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1 Introduction

In recent years, statistical approaches to language acquisition have generated much enthusiasm, especially
in the domain of phonological and phonetic learning. According to some of its proponents, these powerful
approaches may supplant the need for much prior knowledge, being able to discover, for example, the number
and identity of the vowels of a language. Encouraging experimental results in acquisition and successful
computational models make it hard to deny the importance of these emerging techniques, and phonologists
ignore this literature at their peril. In this chapter we review some of the most influential work in this
area, and suggest ways in which current trends in machine learning and statistical approaches to sound
categorization can be integrated with long-standing observations in phonetics and phonology. We present
a computer simulation of the acquisition of the Inuktitut vowel space that speaks to the feasibility of this
approach as a way of modeling the entire acquisition process, from perception to phonology.

2 Statistical Approaches to Phonological Learning

A good deal is known about the time course of phonological development. Very young infants have famously
been termed universal listeners, being able to discriminate amongst a wide range of sounds not present in
their input (see, e.g., [1]). A number of studies have shown that these discriminatory abilities soon decay as
the infant develops. Declining sensitivity to non-native language vowel contrasts is apparent for vowels as
early as 6 months [16], and by 8 months, similar effects are evident in consonant contrasts [33]. A common
observation about this arc of development is that it seems to suggest that phonological category learning could
in fact drive the building of a lexicon, rather than the other way around as had been previously hypothesized
[2],[15]. Given that infants can reliably discriminate minimal pairs only later (around 18 months or so),
it appears that at this age, higher-level constructs such as minimal pairs do not drive the development of
contrast [7].

Maye and Werker (2002) hypothesized that distributional learning mechanisms are the fundamental
building block of phonological development, a hypothesis that is fully compatible with the observed time-
course of acquisition [19]. Building on results that show that infants are sensitive to distributional information
in other modalities, such as word-learning [28], they aimed to show that infants used distributional cues to
bootstrap contrastive categories from the input. Infants at both 6 and 8 months of age were exposed to
training sets that contained either bimodal or unimodal distributions over voice-onset times (see Figure 1).
When presented with bimodal distributions, infants showed greater sensitivity to differences between the
modes in the VOT distribution, whereas for the infants in the unimodal condition, sensitivity was decreased
for the same sounds. The authors interpreted these findings as showing that distributional characteristics
of the input directly impacted what dimensions of the signal the infants viewed as relevant or contrastive.
Werker. Pons, Dietrich, Kajikawa, Fais & Amano (2007) went on to show that, for the vowel space, there are
distributions in actual speech that support the acquisition of phonological contrasts. They showed that in
infant-directed speech of both Japanese and English speakers, clear distributional cues support the relevant
contrasts (i.e. duration cues for the Japanese vowel space), and minimize irrelevant dimensions of variation
[32].

In addition to these experimental results, computational models have made increasing inroads in the
explanation of how speech categories are acquired using various types of statistically-informed frameworks.
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Figure 1: Bimodal and unimodal distributions for familiarization, reproduced from (Maye, Werker and
Gerken 2002)

Drawing from the literature on machine learning, many researchers have chosen to characterize the problem of
phonological acquisition as a difficult example of an unsupervised clustering problem. Clustering techniques
come in many different forms, but all share the notion of carving out subsets of a data set and classifying
them together based on a pre-defined distance metric in a given representational space. In Figure 2 we
reproduce the famous figure from [24] From this point of view, the phonological learning problem amounts
to finding the enclosing ovals given only the unlabelled points.

An example of this cluster analysis approach is the work of de Boer and Kuhl [5], who used a mixture
of Gaussians (MOG) model to model the acquisition of vowel categories in the metric space defined by the
first two formants (i.e. the typical F1 by F2 vowel plot). MOG models represent category structure as a
set of parameterized Gaussian distributions (termed components of the model) in the input space, weighted
by a mixing frequency (for further explication and discussion of MOG models, see [21]). In this model,
Gaussians were fit with an Expectation-Maximization algorithm (EM, see Demp, Laird & Nan 1977), which
is a family of hill-climbing algorithms that seeks to maximize a measure of likelihood for an unobserved
category structure. Both the EM algorithm and the MOG approach have received a good deal of attention
in the statistical and machine learning literature for the last two decades, and their properties are relatively
well-understood (Everitt et al 2001, [11]). De Boer and Kuhl applied these techniques to vowels that were
recorded during mother-child interactions, focusing on the vowels at the extreme edges of the vowel space in
English (/i/, /u/, and /a/) and limiting the MOG models to three-component mixtures only (that is, they
pre-specified the number of components in the model and supplied this prior information to the cluster-fitting
procedure). By applying this approach, and clustering within speakers, they showed that the model was
better able to acquire the categories on infant-directed speech than on adult-directed speech, suggesting one
possible utility of infant-directed speech.

Other clustering approaches to learning the vowel space have similarly met with a good degree of success.
Coen 2006 analyzed video-recorded samples of American English vowels, and used a cross-modal clustering
technique to form and cross-correlate clusters in both acoustic and visual space (i.e. shape of mouth) [4].
Using this technique, he was able to extract a good portion the vowel categories of American English,
an important result. This result is perhaps the most dramatic success in the modeling of phonological
acquisition: the complete American English vowel space was induced with no prior knowledge of the number
of clusters, and without any parameterization of the distributions. Note that this algorithm relies crucially
on visual information, a feature that is not obviously relevant to infants learning their phonology, and is
obviously not available to blind children [17]. Another important contribution to the modeling of vowel
acquisition was the Online EM model of Vallabha, McClelland, Werker, Pons, and Amano 2008 [31]. Using
both parameterized and non-parameterized versions of an online clustering algorithm (i.e. one that is updated
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Figure 2: American English vowels, reproduced from Peterson and Barney 1952

after the presentation of each data point), Vallabha et al were able to model the acquisition of the Japanese
and English data that was analyzed by Werker et al [32]. Their model fit four-dimensional Gaussians in the
raw acoustic space (F1, F2, F3 and duration), updating its weighting for relative weighting of the parameters
after each input point. Applying this technique within speakers, they were able to achieve a reasonable rate
of success for most speakers, successfully learning the vowel systems 80% of the time for parameterized
models, and 60% of the time for non-parameterized models. This model is important in that it is the most
successful version of an online algorithm, processing each data point as it occurs, as opposed to the batch
algorithms that try to estimate categories based on a large store of exemplars stored in memory in an offline
fashion.

In the domain of phonological acquisition of consonants, there have been similar successes in applying
machine learning techniques to the problem of category induction. Vallabha and McClelland (2007), for
example, modeled experimental results on adult acquisition of a non-native contrast (here, Japanese speakers
learning the /r/-/l/ distinction), using neurally-inspired models employing a variant of Hebbian learning.
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3 Learning Algorithms: Input and Output

Thus, there are a number of experimental and computational results that suggest that the problem of phono-
logical acquisition relies on statistical generalizations in some form. Some proponents of these techniques
may view these successes as obviating the need for extra sources of knowledge in the process. We suggest,
however, that instead of using statistical methods to essentially reductionist ends, these techniques can and
should be integrated with what linguists take to be important generalizations about phonological representa-
tions. As a case in point, consider the acquisition of the vowel space. The vowel space serves as an excellent
model, because its representational parameters are well understood, and finding structure in unlabeled vowel
data is a notoriously difficult problem.

There are three essential parts to any potential learning algorithm: an input space, a transform (perhaps
the identity function) on that space, and an output (the categories acquired). Much of the work in computa-
tional modeling of phonological acquisition has focused on refining our notion of a desirable transform that
a learner might employ to induce category structure. Here we suggest that this is a myopic way to view the
problem, and that careful consideration and refinement of the input and output to a learning model may be
essential to successfully characterizing the learning procedure. What constitutes input and output for any
given procedure represent what assumptions and knowledge the modelers are comfortable building into the
model.

Consider first the input to the learning algorithm, an aspect of all models for acquisition that is fraught
with assumptions about what human learners can and do compute from an acoustic signal. The acoustic
input is a rich, high-dimensional signal that contains a great deal of extraneous information. Many models
either explicitly or tacitly assume that the input dimensions are those that have been assumed to be relevant
for speech for half a century or more (e.g., [24]). In the case of the vowels, for example, they generally
employ the first three formants, and occasionally duration. While it is true that these dimensions are a
reasonable place to begin to classify vowel sounds, and this information is transmitted from the cochlea to
the auditory nerve, it is no innocent assumption that the learner can limit their attention to these dimensions
and not, say, zero-crossing rate and amplitude, which are also relayed to auditory cortex and could well be
relevant to other speech categories, such as fricatives (which as a class have a high zero-crossing rate). It
may be the case that the learner employs some variant of feature selection, a family of machine-learning
dimensionality-reducing algorithms that aim to strip features that are irrelevant for classification out of the
input data set (an overview can be found in [14]). Here, mechanisms for determining the contrastiveness
of a feature could be determined from the input data itself, though to our knowledge no model has yet
shown that when given a richer set of acoustic data, all and only the correct representational dimensions
will be converged upon. Thus it remains possible that models that consider all cochlear dimensions in the
input space risk building spurious categories that correspond to any distributional regularities in any given
dimension. While there may not be such regularities in the speech of any given adult speaker, if infants
modeled these dimensions in their assessment of the distribution of acoustic features, it is all too likely that
slight perturbations and random variation on these dimensions would give way to entrenchment of category
structure in these dimensions across generations of learners. Indeed, this appears to be exactly the situation
that occurs in situations of tonogenesis, where a language slowly develops contrastive use of pitch on lexical
items [3]. However, no such emergence of categories built on amplitude and zero-crossing rate appears to
ever happen in natural language.

The choice of input representation may also be leveraged to achieve greater success in modeling real-life
acquisition situations. As we discuss below, the problem of cross-speaker variation is quite real for the
learner. An untransformed formant space spreads the vowel categories of male, female, and child speakers
across very different portions of the space [24], and makes it very difficult to find unifying categories. This
is not the case with formant space that is built on ratios of formants relative to F3, as discussed in by
Monahan and Idsardi [22]. They present neurophsiological (magnetoencephalography, MEG) evidence that
the formant ratio F1/F3 (or something substantially similar to this) is computed early in human auditory
cortex, by approximately 100ms, thus suggesting a powerful cross-speaker normalization mechanism is avail-
able to learners. Given such a representational space, it is reasonable to expect that learners might not be
too troubled in forming categories that span different speakers. Here, judicious choices about input data
representation may actually significantly impact the ability of models to handle more natural data. Correctly
characterizing the input space requires making explicit assumptions about what is and is not represented
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in possible phonological grammars, and our understanding of the processing abilities of the human auditory
system thus provides an important upper bound on our capacity to model the acquisition process.

On the other hand, one must carefully consider the desired output of a learning algorithm: what exactly
is the nature of the system that the learners are attempting to build? A common view is that the categories
are represented as parameterized distributions, a view that is supported by experimental evidence on sound
categorization [29]. Modeling a category as a general multi-dimensional Gaussian distribution requires
estimating the mean and (co)variance for each of the dimensions, therefore a total number of n+n 2̂ values that
need to be estimated for an n-dimensional distribution. Non-parametric estimates typically require a greater
number of values to be calculated, and accordingly, require more data for accurate estimation of category
structure. Even compact, parameterized distributions may not be appropriate models for phonological
categories, however, if one maintains the assumption that the distributions are estimated independently.
Recent experimental results suggest that the relevant process is best characterized as acquired sensitivity of
a particular feature contrast [18], rather than simple identification of modes in a multidimensional acoustic
space. Maye et al were able to show that infants who were given training sets that induced sensitivity on
a particular VOT contrast at the coronal place of articulation generalized the same contrast to the velar
series, and vice versa. Likewise, Dietrich et al [7] showed that a lexically contrastive distinction in vowel
duration present in some Dutch vowels caused children to view duration as a lexically contrastive feature
more generally, as opposed to English-speaking children who did not. These findings demonstrate that it
is also important to note that there are important generalizations that learners build across distributions
that are particular to specific speech categories. That is, once a learner finds that a particular dimension of
an acoustic signal is contrastive, they are more willing to apply that contrast to pairs of sounds for which
they do have not observed evidence of the contrast being operative. Being able to account for results such
as these requires more closely considering the assumptions of the desired end state. More generally, models
need to lay plain what the desired end state is: distributions that correspond to single sound categories?
Estimates over some kind of feature space?

4 Input and Output in Learning Inuktitut Vowels

Here we consider the effect that input and output can have on one outstanding problem in phonological
acquisition: allophony. With a few notable exceptions ([23], [25], among others), this problem has not been
addressed by proponents of statistical approaches to phonological acquisition. If one takes the view that
phonological contrast is derived from statistical regularities in the input, then it is essential that all and only
the correct contrasts are acquired. A case in point is the Inuktitut vowel space, where the acoustic clusters
are not isomorphic to the resulting phonological categories.

Underestimating the number of categories in the data (a miss in signal detection terminology, a false
negative in medical testing parlance) is the most common way learning algorithms are said to fail at their
task. However, failure may just as easily arise from spurious postulation of structure in the vowel space,
thereby overestimating the number of categories in the data (false alarms, false positives). This is a very real
possibility, as seen in the vowel space of Inuktitut, an Eskimo-Aleutian language spoken in Northern Canada.
The vowel inventory of Inuktitut, like many related languages, consists of three vowel phonemes: /i/, /a/,
and /u/ ([8]; [30]). In these languages there is a productive process of vowel lowering, whereby vowels are
lowered (and backed) in the context of a uvular consonant ([6]; see also [27], [9] for a description of related
West Greenlandic processes), plausibly as a result of a retracted tongue root, [RTR]. Thus in a form like
/surusiq/ boy, the final phoneme /i/ is pronounced as [e] (similar changes obtain in the same environment
for other vowel phonemes /a/ and /u/). This regular, allophonic change has a clearly bimodal reflex in the
acoustics, as evident in the clusters around the phones [i] and [e] of the phoneme /i/ in Figure 4 (based on
the dataset from [6], see below).

Note that any algorithm that attributes contrastive status to any distinct modes in the input is in danger
of being led astray by the presence of modes for both [i] and [e] when they are considered on their own.
Put differently, given the current input (independently sampled vowel tokens), we will fail to reach our
desired output (three vowel categories) using any number of transforms. Note, however, that the input
under discussion incorporates a very strong assumption, that of independence from other tokens and its
environment. Given rampant co-articulation effects in language, this may be an unrealistic assumption. If
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instead the learner tracks the correlations that hold among tokens in the input, she may be able to undo
the effect of being adjacent to a uvular segment by offsetting the spectral characteristics of a given token by
a fixed amount when it is in the environment of a uvular. In the simulations below, we consider two types
of input for the Inuktitut vowel space: untransformed F1-F2 values, and F1-F2 values that factor out the
average effect of a vowels environment. We will see that reconsidering the input space in this manner allows
us to immediately overcome the problem of spurious category formation.

4.1 The Model

The transform from input to output that we employ is a mixture of Gaussians, intended as an abstract model
of the learner. Such mixture models assign a probability to an observation xi from a set of n d -dimensional
observations {x1...xn} through a combination of constituent probability distributions, as in (1) (for reference,
see [21; 13]).

f(xi|Ψ) =
K∑

k=1

πkφ(xi |θk ) (1)

Ψ =( π′, θ′)′ (2)

The model acts to assign a probability to any observation xi by summing the probability of that obser-
vation conditioned on each of the K components (i.e. φ(xi|θk) for each component k), weighted by that
componentś mixing probability (πk ). Together, the vector of mixing probabilities π and the parameters for
each component θ are designated by Ψ, a vector that represents all unknown parameters. With such a model,
there a number of ways in which a mixture model can be used to assign a label to incoming unlabeled data.
In what follows, we employ Maximum A Posteriori (MAP) Estimation, assigning unlabeled tokens to the
single most likely component.

With this model of the output-a set of component categories in a mixture model-the learning problem
is simply the estimation of the parameters Ψ. In the case of Gaussian mixture models, this consists of K
components, each with its own mean (µk ) and variance (Σk ). With models of this sort, the general learning
algorithm that is employed in the machine learning literature is Expectation-Maximization (EM) (see [21],
chapter 2). The EM algorithm for fitting a mixture consists of two steps. The first, the E-step, takes an
initial parameter estimate θ̂ and uses it to compute a matrix Z in which each entry zik corresponds to the
conditional probability that observation xi was generated by the kth component. Z is then used to compute
updated parameter estimates which maximize the likelihood (or in this case, the BIC), as a function of
changes in µk , Σk , and πk . In the simulations reported below, the number of components was estimated
prior to fitting mixture models using a bootstrap approach. All simulations were conducted using the R
statistical computing environment [26], using the MCLUST package [10; 11; 12].

4.2 The Data

All data considered in this simulation derived from an original data set that consisted of 239 Inuktitut vowel
tokens. These tokens were elicited from an adult female speaker of the Cape Dorset dialect by Derek Denis
and Mark Pollard [6]. The formant structure was measured by hand, and each token was labeled with F1
and F2 values. In what follows, we refer to the original 239 tokens in F1-F2 space as the untransformed data
set.

The uvular-corrected data set, by contrast, represented a transform that aimed to factor out the coartic-
ulatory effects of uvular segments on vowels (a weakening of the independence assumption). The transform
that we applied was a constant spectral correction that was applied to all vowel tokens in the context of
a uvular segment, and it was calculated as follows. We pooled all vowel tokens, and marked them with as
either adjacent to a uvular segment (in Inuktitut, this means /q/,/K/, or /ð/) or not. We then fit two linear
regressions that modeled F1 and F2 values of all vowel tokens as a function of the presence or absence of an
adjacent uvular segment. The spectral correction for each formant was simply the slope estimate for each of
these regression. This correction-applied to all vowels in the context of a uvular segment-was -92.27 Hz for
F1 and 374 Hz for F2. Importantly, this was a vowel-general correction, and did not require any knowledge
of the category status of individual vowels. Thus, the calculation of this factor can be done before the vowel
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space is sub-divided into categories (but it does require the splitting of the consonantal environments into
uvular and non-uvular categories). The corrected dataset is plotted in Figure 5. This method clearly does
an excellent job of correcting for the uvular influence on /i/ as now [i] and [e] are nearly coincident. The
improvement with [o] and [u] is not immediately noticeable, but as we will see, it has a significant effect on
the statistical clustering results.

It should be noted that this procedure obviously requires the identification of the [uvular] class of con-
sonants in order to perform the corrected measures. Although even very young infants are quite good at
distinguishing classes of plosive consonants, whether or not they can categorize places of articulation across
various manners of articulation is very much an open question. The present research suggests that it may
be this information may be very useful in later phonological acquisition.

4.3 Bootstrap Analysis for Number of Categories

Rather than allow EM to automatically determine the number of components K that best fit a given data
set, we employed bootstrap methods to estimate the level of significance for each K given the data x. In order
to do so, we generated bootstrap distributions of the log likelihood ratio, following [20]. Once the bootstrap
distribution was obtained, all tests took the form of a simple hypothesis test: the null hypothesis H0 is that
the data is best fit by a K -component mode, and the alternative H1 represents a K+1 -component model.
By comparing a the log likelihood of the data given a K+1 -component model to that of a K -component
model, we obtain an estimate of the level of significance p relative to the bootstrap distribution of the log
likelihood ratio. In other words, if the resultant p-value reaches a preset α, we can determine that the data
is significantly better fit by K+1 components. This procedure is iterated with increasingly larger K until
a K is found for which the null hypothesis H0 cannot be rejected. This value of K is the lowest number of
components for which we cannot reject H0, and the number of components that best fits the data.

K p
1 0.00
2 0.00
3 0.00
4 0.00
5 0.51

Table 1: Estimated p-values for number of components K, as determined by bootstrap of the log-likelihood
ratio (B = 100), using untransformed data.

K p
1 0.00
2 0.00
3 0.46

Table 2: Estimated p-values for number of components K, as determined by bootstrap of the log-likelihood
ratio (B = 100), using uvular-corrected data.

The results are clear. On untransformed data, the data is best described, reliably, by five mixture
components, presumably corresponding to the five acoustic phones in the F1-F2 space. In contrast, the
simple spectral correction for coarticulatory effects we applied reduced the number of components to three,
the number of phonemic categories that are present in Inuktitut. This suggests that the transform has the
desired effect of reducing spurious categories in the Inuktitut vowel space. In what follows, we investigate
the impact of this reduction on goodness of fit, relative to the desired output of three phonemic categories
for Inuktitut.
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4.4 Mixture Models of the Inuktitut Vowel Space

The results of the bootstrap analysis suggest that for the untransformed data, five components are the best
fit, and that for the uvular-corrected data, three components are the best fit. This suggests that on the
untransformed data, each allophone will receive its own mixture component, and for the uvular-corrected
data, it is the phonemes themselves that are most immediately evident in the data. In this section, we
further break down this result by examining how both three- and five-component mixture models best fit
both data sets.

The analysis proceeded as follows: for each data set, a model was fit to the F1 and F2 values for each
of the tokens in the two data sets, using EM as described above. The number of components was fixed
prior to fitting, in accordance with the results of the bootstrap analysis. The two resulting best fit models
are plotted in figures 3-4, showing the alignment of the best-fit model components against the allophonic
clusters. To assess how well these models fit the actual labels of the data, we constructed a confusion matrix
C from the modeĺs classification of the data. C (m,n) was the number of tokens from actual category m
that were classified as mixture component n. To find which model component best corresponded to each
of the phoneme or allophone labelings, rows were reordered to maximize the trace of the confusion matrix.
Using the optimal alignment of mixture components and labelings, the precision and recall were calculated
for both phonemic classification (for the three-component model), and for allophonic classification (for the
five-component model).

/i/ /a/ /u/
Precision .963 .718 .972
Recall .859 .968 .833

Table 3: Precision and recall for phoneme classification, for the best fit three-component models using
uvular-corrected data.

[i] [e] [a] [o] [u]
Precision .967 .391 1.00 .560 .484
Recall .806 .900 .571 .902 .348

Table 4: Precision and recall for allophone classification, for the best fit five-component model using un-
transformed data.

Visual inspection of the alignment between model components and actual phonemic or allophonic labeling
suggests that untransformed data does indeed give rise to spurious allophonic categories. This is most
strikingly true for the pair [i]-[e], and this observation is confirmed by the recall scores on each of these
categories in Table 4.4. These recall scores suggest that the [i] and [e] tokens were to a large extent classified
into distinct model components. Overall, for the five-component model, good fits are obtained with the
allophones [i], [e] and [o], but cluster 5 models [a] poorly, and cluster 4 contains a mixture of various tokens,
not just [u].

For the three-component model on transformed data, the correct phonemic structure is immediately
apparent, as evidenced by the three clusters that align almost perfectly with the actual phonemic categories.
As seen in , the correspondence between the induced categories and the actual phones and phonemes is not
perfect. Cluster 3 is somewhat higher than actual /a/, and cluster 2 lies between [o] and [u], but models /u/
extremely well.

4.5 Discussion

A most subtle question is whether or not speakers (and listeners) of Inuktitut are aware of the statistical
phonetic aspects of both individual allophones and phonemes. The procedure outlined here allows us (with
prior knowledge of some special corrective procedures) to go directly to the identification of phoneme cat-
egories, without an allophonic way-station. It remains to be seen if this is actually what speakers do, but
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Figure 3: Best fit for untransformed training set: 5 component model

these findings in this small simulation are certainly intriguing.
Inuktitut allophony is a clear example where clustering on the raw data, as suggested by Vallabha et al

will not reveal the phonemic categories of the language, though it does approximately reveal the allophones.
In addition, a learner that attempts to use statistical modes in acoustic space to build contrast (as in [19])
will induce an incorrect contrast in the case of Inuktitut. Applying some prior phonological knowledge about
the general nature of allophony and co-articulation allows us to cluster in a corrected vowel space, which then
directly reveals the phonemic structure of the vowel space. An additional benefit of this way of approaching
the learning procedure is that not only will the category structure be learned, but some degree of positional
information is implicitly present in the learnerś end state. Any learner that learns the allophones separately
has to invoke extra procedures to guarantee that [e] will only surface in the context of a uvular segments;
the knowledge about positional restrictions is built into the learning process in the current model.

5 Conclusion

In this chapter we have shown that acoustic clusters are not always homomorphic to contrastive categories
in a given languages phonology. We suggested a way in which the problem may be avoided, by invoking a
mechanism that prevents the spurious postulation of acoustic categories. This amounts to making a more
conservative category induction procedure, but this is not the only choice that has been proposed to solve this
problem. Another choice is to invoke additional procedures to undo spurious divisions made by the first-pass
clustering algorithm (as in [23]). The differences in these approaches make clear predictions about the time
course of the acquisition of allophonic relations: the latter predicts a u-shaped curve where allophones are
initially treated as phonemes, whereas the predicts that Inuktitut children would never develop a contrastive
distinction between [i] and [e] at any point. We hope (and predict) that further simulations, coupled with
psycholinguistic and neurophysiological experiments will reveal which of these possibilities is more likely.

More generally, the results presented here demonstrate the importance of considering the input and
output in modeling phonological acquisition. We demonstrated that different assumptions about the input
lead to drastically different results. In the case of Inuktitut, the desired end state of three phonemic categories
is most evident when coarticulatory effects are factored out prior to clustering. Although it is unclear how
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Figure 4: Best fit for uvular-corrected training set: 3 component model

general this particular solution will prove to be, it is clear that more sophisticated notions of the input the
learner receives and the output the algorithm produces will play an essential role in furthering computational
models of phonological acquisition.
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