Announcements

- HW2 due today
- Review questions for morphology and syntax available
- HW 3 available (begin working on it): due 3/13/12

Adult Knowledge: The Target State for Morphology

Words and word parts

The smallest unit manipulated by the rules of syntax is not a single word. Instead, there are units smaller than words that play a role, called morphemes.

One goblin.
Two goblins.
goblins = goblin + s = + plural

Morpheme = smallest unit of meaning
The smallest unit manipulated by the rules of syntax is not a single word. Instead there are units smaller than words that play a role, called morphemes.

One goblin.
Two goblins.
goblins = goblin + s = + plural

Bound morpheme = morpheme that can’t stand on its own - it must be attached to something

Types of Morphology
Inflectional morphology: adds grammatical information, but does not change the word’s category (nouns stay nouns, verbs stay verbs, etc.)
Types of Morphology

Inflectional morphology: adds grammatical information, but does not change the word’s category (nouns stay nouns, verbs stay verbs, etc.)

One goblin.
Two goblins. goblins = goblin + s = + plural

He scowls.
He’s scowling. scowling = scowl + ing = + continuing action

Types of Morphology

Derivational morphology: forms a new word, potentially changing the word’s category (nouns become adjectives, verbs become nouns, etc.)

One goblin. goblins = goblin + s = + plural

Two goblins. goblins = goblin + s = + plural

He scowls. scowls = scowl + s = + present tense
Types of Morphology

Derivational morphology: forms a new word, potentially changing the word’s category (nouns become adjectives, verbs become nouns, etc.)

\[
goblinish = goblin + ish = goblin\text{ish} = \text{similar to} goblin + ish
\]

Crosslinguistic Comparison

English does not have a rich morphological system, compared to other languages. Instead, English mostly relies on word order to indicate who did what to whom.

Languages like Hungarian, however, rely more on morphology.

"The boy gave a book to the girl."

A fiú könyvet adott a lányak.
The boy a book+ACC gave the girl+DAT

Inflectional morphology: ACC = accusative case = direct object (thing given)
Crosslinguistic Comparison

English does not have a rich morphological system, compared to other languages. Instead, English mostly relies on word order to indicate who did what to whom.

Languages like Hungarian, however, rely more on morphology.

"The boy gave a book to the girl."
A fiú könyvet adott a lánynak.
The boy a book+ACC gave the girl+DAT

Inflectional morphology: DAT = dative case = indirect object (recipient of giving)

Morphology Recap

Morphology refers to how words are put together to convey meaning.

The smallest units of meaning are morphemes, which can be smaller than a whole word.

Some morphology can change the category of a word (derivational), while other morphology does not (inflectional).

Languages vary on how rich their system of morphology is. Children must learn how their language puts words together, and what types of meaning can be conveyed via morphology.

Adult Knowledge: The Target State for Syntax

Creativity of Human Language

Ability to combine signs with simple meanings to create
(1) Utterances with complex meanings
(2) Novel expressions
(3) Infinitely many

Sentences never heard before...
"Some tulips are starting to samba on the chessboard."

Sentences of prodigious length...
"Hoggle said that he thought that the odiferous leader of the goblins had it in mind to tell the unfortunate princess that the cries that she made during her kidnapping from the nearby kingdom that the goblins themselves thought was a general waste of countryside ..."
An Account That Won’t Work

“You just string words together in an order that makes sense”

In other words...

“Syntax is determined by **Meaning**”
(The way words are put together is determined solely by what they mean)

Syntax is More than Meaning

Nonsense sentences with clear syntax

Colorless green ideas sleep furiously. (Chomsky)
A verb crumpled the ocean.
I gave the question a goblin-shimmying egg.

…which are incomprehensible when the syntax is nonsense

*Furiously sleep ideas green colorless.
Ocean the crumpled verb a.
*The question I an egg goblin-shimmying gave.

Famous nonsense sentences with clear syntax

‘Twas brillig and the slithy toves
Did gyre and gimble in the wabe;
All mimsy were the borogroves,
And the mome raths outgrabe
Beware the Jabberwock, my son!
The jaws that bite, the claws that catch!
Beware the Jumbub bird, and shun
The frumious Bandersnatch!”

Lewis Carroll, Jabberwocky

‘It seems very pretty,’ she said when she had finished it, ‘but it’s RATHER hard to understand!’
(You see she didn’t like to confess, even to herself, that she couldn’t make it out at all.)
‘Somehow it seems to fill my head with ideas -- only I don’t exactly know what they are!
However, SOMEBODY killed SOMETHING: that’s clear, at any rate -- ’
And these same nonsense sentences with nonsense syntax are incomprehensible…

'Toves slithy the and brillig 'twas wabe the in gimble and gyre did...

Syntax is More than Meaning

Ungrammatical sentences that make perfect sense

Jareth put the cape on.
Jareth put on the cape.
Jareth put it on.
*Jareth put on it.

Jareth made Hoggle leave.
Jareth let Hoggle leave.
Jareth saw Hoggle leave.
*Jareth wanted Hoggle leave.

Sarah gave a ring to the Wiseman.
Sarah gave him a ring.
Sarah donated a ring to the Wiseman.
*Sarah donated him a ring.

*Jareth made Hoggle to leave.
*Jareth let Hoggle to leave.
*Jareth saw Hoggle to leave.
Jareth wanted Hoggle to leave.
Cross-language Variation
If syntax was entirely determined by meaning, then we should not expect to find syntactic differences between languages of the world… but we do see variation.

English: Sarah sees that book.
Korean: Sarah ku chayk poata.
Sarah that book see

Syntax is More than Meaning

So… what does determine how you string words together?

Answer: Syntax!
(That is, our knowledge of the possible forms of sentences in our language.)

“A Syntax is determined by Meaning”
(The way words are put together is determined solely by what they mean)

A Template

A sentence consists of a Noun Phrase followed by a Verb Phrase

S --> NP VP

Phrase Structure Rule

Phrase Structure Tree

S

NP

VP
Noun Phrase
Hoggle
The chicken
Seven goblins
Sarah
A feeling
The strangest story that you ever did hear

Verb Phrase
slept
tricked the guards
left
said that Ludo thought that pixies were nasty
kicked the bucket
got drunk on dwarf wine

6 Sentences

Noun Phrase
Hoggle
The chicken
Seven goblins
Sarah
A feeling
The strangest story that you ever did hear

Verb Phrase
slept
tricked the guards
left
said that Ludo thought that pixies were nasty
kicked the bucket
got drunk on dwarf wine

36 Sentences
A Tiny Little Grammar

5 Rules

S → NP VP
NP → Det N
NP → N
VP → V NP
VP → V

9 Words
Det: the, four, some
N: goblins, crystals, peaches
V: understood, ate, approached

468 Sentences

Embedded Sentences

Additional VP Rule

Hoggle thought Sarah ate the peach.
VP → V S

Recursion = a phrase of one kind inside a phrase of the same kind (a sentence is a kind of phrase, so a sentence-inside-a-sentence fits this definition)

Combine with S → NP VP, to get recursion:
S → NP VP → NP V S

Ludo said Hoggle thought Sarah ate the peach.
The fairy claimed Ludo said Hoggle thought Sarah ate the peach.
The Wiseman’s birchhat hoped the fairy claimed Ludo said Hoggle thought Sarah ate the peach.

122,100 Sentences
Complementizer

Complementizer (Comp): words like THAT, IF, and WHETHER that allow one sentence to be the subject or object of another sentence

Hoggle realized that Sarah ate the peach.
Whether Sarah ate the peach didn’t matter.

S’ → Comp S
VP → V S’
S → S’ VP

Example of Recursion 1:
S expands to include S’
S’ expands to include S

Example of Recursion 2:
S expands to include VP
VP expands to include S’
S’ expands to include S

A Slightly Bigger Grammar

9 Rules
S → NP VP
S → S’ VP
NP → Det N
NP → N
VP → V NP
VP → V
VP → V S
VP → V S’
S’ → Comp S

Sentences it can generate:
Hoggle likes jewels.
A Slightly Bigger Grammar

9 Rules

Sentences it can generate:

1. **S** \(\rightarrow\) **NP** **VP**
2. **S** \(\rightarrow\) **S’** **VP**
3. **NP** \(\rightarrow\) **Det** **N**
4. **NP** \(\rightarrow\) **N**
5. **VP** \(\rightarrow\) **V** **NP**
6. **VP** \(\rightarrow\) **V**
7. **VP** \(\rightarrow\) **V** **S**
8. **VP** \(\rightarrow\) **V** **S’**
9. **S’** \(\rightarrow\) **Comp** **S**

Hoggle likes jewels.

Sentences it can generate:

1. **S** \(\rightarrow\) **NP** **VP**
2. **S** \(\rightarrow\) **S’** **VP**
3. **NP** \(\rightarrow\) **Det** **N**
4. **NP** \(\rightarrow\) **N**
5. **VP** \(\rightarrow\) **V** **NP**
6. **VP** \(\rightarrow\) **V**
7. **VP** \(\rightarrow\) **V** **S**
8. **VP** \(\rightarrow\) **V** **S’**
9. **S’** \(\rightarrow\) **Comp** **S**

Hoggle likes jewels.
A Slightly Bigger Grammar

9 Rules

S → NP VP
S → S' VP
NP → Det N
NP → N
VP → V NP
VP → V
VP → V S
VP → V S'
S' → Comp S

Sentences it can generate:
Sarah thought that she solved the Labyrinth.
A Slightly Bigger Grammar

9 Rules

S → NP VP
S → S' VP
NP → Det N
NP → N
VP → V NP
VP → V
VP → V S
VP → V S'
S' → Comp S

Sentences it can generate:
Sarah thought that she solved the Labyrinth.
Sarah thought that she solved the Labyrinth.
Sarah thought that S
Sarah thought that S
Sarah thought that S
Sarah thought that S

A Slightly Bigger Grammar

9 Rules

S → NP VP
S → S' VP
NP → Det N
NP → N
VP → V NP
VP → V
VP → V S
VP → V S'
S' → Comp S

Sentences it can generate:
Sarah thought that she solved the Labyrinth.
Sarah thought that she solved the Labyrinth.
Sarah thought that S
Sarah thought that S
Sarah thought that S
Sarah thought that S

A Slightly Bigger Grammar

9 Rules

S → NP VP
S → S' VP
NP → Det N
NP → N
VP → V NP
VP → V
VP → V S
VP → V S'
S' → Comp S

Sentences it can generate:
Sarah thought that she solved the Labyrinth.
Sarah thought that she solved the Labyrinth.
Sarah thought that S
Sarah thought that S
Sarah thought that S
Sarah thought that S

A Slightly Bigger Grammar

9 Rules

S → NP VP
S → S' VP
NP → Det N
NP → N
VP → V NP
VP → V
VP → V S
VP → V S'
S' → Comp S

Sentences it can generate:
Sarah thought that she solved the Labyrinth.
Sarah thought that she solved the Labyrinth.
Sarah thought that S
Sarah thought that S
Sarah thought that S
Sarah thought that S
A Slightly Bigger Grammar

<table>
<thead>
<tr>
<th>Rule</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>S → NP VP</td>
<td>Sarah thought that she solved the Labyrinth.</td>
</tr>
<tr>
<td>S → S’ VP</td>
<td>S → NP VP</td>
</tr>
<tr>
<td>NP → Det N</td>
<td>NP → N VP → V S’</td>
</tr>
<tr>
<td>NP → N</td>
<td>N V S’</td>
</tr>
<tr>
<td>VP → V</td>
<td>Sarah thought that NP VP</td>
</tr>
<tr>
<td>VP → V</td>
<td>NP → N VP → V NP</td>
</tr>
<tr>
<td>VP → V</td>
<td>N N V NP</td>
</tr>
<tr>
<td>VP → V</td>
<td>she solved</td>
</tr>
<tr>
<td>VP → V S’</td>
<td>NP → Det N</td>
</tr>
<tr>
<td>S’ → NP VP</td>
<td>Sarah thought that she solved the Labyrinth.</td>
</tr>
<tr>
<td>S → S’ VP</td>
<td>S → NP VP</td>
</tr>
<tr>
<td>NP → Det N</td>
<td>NP → N VP → V S’</td>
</tr>
<tr>
<td>NP → N</td>
<td>N V S’</td>
</tr>
<tr>
<td>VP → V</td>
<td>Sarah thought that NP VP</td>
</tr>
<tr>
<td>VP → V</td>
<td>NP → N VP → V NP</td>
</tr>
<tr>
<td>VP → V</td>
<td>N N V NP</td>
</tr>
<tr>
<td>VP → V</td>
<td>she solved</td>
</tr>
<tr>
<td>VP → V S’</td>
<td>NP → Det N</td>
</tr>
<tr>
<td>S’ → Comp S</td>
<td></td>
</tr>
</tbody>
</table>
A Slightly Bigger Grammar

9 Rules

S → NP VP
S → S' VP
NP → Det N
NP → N
VP → V NP
VP → V
VP → V S
VP → V S'
S' → Comp S

Sentences it can generate:
Sarah thought that she solved the Labyrinth.

Sentences it can generate:
Sarah thought that she solved the Labyrinth.

Figuring out structure: bottom-up

9 Rules

S → NP VP
S → S' VP
NP → Det N
NP → N
VP → V NP
VP → V
VP → V S
VP → V S'
S' → Comp S

Sarah thought that Hoggle was a cheat.
Figuring out structure: bottom-up

9 Rules

S --> NP VP
S --> S' VP

NP --> Det N
NP --> N

VP --> V NP
VP --> V
VP --> V S
VP --> V S'

S' --> Comp S

N V Comp N V Det N
Sarah thought that Hoggle was a cheat.
Figuring out structure: bottom-up

9 Rules

S → NP VP
S → S' VP
NP → Det N
NP → N
VP → V NP
VP → V
VP → V S
VP → V S'
S' → Comp S

Sarah thought that Hoggle was a cheat.
Syntax Recap

The structure of language (syntax) involves more than simply the meaning of the words. It involves rules about how the words themselves are allowed to go together.

It isn’t enough to know the list of possible sentences in the language. Because adults can generate novel sentences and sentences of infinite length, adults need to know a rule system that can generate sentences.

Adults know (unconsciously) a system of rules for generating the word orders they use. A fairly small set of rules can generate a fairly large set of sentences.

Questions?

You should be able to answer up through question 3 on the review questions, and up through question 2 on HW3.