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Griffiths, Chater, Norris, and Pouget (2012) argue that we have misunderstood the Bayesian approach.
In their view, it is rarely the case that researchers are making claims that performance in a given task is
near optimal, and few, if any, researchers adopt the theoretical Bayesian perspective according to which
the mind or brain is actually performing (or approximating) Bayesian computations. Rather, researchers
are said to adopt something more akin to what we called the methodological Bayesian approach,
according to which Bayesian models are statistical tools that allow researchers to provide teleological
explanations of behavior. In our reply we argue that many Bayesian researchers often appear to be make
claims regarding optimality, and often appear to be making claims regarding how the mind computes at
algorithmic and implementational levels of descriptions. We agree that some Bayesian theorists adopt the
methodological approach, but we question the value of this approach. If Bayesian theories in psychology
and neuroscience are only designed to provide insights into teleological questions, we expect that many
readers have misunderstood, and hence there is a pressing need to clarify what Bayesian theories of

cognition are all about.
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Bayesian theories in psychology and neuroscience have gener-
ated a great deal of excitement in recent years. A topic search of
Web of Knowledge lists 51 articles published in Psychological
Review in response to the term Bayesian, and 35 of these were
published between 2005 and 2011. In response to the same search
term, 14 out of 17 articles from Nature Neuroscience and 22 out of
24 articles in Current Biology were published since 2005. In our
view, this excitement is related to the many strong and surprising
claims about how we achieve near-optimal performance in a wide
range of tasks in all variety of domains, from low-level vision to
memory, language, reasoning, and motor control.

However, Griffiths, Chater, Norris, and Pouget (2012) argue
that we have misunderstood the Bayesian approach. In their view,
it is rarely the case that researchers are making the claim that
performance in a given task is near optimal, and few, if any,
researchers adopt the theoretical Bayesian perspective, according
to which the mind or brain is actually performing (or approximat-
ing) Bayesian computations. Rather, researchers are said to adopt
something more akin to what we called the methodological Bayes-
ian approach, according to which Bayesian models are statisti-
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cal tools that can be used to constrain theories: If behavior can
be captured with a Bayesian model, it allows researchers to
make teleological explanations about why people act the way
that they do.

We find these claims regarding optimality and the theoretical
Bayesian perspective surprising and remain unconvinced regard-
ing the merits of the methodological Bayesian approach. Below we
briefly consider these and related issues.

Bayesian Theories and Optimality

The claim that Bayesian researchers seek to show that people
are optimal in a given task is hard to reconcile with the many
statements in the literature, such as the quotes at the start of our
target article (Bowers & Davis, 2012). One only has to look at the
titles of many articles to understand where we and others have
formed the impression that advocates of Bayesian models are
highlighting the optimality of human performance in various do-
mains (e.g., Ernst & Banks, 2002; Faisal & Wolpert, 2009; Feld-
man, Griffiths, & Morgan, 2009; Norris, 2006). In any case, in
order to even get started on a Bayesian analysis, it has to be
assumed that we are (near) optimal. As Griffiths et al. (2012) put
it, the fact that “solutions are optimal licenses a particular kind of
explanation . . . known as a ‘teleological explanation” ” (p. 415).
Although Griffiths et al. emphasize teleological explanations, in
practice the success of a Bayesian model is taken as evidence for
both teleological explanations and optimality claims.

Indeed, it is not always clear that the teleological explanation
being offered is anything other than that human performance is
near optimal. For example, consider the Bayesian reader model
that we discussed in the target article (Bowers & Davis, 2012).
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Norris (2006) wrote: “Both the general behavior of the model and
the way the model predicts different patterns of results in different
tasks follow entirely from the assumption that human readers
approximate optimal Bayesian decision makers” (p. 327). This
passage appears to highlight the importance of optimality per se,
rather than any other teleological explanation. Indeed, the assump-
tions (priors, likelihood functions) do not appear to constitute a key
theoretical claim. For instance, in order for the model to capture
human performance in the lexical decision task, Norris assumed
that there are “background” and “virtual nonwords” that are stored
in memory, and the task of the participant is to decide whether a
given input is closer to a word or a virtual nonword. A subsequent
version of the model adopted another method for making lexical
decisions, but in neither case were the likelihood functions pre-
sented as a central claim. Similarly, the Bayesian reader included
word frequency as its prior, but again, this was not considered a
key claim, as Norris noted that the prior could incorporate other
factors such as age of acquisition if the data demanded it. What is
constant across the iterations of the Bayesian reader model is the
claim that word identification is near optimal. Or to give another
example, to make their Bayesian model of motion perception
better match human performance, Weiss, Simoncelli, and Adelson
(2002) added a “gain control” function that mapped stimulus
contrast into perceived contrast. The authors did not highlight this
aspect of their model, and indeed, it does not appear to constitute
a core part of their theory. Rather, the emphasis was placed on the
claim that motion perception is near optimal, as reflected in the
title of their article (“Motion illusions as optimal percepts”).

Furthermore, even when theorists place teleological explana-
tions at the forefront and relegate optimality claims to the back-
ground, it is not at all clear that a successful Bayesian model
provides strong evidence for a given set of priors or likelihoods.
That is, it is quite likely that another teleological explanation
(another set of likelihoods and priors) will allow another Bayesian
model to account for the data just as well (cf. Jones & Love, 2011).
In other words, the success of a given model may be nothing more
than a “just-so story.” In the target article we gave numerous
examples in which Bayesian theories were built post hoc around
the data.

Griffiths et al. (2012) take issue with our claim that Bayesian
models have more degrees of freedom than non-Bayesian models
and describe our claim regarding the unfalsifiability of the Bayes-
ian framework as misconceived. However, we never claimed that
Bayesian models have more degrees of freedom compared to
alternative approaches. In fact, we readily acknowledge the free
parameters in all models, noting simply that “we have emphasized
the flexibility of Bayesian models because it is often assumed (and
claimed) that Bayesian models are more constrained than the
non-Bayesian alternatives” (p. 397). We agree that when evaluat-
ing the Bayesian framework, the critical question is whether
Bayesian models are productive or unproductive. Answers to this
question can only be determined in the standard manner: namely,
by comparing models and determining which of them provides a
more parsimonious account of a wider range of data (as well as
which models make novel predictions). As we detailed in Bowers
and Davis (2012), Bayesian models are rarely compared to alter-
native theories (we explicitly claimed “rarely” rather than
“never”), and when models are compared, the Bayesian models are
often compared to “straw man” theories (e.g., Lewandowsky,

Griffiths, & Kalish, 2009). The common failure to compare Bayes-
ian to non-Bayesian models can easily lead to just-so stories in
which performance is described as near optimal. For example,
Wozny, Beierholm, and Shams (2010) argued that probability
matching can be explained as near optimal on the assumption that
participants are looking for predictable patterns. What they did not
consider, however, is that the pattern can be explained by a
suboptimal adaptive network approach that we discussed in some
detail.

Theoretical Bayesians

Jones and Love (2011) challenged the fundamentalist Bayesian
perspective, according to which theories are developed through
“rational analysis” as described by Anderson (1990). That is, a
theory is developed at Marr’s computational level through a con-
sideration of the problem and the environment, with little consid-
eration of the underlying mechanisms (at the level of the brain)
that support performance. This was clearly Anderson’s approach,
who wrote that the goal of rationalist theory “is to predict behavior
from the structure of the environment rather than the structure of
the mind” (Anderson, 1991, pp. 473—-474), and that a rationalist
theory “focuses us on what is outside the head rather than what is
inside” (Anderson, 1990, p. 23). Nevertheless, in a response to
Jones and Love, Chater et al. (2011) wrote: “Bayesian Fundamen-
talism is purely a construct of [Jones and Love’s] imagination” (p.
194).

In Bowers and Davis (2012) we challenged a more modest
interpretation of Bayesian theorizing, which we called the theoret-
ical Bayesian approach. From this view, modelers are free to
constrain their theories using behavioral data, biology, and the like.
The key point is that theoretical Bayesians are making not only
teleological claims (answering why questions) but also claims
about how the mind and brain work at the algorithmic and imple-
mental levels of description. Or as Chater, Oaksford, Hahn, and
Heit (2010) wrote: “Bayesian methods . . . may bridge across each
of Marr’s levels of explanation” (p. 820). Nevertheless, according
to Griffiths et al. (2012), there are few, if any, theoretical Bayes-
ians either.

However, the claim that there are few, if any, theoretical Bayes-
ians is hard to reconcile with many relevant statements in the
literature. For instance, how are we to interpret the Kording and
Wolpert (2006) quote at the start of Bowers and Davis (2012)?
Again, one need only to look at the titles of many articles and
books to understand where we got the impression that theorists
often claim that the mind and brain actually perform (or approx-
imate) Bayesian computations (e.g., Doya, Ishii, Pouget, & Rao,
2007). In addition, the frequent references to neuroscience provide
clear evidence that researchers often take a theoretical Bayesian
perspective (see Bowers & Davis, 2012).

Consider a recent article by Tenenbaum, Kemp, Griffiths, and
Goodman (2011). These authors claimed that Bayesian models
should be considered proposals about how to answer three central
questions: (1) How does knowledge guide learning and inference?
(2) What form does knowledge take? (3) How is knowledge
acquired? That is, the authors appear to be focusing more on how
rather than teleological why questions. The answers of Tenenbaum
et al. to these questions appear to constitute algorithmic claims
regarding representations and processes:
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Bayesian models typically combine richly structured, expressive
knowledge representations (question 2) with powerful statistical in-
ference engines (questions 1 and 3), arguing that only a synthesis of
sophisticated approaches to both knowledge representation and induc-
tive inference can account for human intelligence. (p. 1279)

Similarly, Tenenbaum et al. appear to take a theoretical Bayesian
position when they write:

Much ongoing work is devoted to pushing Bayesian models down
through the algorithmic and implementation levels. The complexity of
exact inference in large-scale models implies that these levels can at
best approximate Bayesian computations, just as in any working
Bayesian Al system. (p. 1284)

Given that Bayesian Al (artificial intelligence) systems typically
make estimates of priors and likelihoods, multiply these probabil-
ity functions, and multiply priors and likelihoods for at least some
alternative hypotheses, it is not clear how to reconcile the above
quote with Griffiths et al. (2012), who claim that there are few, if
any, theoretical Bayesians. Perhaps we have misinterpreted Tenen-
baum et al. (2011), among others, but we expect we are not the
only ones.

Methodological Bayesians

The rapid progress in mathematics and computer science has
allowed Bayesian analyses to be applied to a range of questions in
psychology and neuroscience, but we question the value of these
analyses if it is also assumed that the algorithms and mechanisms
that mediate behavior are non-Bayesian. Putting aside the above
concerns regarding post hoc theorizing, it is not clear how a
detailed characterization of the optimal solution is an important
advance over standard (non-Bayesian) adaptive solutions. Bayes-
ian and adaptive solutions to a problem will inevitably be highly
correlated (e.g., both Bayesian and non-Bayesian theories will take
advantage of past learning—i.e., priors). The optimal solution will
generally differ in detail from an adaptive solution (e.g., a solution
derived from a neural network), but then, human performance
generally differs in detail from optimal solutions. Griffiths et al.
(2012) suggest that observing a correspondence between an opti-
mal solution and human behavior “suggests that we should begin
to explore approximate algorithms that can find decent solutions to
these problems in reasonable time” (p. 416). But we would argue
that this type of exploration is already being undertaken by com-
putational modelers of cognition, without necessitating a prior
Bayesian analysis.

Of course, if there were cases in which a Bayesian model
identified a counterintuitive solution to a problem—or better,
made a novel prediction that current non-Bayesian models miss—
then the model would be making an important contribution. But
this is rarely the case. Or if Bayesian models were needed in order
to make teleological explanations, we would agree that the ap-
proach is essential. But it seems to us that stronger teleological
conclusions can be made with traditional non-Bayesian process
models. That is, the teleological explanations derived from pro-
cessing models consider the role that algorithms play in explaining
why performance is as it is.

Bayesian Neuroscience

Given that Griffiths et al. (2012) reject the view that the brain is
actually performing (or approximating) Bayesian computations, it

is surprising that they take issue with our claim that there is little
or no evidence from neuroscience in support of Bayesian theories.
They consider our conclusion “remarkably assertive,” but our
position should not be considered so extreme given that two of the
key advocates of the Bayesian coding hypothesis wrote: “The
neurophysiological data on the [Bayesian coding] hypothesis,
however, is almost non-existent” (Knill & Pouget, 2004, p. 712).
Accordingly, our strong claims seem well justified when consid-
ering the data collected up to that point. To support our conclusion,
we looked at more recent evidence and found little or no reason to
update this view. Our conclusion regarding the neuroscience is not
so different from that of Vilares and Kording (2011), who wrote in
a recent review of Bayesian models:

Finally, we want to point out that there is currently some disconnec-
tion between Bayesian theories and experimental data about the
nervous system. While there are many theoretical proposals of how
the nervous system might represent uncertainty, there is not much
experimental support for any of them. (p. 35)

The main criticism of Griffiths et al. (2012) about our analysis
is that we assumed that the Bayesian coding hypothesis depends on
the intrinsic noisiness of neurons, which they take as a significant
misreading of Ma, Beck, Latham, and Pouget (2006). However, as
Ma and Pouget (2009) wrote: “An important aspect of population
codes is the stochastic nature of neuronal responses” (p. 749), and
this internal noise is thought to provide ambiguities that are ad-
dressed through Bayesian solutions (e.g., Orban & Wolpert, 2011).
Furthermore, contrary to Griffiths et al., we did not suggest that the
Bayesian coding hypothesis rests on the idea that neurons are
stochastic devices. Rather, we wrote: “Of course, even if single
neurons are more reliable than assumed by Ma et al. (2006), this
does not rule out the claim that collections of neurons compute in
a Bayesian-like fashion” (Bowers and Davis, 2012, p. 404).

There is one way in which a Bayesian theory of neural compu-
tation might have stronger support: that is, if Bayesian theories are
characterized so broadly as to encompass almost any theory of
neural signaling. For example, Knill and Pouget (2004) also wrote:

This is the basic premise on which Bayesian theories of cortical
processing will succeed or fail—that the brain represents information
probabilistically, by coding and computing with probability density
functions or approximations to probability density functions. . . . The
opposing view is that neural representations are deterministic and
discrete. . . . (p 713)

This is the same point that Griffiths et al. (2012) make when they
say the critical question for Bayesian theory of neuroscience is
whether neurons code single values or probability distributions. If
we understand this characterization of Bayesian neural processing,
all that is required is that a given input produces a pattern of
activation across a set of neurons, and this pattern (rather than the
discrete output of single neurons) influences higher levels of
processing before a decision is made. We would agree that there is
long-standing evidence for this supposition, both behavioral and
neurobiological. Indeed, the claim that cognitive and neural rep-
resentations are deterministic and discrete (the ‘“non-Bayesian”
approach) is adopted by no one, as far as we are aware. The view
that graded signals pass on their signal to higher levels of process-
ing is a common claim in most theories in psychology that goes by
the name of “cascaded processing.”
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Conclusions

What is clear from the recent debate started by Jones and Love
(2011) and continued by us is that there is a good deal of confusion
about what theoretical claims are being advanced by Bayesian
modelers. Jones and Love thought that many Bayesian theorists
were claiming that much about the mind could be understood by
studying what is outside the head (i.e., the environment and the
task) rather than what is inside the head, but this Bayesian funda-
mentalist position was strongly rejected by leading Bayesian the-
orists. We thought that claims regarding optimality were novel and
central to the Bayesian approach, and that many Bayesian theorists
were claiming that cognition and behavior were supported by
Bayesian-like algorithms, but this theoretical Bayesian perspective
has also been rejected by Griffiths et al. (2012). There seems to be
agreement that there are Bayesian theorists who adopt what we
refer to as a methodological Bayesian approach, although there is
disagreement as to the promise of this approach (of which we are
doubtful). We also suspect that a clear statement of the method-
ological Bayesian position would have generated far less excite-
ment than a theoretical Bayesian perspective that researchers may
have been (mis)understood to be embracing. Given the recent
disagreements regarding the fundamentalist and theoretical Bayes-
ian perspectives (and whether these views even exist), there is a
pressing need to clarify what Bayesian theories of cognition are all
about.
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