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Although probabilistic models of cognitive development
have become increasingly prevalent, one challenge is to
account for how children might cope with a potentially
vast number of possible hypotheses. We propose that
children might address this problem by ‘sampling’ hy-
potheses from a probability distribution. We discuss
empirical results demonstrating signatures of sampling,
which offer an explanation for the variability of chil-
dren’s responses. The sampling hypothesis provides
an algorithmic account of how children might address
computationally intractable problems and suggests a
way to make sense of their ‘noisy’ behavior.

Probabilistic models in development

In the course of development, children’s beliefs about the world
undergo substantial revision. Probabilistic models of cognitive
development (see Glossary) provide a potential account of
some aspects of this remarkable learning process [1]. These
models can rigorously characterize the structure of early
representations and their revision. On this account, children’s
beliefs, such as their ‘intuitive theories’, can be formally de-
scribed as generative models, for example, as causal graphs,
grammars, or taxonomies. A generative model predicts some
patterns of evidence and not others. For example, a particular
graphical model of a causal system will predict that some
patterns of contingency between events are more likely than
others; a grammar will predict that certain sentences will be
more likely to be acceptable than others.

If theories are expressed as probabilistic generative
models, then the process of revising those theories can
be formally described as Bayesian inference. Different
generative models systematically generate some patterns
of data rather than others, so a learner can start with the
data and infer which model was most likely to have gener-
ated those data, guided by prior knowledge. Formally,
prior knowledge is expressed in a ‘prior’ probability distri-
bution over hypotheses, and Bayes’ rule indicates how to
compute a ‘posterior’ distribution that incorporates the
data. This approach can thus provide a desirably precise
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account of how prior knowledge and new evidence may be
combined to update a set of beliefs.

The probabilistic modeling approach is not without
critique [2]. Many of the critiques stem from the fact that
the Bayesian view, just by itself, is extremely flexible and
can accommodate a very wide range of data patterns (just
as connectionist or production system models can, in prin-
ciple, accommodate any data pattern). To be informative,
probabilistic model accounts must specify the nature of the
generative models and the likelihood functions in detail.
Indeed, an advantage of this approach is that it requires
the theorist to make this specification in a precise and
detailed way, and therefore generates precise quantitative
predictions about that particular probabilistic model.

Most probabilistic models operate at what Marr [3]
called the ‘computational’ level of analysis. Computation-
al-level models provide clear descriptions of the problems
the learner faces and describe ideal solutions for those
problems. Probabilistic models at this computational level
can characterize how children infer beliefs from evidence in
at least some cases, such as causal learning tasks [4-7]. In

Glossary

Exact analytical solution (exact learning): in mathematics, the mechanical
steps used to carry out a computation leads to a precise single numerical
result. This is contrasted with approximate solutions (approximate infer-
ence), which provide guesses about likely numerical results. Approximate
solutions are employed when computing the analytical solution is intractable
or would simply take longer than desirable. Approximate solutions often trade
time for accuracy — the longer an algorithm runs, the closer to correct the
answer will be.

Monte Carlo methods: algorithms that depend on repeated stochastic
(random) sampling to produce a numerical estimate of the result. The name
derives from the fact that casinos are likewise based on sampling from
particular probability distributions with every roll of the dice or spin of a wheel.
Posterior probability: the conditional probability that a hypothesis is true, after
the evidence is taken into account. The posterior distribution is the
probability distribution over hypotheses defined by these probabilities.
Probabilistic approaches to cognitive development: assuming that, at a
computational level, processes of inference and learning in cognitive devel-
opment can be characterized in terms of rationally updating a probability
distribution over hypotheses in accordance with Bayes’ rule. Strict binary rule-
based models of learning are a contrasting example; learners might follow a
heuristic that allows them to identify a deterministic outcome (e.g., a yes/no
decision on whether an object falls into a particular category given some
threshold).

Probability matching in reinforcement learning: in contrast to always
producing an action that will most likely bring about the reward, probability
matching in reinforcement learning is when the learner matches the proportion
of his or her responses to the relative rates of reward. This entails sometimes
producing a response that is not the most likely to be rewarded, and hence not
maximizing possible rewards.
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these studies, researchers assess the state of children’s
prior beliefs, carefully control the evidence they receive,
and then examine which hypotheses they endorse. Chil-
dren tend to choose the hypotheses that have the greatest
posterior probability according to a Bayesian analysis.

Children’s responses on these tasks on average look like
the posterior distributions predicted by these computation-
al-level models. However, that does not necessarily imply
that learners are working through the calculations pre-
scribed by Bayes’ rule at the ‘algorithmic’ level. A very
large number of hypotheses may be compatible with any
pattern of evidence, and it would be impossible to assess
each of these hypotheses individually. This problem might
be particularly challenging for young children who might
have more restricted memory and information-processing
capacities than adults.

So how do learners behave in a way that is apparently
consistent with probabilistic models when it is unlikely
that they are actually assessing all the possible hypotheses
in practice?

Approximating probabilistic models: the sampling
hypothesis

Applications of probabilistic models in computer science
must also tackle the problem of evaluating large spaces of
hypotheses. They often do so by randomly but systemati-
cally sampling a few hypotheses rather than exhaustively
considering all possibilities. These calculations use ‘Monte
Carlo’ methods. They obtain the equivalent of samples
from the posterior distribution without computing the
whole posterior distribution itself. A system that uses this
sort of sampling will be variable, because it will entertain
different hypotheses apparently at random.

However, importantly, this variability will also be sys-
tematic. The system will sample more probable hypotheses
with greater frequency than less probable ones, so the
distribution of responses will reflect the probability of
the hypotheses. And most importantly, such a system will
be efficient, because it trades approximation error for
computing time. The success of Monte Carlo algorithms
in computer science and statistics suggests an exciting
hypothesis for cognitive development. The algorithms chil-
dren use to perform inductive inference might also involve
sampling. We call this the sampling hypothesis.

Some recent work supports the idea that adults may
sometimes approximate Bayesian inference through psy-
chological processes that are equivalent to sampling. Par-
ticipants in a simple judgment task provided responses
that suggested they sampled their judgments from an
internal distribution, rather than providing a single best
guess [8]. It is often observed that people produce
responses proportional to the Bayesian posterior probabil-
ities [9]. Although producing just a few samples may lead to
behavior that appears suboptimal [10], it is a rational
strategy for compromising between the cost of errors
and the opportunity cost of taking more samples [11].

The sampling hypothesis is especially interesting from a
developmental perspective, because it might explain at
least some of the variability in children’s behavior. Devel-
opmental studies have pointed to the extensive variability
in children’s responses, hypotheses, and solutions to
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problems [12]. Often, this variability is assumed to be
the result of external ‘noise’ such as attention or memory
failures, and this may often be true. But it is also possible
that at least sometimes the variability in children’s
responding is systematic, as the sampling hypothesis
would predict.

For example, in causal learning tasks children tend to
pick the hypothesis that is most probable. But not all
children pick the most likely response, and an individual
child may change responses from trial to trial [5-7]. The
proportion of times that children select a hypothesis
increases as the hypothesis receives more support, but
children still sometimes produce alternative hypotheses.
That might mean that children are sampling their
responses from a posterior distribution.

Alternatively, it might be that children aim to produce a
best guess all the time, and that the variability in their
responses is simply a reflection of stochastically produced
errors and ‘noise’ caused by other factors. Children might
be ‘noisy maximizers’, producing an error-laden attempt at
the most likely answer.

Yet another alternative is that children’s behavior in
these tasks does reflect the probability of hypotheses but
does so through a simpler process than hypothesis sampling.
Children, similar to adults and even non-human animals,
frequently produce a pattern called probability matching in
reinforcement learning [13]. This ‘naive frequency match-
ing’ alternative suggests that learners may simply match
the frequency of responses to those of rewards.

So the question is, is the variability in children’s
answers the result of sampling, is it an error-laden attempt
at maximization, or does it involve naive frequency match-
ing?

Empirical support for the sampling hypothesis

A recent set of developmental studies presents the first test
of the sampling hypothesis, distinguishing sampling from
both noisy maximizing and naive frequency matching
alternatives. Denison et al. [14] explored the degree to
which children match posterior probabilities in a causal
inference task (Figure 1). Children saw a bin with a
varying number of blue and red chips. In the first experi-
ment, children had several chances to guess whether a chip
that randomly fell out of the bin was red or blue. The
probability that each chip had fallen out of the bin was
directly related to the proportion of red and blue chips.
When the bin was 80% full of red chips, there was an 80%
chance that the randomly selected chip was red. Children’s
behavior showed signatures of sampling: they guessed ‘red’
or ‘blue’ in proportion to the probability that a red or blue
chip had fallen in the bin.

In a second and third experiment, the proportion of
colored chips was systematically varied. Children provided
responses that matched the posterior probability of hy-
potheses; when the probability of a hypothesis decreased,
children’s selection of that hypothesis also decreased.
Noisy maximizing would instead predict that children
would favor the most likely hypothesis at constant rates
across varying probabilities (i.e., whether the probability of
ared chip is 95% or 75%, children should guess ‘red’ at near
ceiling levels).
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Count chips:
1, 2..N; red;
1,2...N; blue.
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Figure 1. Example methods, proportion of chips per condition, and results from Denison et al. [14].

In a final experiment, the probability did not directly
reflect the frequencies of the chips, providing a way to
distinguish sampling from naive frequency matching. Chil-
dren saw two blue chips in one bin, and 14 red and six blue
chips in the other bin. Then the bins were obscured and one
unknown bin was randomly selected, so that the probabili-
ty of the blue chip was 65%, whereas the frequency of blue
chips was only 36%. Children did not appear to naively
match frequencies as they would in simple probability

learning through reinforcement. Consistent with the sam-
pling hypothesis, children’s guesses matched the posterior
distribution of hypotheses rather than the simple frequen-
cies of the red and blue chips.

These experiments showed that children were behaving
in a way that was consistent with sampling and probabi-
listic models. But they did not determine which type of
sampling algorithm children might use. A first challenge in
exploring sampling algorithms is to demonstrate that
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there are psychologically plausible strategies that can
produce behavior that is generally consistent with the
predictions of probabilistic models. Bonawitz et al. [15]
mathematically demonstrated that a surprisingly simple
version of a single-sample algorithm (based on a win-stay,
lose-shift strategy) will produce behavior that is consistent
with the exact analytical solution when aggregated across
multiple participants. In this algorithm, the learner ini-
tially chooses a guess at random and then tends to stay
with that guess unless it is contradicted by the evidence. As
the evidence against the initial guess grows stronger, the
learner will be increasingly likely to resample from the
distribution and try another guess.

Identifying the sampling algorithm

A second challenge is empirically identifying which sam-
pling algorithm learners might be using on a particular
task. An algorithm that samples a new guess from an
updated posterior after each observation of data (indepen-
dent sampling) will behave differently from a ‘win-stay,
lose-shift’ algorithm, similar to the one proposed by Bona-
witz et al. [15]. Although both are sampling approaches
and would produce behavior consistent with probabilistic
models in the long run, they will have different conse-
quences for short-term behavior. The win-stay, lose-shift
strategy will lead to a distinctive pattern of dependencies.
A learner’s initial guess will shape their immediate sub-
sequent guesses, even if the initial guess was chosen at
random.

Bonawitz et al. [15] found that preschool-aged children
and adults produce a characteristic pattern of dependen-
cies in their responses to a causal learning task that was
consistent with their particular win-stay, lose-shift algo-
rithm. They were able to demonstrate this by using a mini-
microgenetic method. They presented children with initial
evidence that was compatible with several different hy-
potheses and asked them to guess which hypothesis was
correct. Then on each trial they added evidence that tended
to confirm or disconfirm that guess and asked the children
to guess again. Even though individual learners might
seem to be randomly veering from one hypothesis to the
next, on aggregate their responses approximated the exact
analytical Bayesian solution. The win-stay, lose-shift algo-
rithm predicted this approximate Bayesian response on
aggregate and best captured the trial-by-trial data in the
individual responses.

Concluding remarks and future perspectives

These studies are just a starting point for asking what
algorithms best capture early learning. Sampling algo-
rithms like these may provide a balance between ‘explore’
and ‘exploit’ strategies in learning. They allow the learner
to consider potentially unlikely hypotheses on occasion —
hypotheses that may prove to be correct later. In aggregate
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and over time, they converge on the hypothesis that is most
likely.

So far, these algorithms have been explored in casual
learning tasks. It is not yet known how general such
strategies may be. Different types of learning, such as
syntactic inference, might employ different approaches.
Furthermore, the particular algorithms children employ
may depend on task demands, development, or even indi-
vidual preference.

We have suggested that children may revise their causal
beliefs by randomly sampling from a probability distribu-
tion. Sampling is an efficient way to search through a space
of possibilities while still acting in a way that is consistent
with probabilistic inference, and so it can be an algorithmic
instantiation of Bayesian inference. The sampling hypoth-
esis also suggests that the wvariability of children’s
responses may sometimes reflect the use of this type of
algorithm rather than being just noise.
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