package in the R
software environment,57 and an LSA package in the
S-Space environment.58

REFERENCES
1. Evans V. Cognitive linguistics. WIREs Cogn Sci 2012,

3:129–141.

2. Talmy L. Toward a Cognitive Semantics, Vol. 1:
Concept Structuring Systems. Language, Speech, and
Communication. Cambridge, MA: The MIT Press;
2000.

3. Fauconnier G. Mappings in Thought and Language.
Cambridge: Cambridge University Press; 1997.

4. Fauconnier G, Turner M. The Way We Think: Con-
ceptual Blending and the Mind’s Hidden Complexities.
New York: Basic Books; 2002.

5. Evans V. The Structure of Time: Language, Meaning
and Temporal Cognition. Amsterdam: John Benjamins;
2004.

6. Geeraerts D. Diachronic Prototype Semantics. Oxford:
Oxford University Press; 1997.

7. Landauer TK. LSA as a theory of meaning. In:
Landauer TK, McNamara DS, Dennis S, Kintsch W,
eds. Handbook of Latent Semantic Analysis. Mahwah,
New Jersey: Lawrence Erlbaum Associates; 2007, 3–32.

8. Wenger E. Communities of Practice: Learning, Mean-
ing, and Identity. Cambridge: Cambridge University
Press; 1998, 51–57.

9. Kintsch W. Predication. Cognit Sci 2001, 25:173–202.

10. Landauer TK. Learning and representing verbal
meaning: the latent semantic analysis theory. Curr
Direct Psychol Sci 1998, 7:161–164.

11. Landauer TK, Foltz PW, Laham D. An introduction
to latent semantic analysis. Discour Process 1998,
25(2&3):259–284.

12. Kintsch W, Mangalath P. The construction of meaning.
Topics Cogn Sci 2011, 3:346–370.

13. Landauer TK, Dumais ST. A solution to Plato’s
problem: the latent semantic analysis theory of
the acquisition, induction, and representation of
knowledge. Psychol Rev 1997, 104:211–240.

14. Landauer TK, Kireyev K, Panaccione C. Word
Maturity: A new metric for word knowledge. Scient
Stud Read 2011, 15:92–108.

15. Howard MW, Kahana MJ. When does semantic
similarity help episodic retrieval? J Mem Lang 2002,
46:85–98.

16. Steyvers M, Shiffrin RM, Nelson DL. Word association
spaces for predicting semantic similarity effects in
episodic memory. In: Healy AF, ed. Experimental
Cognitive Psychology and Its Applications: Decade
of Behavior. Washington, DC: American Psychological
Association; 2005, 237–249.

17. Manning JR, Kahana MJ. Interpreting semantic
clustering effects in free recall. Memory 2012,
20:511–517.

18. Denhière G, Lemaire B, Bellisens C, Jhean-Larose S.
A semantic space for modeling children’s semantic
memory. In: Landauer TK, McNamara DS, Dennis S,
Kintsch W, eds. Handbook of Latent Semantic Analysis.

© 2013 John Wiley & Sons, Ltd.



WIREs Cognitive Science Latent semantic analysis

Mahwah, NJ: Lawrence Erlbaum Associates; 2007,
143–165.

19. Foltz PW. Latent semantic analysis for text-based
research. Behav Res Methods Instrum Comput 1996,
28:197–202.

20. Foltz PW, Kintsch W, Landauer TK. The measurement
of textual coherence with latent semantic analysis.
Discour Process 1998, 25(2–3):285–307.

21. Elvevåg B, Foltz PW, Weinberger DR, Goldberg TE.
Quantifying incoherence in speech: an automated
methodology and novel application to schizophrenia.
Schizophrenia Res 2007, 93(1–3):304–316.

22. Kintsch W. Metaphor comprehension: a computational
theory. Psychon Bull Rev 2000, 7:257–266.

23. Kintsch W, Bowles AR. Metaphor comprehension: what
makes a metaphor difficult to understand? Metaphor
Symb 2002, 17:249–262.

24. Jorge-Botana G, León JA, Olmos R, Hassan-Montero
Y. Visualizing polysemy using LSA and the predication
algorithm. J Am Soc Inform Sci Technol 2010,
61:1706–1724.

25. Utsumi A. Computational exploration of metaphor
comprehension processes using a semantic space model.
Cognit Sci 2011, 35:251–296.

26. Dumais ST. Data-driven approaches to information
access. Cognit Sci 2003, 27:491–524.

27. Dumais ST. Latent semantic analysis. Ann Rev Inform
Sci Technol 2004, 38:189–230.

28. Kumar A, Srinivas S. On the performance of
latent semantic indexing-based information retrieval.
J Comput Inform Technol 2009, 17:259–264.

29. Graesser AC, Wiemer-Hastings P, Wiemer-Hastings K,
Harter D, Person N. Using latent semantic analysis to
evaluate the contributions of students in AutoTutor.
Interact Learn Environ 2000, 8:129–147.

30. Franzke M, Kintsch E, Caccamise D, Johnson N,
Dooley S. Summary Street®: computer support for
comprehension and writing. J Ed Comput Res 2005,
33:53–80.

31. VanLehn K, Graesser AC, Jackson GT, Jordan P, Olney
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