Announcements

Be working on HW3

Review questions available for language and cognition

Please fill out course evaluations for this class

Sapir Whorf Hypothesis

The structure of one’s language influences the manner in which one perceives and understands the world.

"Don’t you see that the whole aim of Newspeak is to narrow the range of thought? In the end, we shall make thought crime literally impossible, because there will be no words in which to express it…" - George Orwell, 1984

“Neo”-Whorfian Question

Language as a Toolkit: Does language augment our capacity for reasoning and representation?

Also sometimes referred to as "language as augmenter" (Wolff & Holmes (2010))
What the language toolkit can do

Language is a symbolic system that can help with cognitive off-loading.

Cognitive Off-Loading example (from Watson & Holmes 2010)

“This problem could be solved by mental simulation; that is, by imagining the first gear turning to the right, then the second gear turning to the left, and so on. Alternatively, people might notice that each successive gear turns in the opposite direction from the previous one and generate the parity rule that ‘odd and even gears turn in different directions’. This rule, which may depend on linguistic coding, can then be applied more quickly than the laborious process of mentally rotating each gear.”

Language as a Toolkit

Today:
Navigation (combining core knowledge system information) → geometric + landmark or color information
Number (combining core knowledge system information) → small, exact numbers & large, approximate numbers

Next time:
Theory of Mind (realizing that someone can have a different point of view than you - when does this realization come, and how?)
Navigation

Can find it here.

But can toddlers really not do it?

Maybe wall color just isn’t a very salient property for toddlers. How about trying more salient landmarks? (Hermer & Spelke, 1996)

But can toddlers really not do it?

No change in navigation behavior in toddlers even with more salient landmarks (toys like truck and teddy bear).

So when does this ability develop?

Hermer-Vazquez, Moffet & Munkholm (2001): children with a high production of spatial language (like “left” and “right”) succeed. This usually happens somewhere between 4 and 5 years old.

Implication: Spatial language use seems integral in solving this task that requires representing information from different domains (geometry & color).

However… rats (who don’t have spatial language) can be trained to do the same thing after hundreds of trials. Spatial language is useful (speeds things up), but not necessary?
Is language really responsible?
Hermer-Vazquez, Spelke & Katnelson (1999)

Testing adults, who were asked to verbally shadow as they performed the task. Verbal shadowing (language as meddler: Wolff & Holmes (2010)) = repeating as fast as they could a passage recorded on tape. Interferes with linguistic combination abilities. [Class demo of verbal shadowing]

Is language really responsible?
Hermer-Vazquez, Spelke & Katnelson (1999)

Verbal-shadowing adults behaved just like toddlers! They searched equally the correct corner and the rotationally equivalent one, seemingly unable to combine the information from geometry and color.

Is language really necessary?
Gouteux, Thinus-Blanc, & Vauclair (2001): testing Rhesus monkeys (who do not have spatial language)

Tested 3 monkeys on location "left of wall opposite the blue wall". ~50 trials each.

Two monkeys: ~85% correct
Other monkey: ~70% correct

Pretty good for no spatial language!
So language does seem to play a very important role in the ability to combine information from different core knowledge systems. (Perhaps not absolutely necessary, but extraordinarily helpful - kind of like motherese for language development.)

Or maybe rhesus monkeys are just clever enough to do this without the spatial language that humans seem to rely on. Maybe humans rely on language because they have it as a tool at their disposal...

Is language really necessary?

Number

Core number systems shared by humans and other animals:

System for representing approximate numerical magnitudes (large, approximate number sense)

System for representing persistent, numerically distinct individuals (small, exact number sense)

Decide Fast:

How Many?
Decide Fast:
Which side has more?
How We Deal With Number

<table>
<thead>
<tr>
<th>Amount Being Represented</th>
<th>How Represented</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very small numbers</td>
<td>"Subitizing" - up to 4; can tell what set looks like at a glance</td>
</tr>
<tr>
<td>Large approximate numerosities</td>
<td>System for representing approximate numerical magnitudes (adults at a glance can tell apart groups with a ratio of about 1.1 to 1 [Weber’s Law])</td>
</tr>
<tr>
<td>Large exact numerosities</td>
<td>Combo of 2 above systems plus language</td>
</tr>
</tbody>
</table>

A number sense in general isn’t special

Prelinguistic infants have a system for approximating numerical magnitudes (Dahaene, Gallistel, & Gelman), but so do pidgeons, rats, fish, and other primates.

Weber Fraction Limit for telling apart large numerosities

<table>
<thead>
<tr>
<th>Age</th>
<th>Weber Fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 months</td>
<td>1.5-2</td>
</tr>
<tr>
<td>9 months</td>
<td>1.2-1.5</td>
</tr>
<tr>
<td>adult</td>
<td>1.15</td>
</tr>
</tbody>
</table>

Everyone can do:
12 vs. 6 = 2.0
32 vs 16 = 2.0
100 vs 50 = 2.0

6 month olds struggle:
12 vs. 8 = 1.5

9 month olds struggle:
12 vs. 10 = 1.2

Adults struggle:
12 vs. 11 = 1.09
What about small numbers?
Wynn 1998: Testing infant knowledge using a preferential looking paradigm. Infants are surprised by the "impossible" outcome, which means they can do addition on very small numerosities precisely.

What about small numbers?
Wynn 1998: Testing infant knowledge using a preferential looking paradigm. Infants are surprised by the "impossible" outcome, which means they can do subtraction on very small numerosities precisely.

What about small numbers?
Sulkowski & Hauser 2001: Monkeys can, too
- Rhesus monkeys shown to spontaneously represent the numbers 1-3
- Test monkeys by using a procedure predicated on monkeys going to where they think food is

What human language does…
Many languages have an exact number system that provides names for exact quantities of any size
1, 2, 3, 4, 5,……578, 579, 580, 581, 582…

This bridges the "gap" between the two core systems.

Supporting evidence from Dehaene, Spelke, Pinel, Stanescu, and Tsivkin. (1999): fMRI study showed that the exact number task recruited neural networks typically associated with language processing.

Another test of this: Look at the numerical cognition of people whose languages don’t have an exact number system.
Languages without Exact Number Systems

Pica, Lemer, Izard & Dehaene (2004): Munduruku speakers in Brazil who only have exact numbers for 1-5.

Munduruku responses when asked “how many” and shown a particular number of items

Munduruku responses to exact arithmetic

Numerosities bigger than five are “some” or “many”.

Munduruku responses to exact arithmetic

Note: Even though some quantities are outside the language’s number words (bigger than 5), the answer is within the number words (5 or less).

Results: Munduruku do much worse than speakers who have an exact number system (though still better than chance).
Languages without Exact Number Systems

Gordon (2004): Pirahã speakers in Brazil who only have words for “one/two” and “many”.

Exact arithmetic on larger numbers that are both outside the small, exact system and outside the language is very, very hard to do.

Table 1. Use of fingers and number words by Pirahã participants. The errors (−3) indicate a shift from one quantity to the next.

<table>
<thead>
<tr>
<th>No. of objects</th>
<th>Number word used</th>
<th>No. of fingers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>hik (−2)</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>hik (−2)</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>hik (−2)</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>alaβ (−many)</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>alaβ (−many)</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>alaβ (−many)</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>alaβ (−many)</td>
<td>5</td>
</tr>
<tr>
<td>8</td>
<td>alaβ (−many)</td>
<td>5</td>
</tr>
<tr>
<td>9</td>
<td>alaβ (−many)</td>
<td>5</td>
</tr>
<tr>
<td>10</td>
<td>alaβ (−many)</td>
<td>5</td>
</tr>
</tbody>
</table>

*This use of “one” might have been a reference to splitting you rather than to the whole set of objects.

Languages without Exact Number Systems

Gordon (2004): Pirahã speakers in Brazil who only have words for “one/two” and “many”.

Shown batteries on one side of the line, and asked to line up batteries to match on the other side.

Languages without Exact Number Systems

Gordon (2004): Pirahã speakers in Brazil who only have words for “one/two” and “many”.

Exact arithmetic on larger numbers that are both outside the small, exact system and outside the language is very, very hard to do.

Shown cluster of nuts on one side of the line, and asked to line up batteries to match on the other side.

Languages without Exact Number Systems

Gordon (2004): Pirahã speakers in Brazil who only have words for “one/two” and “many”.

Exact arithmetic on larger numbers that are both outside the small, exact system and outside the language is very, very hard to do.

Shown vertical line of batteries on one side, and asked to line up batteries to match on the other side.
Languages without Exact Number Systems
Gordon (2004): Pirahã speakers in Brazil who only have words for “one/two” and “many”.

Exact arithmetic on larger numbers that are both outside the small, exact system and outside the language is very, very hard to do.

- Shown uneven line of batteries on one side, and asked to line up number of batteries to match on the other side.
- Shown lines on one side, and asked to copy number of lines to match on the other side.
- Shown cluster of nuts on one side for one second, and then asked to match number of batteries to that amount from memory.
- Shown cluster of nuts, and then nuts are placed in a can. One nut is withdrawn at a time, and participant asked after each one if the can is empty yet.
Languages without Exact Number Systems

Gordon (2004): Pirahã speakers in Brazil who only have words for “one/two” and “many”.

Exact arithmetic on larger numbers that are both outside the small, exact system and outside the language is very, very hard to do.

Candy put in a box with a given number of fish drawn on the top of the box. The box is then hidden. The box is then brought out again along with another box with either one more or one fewer fish painted on the box. Participants asked to identify which box contains the candy.

Reports of subjects who appear indifferent to exact numerical quality even for small numbers, and who also do not count verbally, add weight to the idea that learning a communicable number notation with exact numerical reference may play a role in the emergence of a fully formed conception of number.

No language for large exact numbers = no representation for large exact numbers

Another example: deaf people who have not had access to a language (spoken or signed)

Spaepen, Coppola, Spelke, Carey, & Goldin-Meadow (2011)

Test population: Home-signers from Nicaragua

Spontaneous communication about number: The number of fingers the home-signers extended (y axis) as a function of the number of objects actually shown in a story they were retelling (x axis).

Home-signers seem able to track approximate numerosity.

Another example: deaf people who have not had access to a language (spoken or signed)

Spaepen, Coppola, Spelke, Carey, & Goldin-Meadow (2011)

Test population: Home-signers from Nicaragua

Asked to relate exactly how many objects were shown.

Home-signers have major difficulty once numbers go much above four.
Children’s numerical cognition

- English children must learn number words, and it can take them a surprisingly long time to do it.
- Even if children can recite a list of counting numbers ("one, two, three, four, five, ..."), they may not necessarily understand that "three" refers to the quantity three. Moreover, even if they recite the list when seeming to count objects, they do not realize that the last number they say is the right answer.

Investigator: “How many are there?”
Child: “One, two, three, four, five. There are three!”

Barbara Sarnecka

Children’s numerical cognition

- The process of connecting number words to quantity seems to occur in stages:
 - Pre-number-knowers: no number word knowledge
 - One-knowers: "one", but no other numbers
 - Two-knowers: "one", "two", but no others
 - Three-knowers: "one", "two", "three", but no others
 - Cardinal-principle-knowers: children realize the connection between the counting list and quantity (cardinal principle of counting) – the last number you say is in the list is the quantity (denotes the cardinality of the set)

Negen & Sarnecka (2010): Tested children’s non-verbal numerical cognition when they did not necessarily know the exact meaning of number words.

“Now we’re going to play a copying game. I will give something to the anteater... (experimenter puts some items from a bowl onto his plate, and slides it to his stuffed animal)... and you give something to the bunny. You copy me and make your plate look just like mine.”

“Now we’re going to play a remembering game. I will give something to the bunny... (experimenter demonstrates)... and you try to remember what I gave the bunny. (Experimenter returns items to the bowl.) You give the bunny something and try to make yours just like mine was.”

Negen & Sarnecka (2010): Tested children’s non-verbal numerical cognition when they did not necessarily know the exact meaning of number words.

Results: Children who know more number words did a better job at replicating and remembering the number of items. Surprisingly, performance improved for all number sizes, even the ones children didn’t necessarily have words for yet.

Example: Child knows “one” and “two”, but improves at replicating/rememering not only one and two, but also three, four, and five objects.

Language for numbers helps improve non-verbal comprehension and memory for numbers.
Whorfianism is the belief that language influences (or determines) someone’s experiences in the world. Neo-Whorfianism is a variant that believes language augments thought, so we can think more complex thoughts.

In both navigation and number, we have seen evidence for cases where language seems to enable more complex thought - or at least to enable it to happen more easily.

Questions?

You should be able to answer up through question 13 on the language & cognition review questions, and up through question 6 on HW3.