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Improvements in performance on visual tasks due to practice are
often specific to a retinal position or stimulus feature. Many re-
searchers suggest that specific perceptual learning alters selec-
tive retinotopic representations in early visual analysis. However,
transfer is almost always practically advantageous, and it does
occur. If perceptual learning alters location-specific representations,
how does it transfer to new locations? An integrated reweighting
theory explains transfer over retinal locations by incorporating
higher level location-independent representations into a multi-
level learning system. Location transfer is mediated through location-
independent representations, whereas stimulus feature transfer is
determined by stimulus similarity at both location-specific and
location-independent levels. Transfer to new locations/positions
differs fundamentally from transfer to new stimuli. After substan-
tial initial training on an orientation discrimination task, switches
to a new location or position are compared with switches to new
orientations in the same position, or switches of both. Position
switches led to the highest degree of transfer, whereas orienta-
tion switches led to the highest levels of specificity. A computa-
tional model of integrated reweighting is developed and tested
that incorporates the details of the stimuli and the experiment.
Transfer to an identical orientation task in a new position is me-
diated via more broadly tuned location-invariant representations,
whereas changing orientation in the same position invokes interfer-
ence or independent learning of the new orientations at both levels,
reflecting stimulus dissimilarity. Consistent with single-cell recording
studies, perceptual learning alters the weighting of both early and
midlevel representations of the visual system.

reweighting models | Hebbian models

Almost all perceptual tasks exhibit perceptual learning, im-
proving people’s ability to detect, discriminate, or identify

visual stimuli. These improvements due to practice are the basis
of visual expertise. Practice improves the ability to perceive
orientation, spatial frequency, patterns and texture, motion di-
rection, and other stimulus features (1–4). Learned perceptual
improvements generally show some specificity to the feature and to
the retinal location of training. Specificity of trained improvements
to retinal location and feature in behavioral studies of texture
orientation (5, 6) or simple pattern orientation judgments (7, 8)
inspired early researchers to posit that practice altered the
responses of early visual representations (V1/V2) with small
receptive fields, retinotopic structure, and relatively narrow ori-
entation and spatial frequency tuning (6).
However, the generalization of learned perceptual skills over

retinal locations is almost always practically advantageous, and is
sometimes observed (9). Whether perceptual learning reflects
changes in retinotopic representations in early visual cortical
areas (6) or alternatively—as we have suggested elsewhere—is
primarily accomplished through selective readout or reweighting
of stable early representations (10–14), the theoretical challenge
is not explaining specificity, but rather explaining how and under
what circumstances learning transfers over locations.
An integrated reweighting theory (IRT) of perceptual learning

and transfer, developed and tested here, is designed to account

for learning at multiple locations (Fig. 1) and other related
learning phenomena. The IRT proposes an architecture of per-
ceptual learning in which higher level location-independent
representations are trained at the same time as location-specific
representations. Transfer to new retinal positions/locations is
fundamentally different from transfer over stimulus features.
Position transfer is mediated through reweighting of more
broadly tuned location-independent representations, whereas
transfer between different stimulus features reflects the similar-
ity, conflict, or independence of the optimal weight structures in
two tasks for both location-specific and location-independent
representations. The perceptual learning mechanism is imple-
mented as augmented Hebbian reweighting (13, 14) that dy-
namically optimizes connections between stable stimulus rep-
resentations and a task decision. Reweighting operates on both
levels of representations simultaneously. This is a computational
model of perceptual learning that uses both multiple levels of
representation and multiple locations to make predictions about
location and feature transfer. The IRT predicts differential
transfer to new features, locations, or both. Learned improve-
ments in a task for the same feature transfer relatively well to
a new location based on learned reweighting of the location-in-
dependent representations. Switches of feature in the same lo-
cation show far less transfer as they require learning either new
or conflicting weight structures for both location-independent
and location-specific representations. Switches of both feature
and location may show intermediate transfer if conflicting weight
structures must be learned for the location-independent repre-
sentations. Direct tests of the IRT predictions lead to our exper-
iment. The computational IRT provides quantitative predictions
for learning and transfer specialized for each experimental pro-
tocol. A computational model is necessary to generate predictions
for learning and transfer that reflect the stimuli and judgment
(15), the extent of initial training (16), and other aspects of each
experimental protocol.
Previous behavioral studies of transfer after perceptual learning

have generally changed either stimulus feature, such as orienta-
tion, or position at the task switch, but not both (5, 7, 8, 10, 11, 15,
17, 18). Schoups et al. (7) were the first to claim surprising spec-
ificity of learned peripheral orientation discrimination to positions
separated by only a few degrees of visual angle. However, a review
of all of the literature suggests a more nuanced picture. Many
cases (8, 10, 11) exhibit only partial specificity—and so partial
transfer—to visual field quadrant, or from preliminary foveal
training to peripheral locations, with some residual specificity
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to each location (7), even when both orientations and locations
are switched (5, 15). No prior study provides ideal experimental
comparisons; still the literature overall is suggestive of greater
specificity for orientation feature switches than for position
switches. Two cases (7, 8) report higher specificity for an ori-
entation switch; one hyperacuity bisection task showed the op-
posite but also involves a shift from fovea to periphery (17).
Switched orientations at fovea led to full specificity (19), as did
learned motion directions, despite a slightly speeded learning rate at
transfer (20). The results are more complex if sequences of tasks are
trained, often leading to transfer where none occurred before (11,
21, 22). The basis of these complex training effects is currently
under investigation (Discussion).
A quantitative test of the IRT framework requires controlled

comparisons to evaluate differential transfer. The current ex-
periment compares the extent of transfer to switches of position
(P) and switches of orientations (O), or both (OP), in strictly
comparable experimental conditions. All transfer is not equal. As
predicted by the IRT architecture, there is greater transfer of the
same orientations to a new location than to new orientations
within the same location. The computational IRT model of orien-
tation judgment incorporating both location-specific and location-
independent representations provides a close qualitative and
quantitative account of the learning and transfer data.

Results
Observers judged small differences in the orientation of Gabor
patches in periphery as clockwise or counterclockwise relative to

an oblique reference angle (R° ± 5°) (see Fig. S1 for stimuli).
Observers were assigned randomly to three groups. After eight
blocks (two per session) of practice with one set of orientations
and positions, observers were switched in one of three ways (P,
O, or OP), and trained for another eight blocks. All together,
each observer completed about 10,000 trials (Materials and
Methods). High-precision orientation judgments, such as (R° ±
5°), yield partial specificity and partial transfer of learning when
both reference angle and location are switched (15). This leaves
room to see either more or less transfer and specificity for the
other conditions. Throughout practice, discrimination was tested
with and without external noise in the stimulus (“no noise” and
“high noise”; Fig. 2), to assay learned stimulus enhancement and
external noise exclusion, respectively (10, 11, 18, 19). Perfor-
mance with and without external noise reveals different limiting
factors in learning that can show distinct profiles of learning and
transfer (18, 19, 23). Accounting simultaneously for both high
and low noise within the context of the detailed training protocol
of the experiment is a strong challenge for quantitative tests of
the IRT model.
Fig. 2 shows average contrast thresholds to achieve 75% cor-

rect as a function of practice for the initial training phase (Fig. 2,
Left) and the postswitch transfer phase (Fig. 2, Right). The 2σ
error bars were estimated from the data using Monte Carlo
methods (n = 1,000). Power function improvements in contrast
thresholds, fit by least-squares methods, are shown as smooth
curves. Gabor patches are harder to see in the presence of visual
noise and have higher threshold contrasts in both the initial
training phase [(F(1, 64) = 149.24, P < 0.0001] and the post-
switch transfer phase [F(1, 64) = 79.57, P < 0.0001]. (The IRT
model fits low and high external noise conditions jointly with the
same model parameters; see below.) Observers were randomly
assigned to groups, so the initial performance of the groups
should be statistically equivalent, and it is [F(2, 30) = 0.393,
P > 0.6 in high noise and F(2, 30) = 0.454, P > 0.6 in no noise].
Initial training data in each noise condition and all groups were
well fit by the same power function learning curves [F(6, 15) =

Fig. 1. A schematic of the IRT includes location-independent representa-
tions (turquoise) and several location-specific representations (blue), each
with internal additive noise (red). Learning reweights the connections from
representation activations to a decision unit using Hebbian learning, with
the benefit of bias control and feedback (SI Materials and Methods, Model
Implementation of the Integrated Reweighting Theory). The location-in-
dependent weights to decision mediate location transfer, whereas the sim-
ilarity of the optimized weight structure for different stimuli mediate
feature/orientation transfer.
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Fig. 2. Contrast thresholds at 75% accuracy for the initial training phase
(Left) and subsequent practice during the transfer phase (Right) after the
task switch of the position (P), orientation (O), or both (OP), averaged over
observers. Higher contrast threshold curves are for tests in high external
noise, whereas lower contrast threshold curves are for tests without external
noise. Error bars are estimated by Monte Carlo methods, and smooth curves
represent best fitting power functions of practice.

Dosher et al. PNAS | August 13, 2013 | vol. 110 | no. 33 | 13679

PS
YC

H
O
LO

G
IC
A
L
A
N
D

CO
G
N
IT
IV
E
SC

IE
N
CE

S

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1312552110/-/DCSupplemental/pnas.201312552SI.pdf?targetid=nameddest=SF1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1312552110/-/DCSupplemental/pnas.201312552SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1312552110/-/DCSupplemental/pnas.201312552SI.pdf?targetid=nameddest=STXT


2.09, P = 0.12, F(6, 15) = 0.733, P = 0.63, in no noise and high
noise, respectively].
Orientation discrimination contrast thresholds improved with

practice in the initial training phase in both high external noise
and no external noise tests (all P < 0.001, by t test). Performance
also improved with practice in the transfer phase in both high
noise (all P < 0.001) and no noise (P < 0.001, 0.003, and 0.05,
respectively). If practice only changes the tuning of early visual
representations, then stimuli should be represented with in-
dependent neural coding in all groups, and all conditions should
show high, nearly maximal, levels of specificity. In contrast, in the
IRT architecture, the three types of transfer will not in general
be equivalent. Consistent with the IRT, the three transfer groups
(O, P, and OP) differed in their transfer/specificity at the task
switch. The same orientation stimuli switched to a new position
(P, blue curves) led to the best performance at the switch point,
showing considerable transfer or low specificity, consistent with
transfer in the IRT through learned reweighting of location-
independent representations that are still useful in the new lo-
cation. Different orientation stimuli at the same position (O,
red) led to the worst performance at the switch point, showing
little transfer or high specificity, consistent with the need to learn
either completely new or incompatible weights for the new ori-
entations. The conditions differ at the first point after the task
switch [t(30) = 2.04, P < 0.05 in high noise, and t(30) = 1.90, P =
0.07 in no noise], over the first two blocks of training after the
switch for both high and low noise (P ∼ 0.013 and 0.09, re-
spectively), and over all eight transfer blocks in high noise (P ∼
0.01). The contrast thresholds for the position and orientation
switch group (OP) were intermediate, and closely replicate the
data of refs. 15, 16. This suggests that the learned weights for the
location-independent representations are (slightly) incompatible
and must be relearned, whereas reweighting of location-specific
representations in the new location are independent of prior
learning. Individual observer results were generally consistent
with these patterns.
The practice effects on contrast thresholds were fit with power

functions that estimate differential transfer; this quantitative analysis
of the whole pattern of learning, detailed next, supports the con-
clusions above. Elaborated power functions, cτðtÞ= λ  ðt+tX Þ−ρ + α,
provide an excellent account of threshold improvement for aggre-
gate data (15, 16, 19), where cτðtÞ is the contrast threshold at
practice block t, α is the asymptotic (minimum) threshold after
extensive practice, λ is the initial incremental threshold above α, ρ
is the learning rate, and transfer of prior experience is summa-
rized by transfer factor tX , which is set to 0 for initial training (see
ref. 15 for a description). The tX s quantify transfer in blocks,
ranging in this experiment between zero (no benefit of prior
training or full specificity) and eight (full transfer or no speci-
ficity). The estimates of tX at the task switch in high noise were
tPX = 6.04, tOX = 0.59, and tOP

X = 2.47 (with λ = 0.56, ρ = 0.45, α =
0.20, r2 = 0.865) and in low noise were tPX = 2.63, tOX = 0.37, and
tOP
X = 1.09 (with λ= 0.38, ρ= 1.06, α= 0.08, r2 = 0.945). The three
groups share λ, α, and ρ, the initial performance, asymptotic
level, and effective learning rates for each external noise level.
Transfer is very high (transferring about six of eight blocks) for
position switches (P), low (about one of eight blocks) for ori-
entation switches (O), and intermediate (about 2.5 of 8 blocks)
for changing both (OP) in high external noise, and about half
these values in low noise trials. Correspondingly, performance
level at the switch estimated from independent power functions
were λPX = 0.30, λOX = 0.48, and λOP

X = 0.36 in high noise (with
baseline λL= 0.55 in the initial learning phase, r2 = 0.915) and
were λPX = 0.12, λOX = 0.27, and λOP

X = 0.18 in low noise (with
baseline λL = 0.38, r2 = 0.959) (all Ps < 0.0001 by nested model
tests). In sum, the power function analyses are consistent with the
prior analyses and provide quantitative estimates of transfer.

Next, we develop a computational implementation of the IRT
theory of perceptual learning and transfer. Our previous models
of perceptual learning explain perceptual learning in a single
location as incrementally optimized reweighting of outputs of
early visual representations to influence a perceptual decision
(10, 11, 24). The representations themselves often remain un-
changed (6). A review of the literature in neurophysiology is
broadly consistent with this idea (12), although modest repre-
sentation retuning may also sometimes occur. A representation
system (13, 14) operates on images of the experimental stimuli
and computes activations of orientation and spatial-frequency
tuned representation units. A decision unit integrates the weighted
activation of these units and (nonlinearly) selects a behavioral
response (i.e., “left” or “right” orientations). Connection weights
are incrementally updated on each trial of a simulated version
of the actual experiment through a Hebbian mechanism, aug-
mented by feedback and bias correction. This augmented Heb-
bian reweighting model (AHRM) accounts for perceptual learning
in alternating noise backgrounds (13), for the role of feedback
(14, 25, 26) (see ref. 12 for a review), for the effects of external
noise (11, 18), and for differential magnitudes of learning in high
and low noise tests (11, 18). This original AHRM gives a powerful
account of perceptual learning under varying training conditions
for a single location. It provides no account for transfer of per-
ceptual learning to new locations.
The IRT and architecture were developed to model learning

and transfer across as well as within locations. This architecture
has a broadly tuned location-independent representation as well
as location-specific representations. The IRT simulation uses
augmented Hebbian learning (13, 14) to simultaneously optimize
the weights on location-independent representations and loca-
tion-specific representations. The representation system for ori-
ented pattern stimuli (such as the Gabors in the experiment)
computes the normalized activation of noisy spatial frequency
and orientation-sensitive units (see SI Materials and Methods,
Model Implementation of the Integrated Reweighting Theory).
Learning transfers to a new location or position when perfor-
mance in a new location inherits useful location-independent
weights; subsequent improvement occurs because the location-
specific weights in the new location need to be learned. To
summarize again, switching orientation in the same location
requires retuning weights for the new orientations at both levels,
and transfer (or interference) depends on the consistency, in-
dependence, or inconsistency of the optimal weight structures for
the two sets of stimuli (14, 27). An IRT account of transfer of
spatial, vernier, or bisection judgments (28, 29), or motion di-
rection, would require alternative representation system modules
suited to those tasks, but the architectural principle of the theory
is general. Similarly, the details of the learning algorithm could
be altered while retaining the general principles of the proposed
architecture and theory.
The IRT simulation incorporates representation modules

from the earlier single-location model (13). It takes an image and
computes activations in different spatial-frequency and orienta-
tion tuned units that span the stimulus space via coarse sampling.
Bandwidths are set from physiological estimates of early cortical
areas, and we incorporate nonlinearities, internal noises, and
selection of the spatial region of the oriented Gabor stimulus.
The location-independent representations are noisier and more
broadly tuned. The tradeoff for representing information from
many locations is a reduction in the precision. Broader tuning is
also motivated by the role of precision in the specificity of
transfer to new locations, as well as by physiology (15). The
weighted activations and input from a bias-control unit are
passed through a nonlinear activation function to generate a bi-
nary response (i.e., left or right) on each trial. Weights from both
the location-specific and location-independent units to the de-
cision unit are updated after each trial. Feedback improves
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learning in low accuracy conditions, but is not necessary for
learning if the internal response without it is often correct. The
model and related equations are described in SI Materials
and Methods.
Examples of activation computed for the location-specific and

the more broadly tuned location-invariant IRT representations
are shown in Fig. S2. Best fitting simulated predictions of the
IRT, shown in Fig. 3, provide a close account of the average
human data (r2 = 0.952), with model parameters listed in Table 1.
The low noise (Fig. 3, Left) and high noise (Fig. 3, Right) test data
are separated for clarity of the graph, but they are intermixed in
both the experiment and the modeling. Many of the general
representation parameters were set a priori; others such as the
learning rate are used to fit the observed rate of perceptual
learning. The IRT model correctly predicts the ordinal patterns
of the different transfer conditions under essentially all tested
parameter sets; the fine-tuning of parameters matched perfor-
mance levels and learning rate more closely. Internal represen-
tation noise parameters differed very slightly between the three
subject groups to account for sampling differences; all other
parameters are constant. Simulated model runs use random trial
histories and response choices from the specific experimental
design; incorporating observer variability in parameters would
broaden the confidence bands, but not alter the basic pattern
of predictions.
Perceptual learning pruned weights on irrelevant orientations

and amplified weights for informative orientations of both
location-specific and location-independent units—as seen in the
initial weights, weights at the switch, and weights at the end of
training on the new task (Fig. S3, SI Materials and Methods).
Performance transfers over position via the learned location-
independent weights, then all weights, including those for the
new location-specific representations, are further optimized. For
switches of orientation, both the location-specific and the loca-
tion-independent weights are tuned for now irrelevant ori-
entations, and both require learning of the new orientations, and
unlearning of those previously learned weights that are in-
appropriate for the new orientations. If both dimensions are
switched, then the location-specific weights are learned anew,
whereas the location-independent weights must be retrained. This

eliminates any conflict in learned weights between the training
and the transfer tasks for the location-specific representations.

Discussion
Specificity to trained stimuli and locations is central in claims
about neural mechanisms of perceptual learning. Specificity and
transfer are also important in determining the value of percep-
tual learning for training of expertise and rehabilitation. Quali-
tative theories claiming that perceptual learning adapts or
retunes neurons in early visual cortex imply widespread obser-
vations of specificity to position and stimulus features and equal
and high specificity for all task switches involving distinct neural
populations. A consideration of the literature led us instead to
hypothesize that transfer to new locations was mediated by
reweighting of information from location-independent repre-
sentations, and to develop and test a new IRT and transfer ar-
chitecture. We specified broader tuning and higher noise for the
location-independent representation based on findings in the
literature that the required precision of the transfer task is an
important determinant of transfer over locations; high-precision
tasks benefit less from transfer (5, 15).
The experiment directly compares switches of position only

(P), orientation only (O), and both dimensions (OP) within the
same task and training structure. Our findings of greater speci-
ficity for orientation changes than for position changes are gen-
erally in line with the prior literature (7, 8, 18) (but see ref .17),
while controlling for extraneous factors in prior comparisons.
The results are qualitatively and quantitatively consistent pre-
dictions of the IRT. No noise and high noise testing were
intermixed in this study and therefore influence and reflect the
same learned weight structures. High noise conditions naturally
produced the larger magnitude of perceptual learning and dif-
ferences in specificity observed under noisy test conditions,

Fig. 3. Predictions of the best fitting IRT with the experimental data points.
Model parameters of the best fitting model were estimated by grid search
methods and are listed in Table 1.

Table 1. Parameters of the best-fitting IRT model

Parameters Parameter values

Parameters set a priori
Orientation spacing Δθ 15°
Spatial frequency spacing Δf 0.5 octave
Maximum activation level Amax 1
Weight bounds wmin wmax ±1
Location-specific initial weights scaling

factor winit

0.127

Location-independent initial weights
scaling factor winitI

0.254

Activation function gain γ 3.5
Location-specific orientation bandwidth hθ 30°
Location-independent orientation bandwidth hθI 48°
Location-specific frequency bandwidth hf 1 octave
Location-independent frequency bandwidth hfI 1.6 octave
Radial kernel width hr 2 dva

Parameters adjusted for the data
Normalization constant k 3e-6
Scaling factor a 0.167
Location-specific internal noise 1 σ1 2.5e-7

3.5e-7
2.5e-7

Location-specific internal noise 2, σ2 0.01
0.02
0.01

Location-independent internal noise 1 σI1 3.5e-6
Location-independent internal noise 2 σI2 0.15
Decision noise σd 0.01
Learning rate η 6e-4

Location specific internal noises are for the three transfer conditions: P,
O, and OP. dva, degrees of visual angle.
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reflecting the impact of external noise on imperfectly tuned
weight templates for the tasks. If trained separately (18, 23),
noisy test environments limit the ability to find a stable optimized
weight structure (10, 11). Transfer of stimuli or tasks within the
same location are accounted for within the same IRT architec-
ture. That consistency of weight structures determined stimulus/
task transfer was an explicit prediction of the AHRM for per-
ceptual learning in training locations, necessary to account for
persistent switch costs in alternating noise conditions (13, 14)
(see also refs. 12, 27). Parallel predictions would hold for tasks
other than orientation judgments, such as spatial, vernier, pat-
tern, motion, or texture judgments, although several of these
require a different representation subsystem.
The computational implementation of the IRT architecture

makes it possible to generate predictions for and understand
apparently inconsistent results based on the exact details of the
experimental paradigm. The exact extent of training and transfer
can depend on the amount of training, the accuracy of perfor-
mance during training, the availability of feedback, and the
mixture and specific schedules of training different stimuli and
tasks, For example, our results are potentially related to, but
differ from those of ref. 21, which reports nearly full transfer of
an orientation task to a new transfer location after “pretraining”
that primes the second location, suggesting to those authors
a role for intermediate-level coding in visual perceptual learning.
The IRT architecture is extensible—it should make predictions
about this and many other transfer phenomena, such as the
“double training” method. Several such cases are being in-
vestigated in their own computational studies (30), where the
IRT framework has accounted for several of the so-called double-
training results as learned task-specific reweighting followed by
up-regulation of location-independent weights through training
with tasks requiring broad tuning. Details of the IRT imple-
mentation may need to evolve as this literature is expanded.
Neurophysiologists have also sought the neural signature of

perceptual learning of orientation (31–35). Single-unit responses
in early visual cortex before and after perceptual learning report
largely identical location, size, and orientation selectivity be-
tween trained versus untrained regions of V1 and V2 (but see
refs. 25, 36). Among these, a small change in slope in V1 neurons
(34), not seen in other cases, is often cited as key evidence for
changes in orientation tuning of neurons primarily responsive to
the trained orientation. Any small alterations in early visual
representations following extensive training do not account for
the large behavioral changes (13). In contrast, alterations in
tuning curves have been seen in V4 (35). Analogously, in a visual
motion task, extensive training left sensory responses in MT
largely unaffected, but altered those of lateral interparietal cor-
tex (LIP) (37). Overall, the neurophysiology suggests that al-
though small changes in very low-level representations may
sometimes occur, they are insufficient in general to account for
the substantial behavioral changes. Instead, changes or decision
structures at a higher level of the visual hierarchy are suggested
(12); or perceptual learning may alter feed forward connections
and correlation structures, possibly before V1 (38). The neuro-
physiology has examined changes in cortical regions as the result
of training for a single task in a single location, and has not
widely studied transfer and subsequent retraining.
The IRT and architecture provide an explanatory structure

for and good quantitative fit to differential transfer for location
and stimulus features. Transfer to new locations uses location-
independent representations as the scaffold. We speculate that
these location-independent representations are consistent with
“object” representations of anterior inferotemporal (IT) in the
ventral visual pathway. Our 5°-eccentric test locations are (center
to center) separated by about 7°. In comparison, receptive field
sizes at similar eccentricities are estimated at less than 1° for V1,
1–2° for V2, and 3–4° for V4 (39), although some estimates are

as high as 6° for V4, so position transfer in this experiment seems
more consistent with properties of IT (40–42). This parallels
conclusions that learning in the motion system localizes to LIP
rather than middle temporal area (MT) (37). Visual psychophysics
generates critical information about functional properties of
perceptual learning and transfer that support conjectures about
neural substrate that need to be tested and refined with physio-
logical or brain imaging investigations.
The IRT framework does not aim to reconstruct detailed

neural pathways of the visual system or the decision-making and
action-selection circuits that collectively produce the behavior. It
is inspired by computational models of V1, V4, and higher visual
areas, whereas tuning properties of the representational units
reflect tuning properties in these cortical regions (43, 44). Our
design strategy is to simplify the model to essentials and test the
ability to predict the patterns in data. Further model de-
velopment might take several directions. Although some per-
ceptual learning paradigms such as the current study did not
require consideration of recurrent connections (38), recurrent
connections from decision to sensory representation units may
play a role in segmentation, attention, and conscious awareness
(45, 46), and future studies may incorporate them to account for
the properties of learning in other paradigms as another form of
learning through reweighting. Applications of the IRT in dif-
ferent stimulus domains, such as motion direction discrimination
or vernier, would require representation modules appropriate
for those domains. Also, more complex experimental designs are
likely to require attention gating of different inputs to the de-
cision. Finally, the current IRT architecture approximated lo-
cation-independent activation by submitting the stimulus directly
to the location-independent units. The development of a full
hierarchical stimulus analysis in which the location-independent
units receive their input from location-dependent units would
itself be a major research project. However, the current IRT
architecture provides a strong computational framework that can
make predictions about a wide range of transfer phenomena.

Conclusions
Dosher and Lu, and others (10–14, 24) suggested an alternative
to altered early cortical representations in visual perceptual
learning—the “reweighting hypothesis”—in which perceptual
learning incrementally optimizes the connections between sen-
sory representations and decision. Most quantitative models of
perceptual learning are based on reweighting or some other form
of selection from stable early representations (13, 14, 26, 29, 47–
50). As learning continues, only the most relevant neural rep-
resentations survive in decision. Even if early representations are
slightly modified, reweighting will be necessary to optimize per-
formance—indeed reweighting will be all of the more necessary
if sensory representations are altered. The IRT models transfer
through an expanded architecture incorporating both location-
specific and location-independent representations for both orig-
inal learning in a single retinal position and transfer to new po-
sitions and stimulus features. The architecture implies a special
status for transfer over locations based on the location-independent
representations of midlevel visual analysis, validated in the cur-
rent experiment. It provides a theoretically motivated basis for
considering the quantitative and qualitative properties of trans-
fer in a wide variety of task combinations. The computational
IRT model makes quantitative predictions for learning and
transfer that are sensitive to the exact stimuli and the details of
the training procedure, providing a framework for understanding
new training paradigms. Application of the model to each new
experimental condition will further test the range of phenomena
explained by this perceptual learning system.
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Materials and Methods
Observers discriminated the orientation (±5° clockwise or counterclockwise
from –35° or +55°) or Gabor patches presented either with or without ex-
ternal noise either in the NW/SE or NE/SW corners (5.67° eccentric) on
a computer screen. Contrast thresholds at 75% correct were measured using
adaptive staircase methods. After training for four sessions (4,994 trials) on
one task, they switched orientation, position, or both (O, P, or OP with 12,
11, and 10 observers) and trained for four sessions. Error feedback was
provided. Details are in the SI Materials and Methods.

The IRT Matlab simulation takes grayscale images, computes activity in
location-specific and location-independent representation units, generates
a response, and then updates the weights. The simulated experiment ex-
actly replayed the procedure in the human experiment. Representation

parameters were set a priori for the location-specific representations
(13, 14), at bandwidths of 30° for orientation and 1 octave in spatial
frequency, spaced every 15° and every one-half octave, respectively.
Bandwidths of location-independent representations, estimated from
preliminary fits, were 1.6 times the location-specific values, and the acti-
vation function parameter γ was set to 3.5. Observed threshold learning
curves were fit with a scaling factor (a), two parameters for internal addi-
tive noise (σ1) and for internal multiplicative noise (σ2), one each for loca-
tion-specific, and one for location-independent representations, a decision
noise (σd ), and a learning rate (η). These parameters were adjusted to yield
the best least-squares fit of the model to the average data (SI Materials and
Methods). The predicted performance curves were based on 1,000 iterations
of the model experiment.
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