

Types of Morphology

Inflectional morphology: adds grammatical information, but does not change the word's category (nouns stay nouns, verbs stay verbs, etc.)

Words and word parts

The smallest unit manipulated by the rules of syntax is not a single word. Instead there are units smaller than words that play a role, called morphemes.

One goblin.
Two goblins.

Free morpheme $=$ morpheme that can stand on its own - it does not need to be attached to another morpheme

Types of Morphology
Inflectional morphology: adds grammatical information, but does
not change the word's category (nouns stay nouns, verbs stay
verbs, etc.)

Types of Morphology

Inflectional morphology: adds grammatical information, but does not change the word's category (nouns stay nouns, verbs stay verbs, etc.)

One goblin.
Two goblins.

Types of Morphology

Derivational morphology: forms a new word, potentially changing the word's category (nouns become adjectives, verbs become nouns, etc.)

Types of Morphology
Inflectional morphology: adds grammatical information, but does not change the word's category (nouns stay nouns, verbs stay verbs, etc.)

One goblin.
Two goblins.

Types of Morphology
Derivational morphology: forms a new word, potentially changing
the word's category (nouns become adjectives, verbs become
nouns, etc.)

Types of Morphology

Derivational morphology: forms a new word, potentially changing the word's category (nouns become adjectives, verbs become nouns, etc.)
goblin
goblinish

+ similar to

Crosslinguistic Comparison

English does not have a rich morphological system, compared to other languages. Instead, English mostly relies on word order to indicate who did what to whom.

Languages like Hungarian, however, rely more on morphology.
"The boy gave a book to the girl."

A fiú könyvet	adott The boy a book+ACC	a gave	the girl+DAT

Inflectional morphology: ACC = accusative case $=$ direct object (thing given)

Crosslinguistic Comparison

English does not have a rich morphological system, compared to other languages. Instead, English mostly relies on word order to indicate who did what to whom.

Languages like Hungarian, however, rely more on morphology.
"The boy gave a book to the girl."

A fiú könyvet	adott	a lánynak.	
The boy a book+ACC	gave	the	girl+DAT

Crosslinguistic Comparison

English does not have a rich morphological system, compared to other languages. Instead, English mostly relies on word order to indicate who did what to whom.

Languages like Hungarian, however, rely more on morphology.
"The boy gave a book to the girl."
A fiú könyvet
The boy a book + ACC

gave a the tanynak. | girl+DAT |
| :--- |
| Inflectional morphology: DAT $=$ dative case $=$ indirect object |
| (recipient of giving) |

Morphology Recap
Morphology refers to how words are put together to convey
meaning.
The smallest units of meaning are morphemes, which can be
smaller than a whole word.
Some morphology can change the category of a word
(derivational), while other morphology does not (inflectional).
Languages vary on how rich their system of morphology is.
Children must learn how their language puts words together,
and what types of meaning can be conveyed via morphology.

Creativity of Human Language

Ability to combine signs with simple meanings to create
(1) Utterances with complex meanings
(2) Novel expressions
(3) Infinitely many

Sentences never heard before...
"Some tulips are starting to samba on the chessboard."
Sentences of prodigious length...
"Hoggle said that he thought that the odiferous leader of the goblins had it in mind to tell the unfortunate princess that the cries that she made during her kidnapping from the nearby kingdom that the goblins themselves thought was a general waste of countryside ..."

An Account That Won't Work

"You just string words together in an order that makes sense"

In other words...
"Syntax is determined by Meaning"
(The way words are put together is determined solely by what they mean)

Syntax is More than Meaning

Nonsense sentences with clear syntax
Colorless green ideas sleep furiously. (Chomsky)
A verb crumpled the ocean.
I gave the question a goblin-shimmying egg
...which are incomprehensible when the syntax is nonsense
*Furiously sleep ideas green colorless.
Ocean the crumpled verb a.
*The question I an egg goblin-shimmying gave.

Syntax is More than Meaning

Famous nonsense sentences with clear syntax
'Twas brillig and the slithy toves
Did gyre and gimble in the wabe; All mimsy were the borogroves, And the mome raths outgrabe
Beware the Jabberwock, my son!
The jaws that bite, the claws that catch!
Beware the Jubjub bird, and shun
The frumious Bandersnatch!"
Lewis Carroll, Jabberwocky

Syntax is More than Meaning

And these same nonsense sentences with nonsense syntax are incomprehensible...
'Toves slithy the and brillig 'twas wabe the in gimble and gyre did...

Syntax is More than Meaning

Ungrammatical sentences that make perfect sense
Sarah gave a ring to the Wiseman.
Sarah gave him a ring.
Sarah donated a ring to the Wiseman.
*Sarah donated him a ring.

Syntax is More than Meaning

Ungrammatical sentences that make perfect sense
Jareth made Hoggle leave.
Jareth let Hoggle leave.
Jareth saw Hoggle leave.
*Jareth wanted Hoggle leave.
*Jareth made Hoggle to leave.
*Jareth let Hoggle to leave.
*Jareth saw Hoggle to leave.
Jareth wanted Hoggle to leave.

Syntax is More than Meaning

Cross-language Variation
If syntax was entirely determined by meaning, then we should not expect to find syntactic differences between languages of the world....but we do see variation.

English: Sarah	sees	that book.
Korean: Sarah	ku chayk	poata.
Sarah	that book	see

Syntax is More than Meaning		
Cross-language Variation		
If syntax was entirely determined by meaning, then we should not expect to find syntactic differences between languages of the world....but we do see variation.		
English:		
Baso put the money in the cupboard.		
Selayarese (spoken in Indonesia):		
Lataroi put	doe injo ri lamari injo money the in cupboard the	i Baso. Baso

So...what does determine how you string words together?

Answer: Syntax!
(That is, our knowledge of the possible forms of sentences in our language.)
"Syntax is determined by Meaning" (The way words are put together is determined solely by what they mean) \qquad

A Template

Noun Phrase	Verb Phrase
Hoggle	slept
The chicken	tricked the guards
Seven goblins	left
Sarah	said that Ludo thought that
pixies were nasty	
A feeling	kicked the bucket
The strangest story that you ever did hear	got drunk on dwarf wine

A Template	
Noun Phrase Verb Phrase	
Hoggle $\xrightarrow{ }$ slept	
The chicken \longrightarrow tricked the guards	
Seven goblins \longrightarrow left	
Sarah said that Ludo thought that	
A feeling	
The strangest story that you ever did hear	
	nces

A Template

A Tiny Little Grammar	
5 Rules	9 Words
S --> NP VP	Det: the, four, some
NP --> Det N	N : goblins, crystals, peaches
NP --> N VP --> V NP	V : understood, ate, approached
VP --> V	468 Sentences

A Tiny Little Grammar	
5 Rules	30 Words
S --> NP VP	Det: the, four, some $+7 \text { more }$
NP --> $\operatorname{Det} N$ $N P-->N$	N : goblins, crystals, peaches + 7 more
VP --> V NP	V : understood, ate, approached + 7 more
122,100 Sentences	

Complementizer
Complementizer (Comp): words like THAT, IF, and
WHETHER that allow one sentence to be the subject or
object of another sentence
Hoggle realized that Sarah ate the peach.
Whether Sarah ate the peach didn't matter.
$\mathrm{S}^{\prime} \rightarrow$ Comp S
$\mathrm{VP} \rightarrow \mathrm{V}$ S'
$\mathrm{S} \rightarrow \mathrm{S}^{\prime} \mathrm{VP}$

| Complementizer |
| :--- | :--- |
| Complementizer (Comp): words like THAT, IF, and |
| WHETHER that allow one sentence to be the subject or |
| object of another sentence |

Complementizer	
Complementize object of ano	(Comp): words like THAT, IF, and at allow one sentence to be the subject or her sentence
Hoggle realized Whether Sarah	that Sarah ate the peach. ate the peach didn't matter.
$\begin{aligned} & S^{\prime} \rightarrow \text { Comp } S \\ & V P \rightarrow V S^{\prime} \\ & S \rightarrow S^{\prime} V P \end{aligned}$	Example of Recursion 2: S expands to include VP VP expands to include S' S^{\prime} expands to include S

A Slightly Bigger Grammar	
9 Rules	
S --> NP VP	Sentences it can generate:
S --> S' VP	Hoggle likes jewels.
$\begin{aligned} & \text { NP --> Det N } \\ & \text { NP --> N } \end{aligned}$	
VP --> V NP	
VP --> V	
VP --> V S	
VP --> V S'	
S' --> Comp S	

A Slightly Bigger Grammar	
9 Rules	
S --> NP VP	Sentences it can generate:
S --> S' VP	Hoggle likes jewels.
NP --> Det N	S --> NP VP
VP --> V NP	
VP --> V	
VP --> V S	
VP --> V S'	
S' --> Comp S	

A Slightly Bigger Grammar		
9 Rules		
	Sentences it can generate:	
$\begin{aligned} & \text { S }-\mathbf{~ - - > ~ N P ~ V P ~ V P ~} \\ & \text {--- S' V } \end{aligned}$		
	Hoggle likes jewels.	
$\begin{aligned} & \text { NP --> Det } N \\ & \text { NP --> N } \end{aligned}$	S --> NP VP	
VP --> VNP	NP --> N VP --> V NP	
VP --> V		
VP --> V S		
VP --> V S'		
S' --> Comp S		

A Slightly Bigger Grammar		
9 Rules		
S --> NP VP	Sentences it can generate	
Hoggle likes jewels.		
$\begin{aligned} & \text { NP --> Det N } \\ & \text { NP --> N } \end{aligned}$	S --> NP VP	
VP --> V NP	NP --> N	VP --> V NP
VP --> V	N	\checkmark NP
VP --> V S		
VP --> V S'	Hoggle	likes jewels.
S' --> Comp S		

A Slightly Bigger Grammar		
9 Rules		
	Sentence	can generate:
S --> NP VP		
S --> S' VP		
$\begin{aligned} & \text { NP --> Det N } \\ & \text { NP --> N } \end{aligned}$		
VP --> V NP	NP	VP
VP --> V	N	$\checkmark \mathrm{NP}$
VP --> V S		
VP --> V S'	Hoggle	likes jewels.
S' --> Comp S		

A Slightly Bigger Grammar	
9 Rules	
	Sentences it can generate:
S --> NP VP	Sarah thought that she solved the
S --> S' VP	Labyrinth.
NP --> Det N	
VP --> V NP	
VP --> V	
VP --> V S	
VP --> V S'	
S' --> Comp S	

A Slightly Bigger Grammar	
9 Rules	
S --> NP VP	Sentences it can generate:
S --> S' VP	Sarah thought that she solved the Labyrinth. S --> NP VP
$\begin{aligned} & \text { NP --> Det N } \\ & \text { NP --> N } \end{aligned}$	
VP --> V NP	
VP --> V	
VP --> V S	
VP --> V S'	
S' --> Comp S	

A Slightly Bigger Grammar	
9 Rules	
	Sentences it can generate:
S --> NP VP	Sarah thought that she solved the
S --> S VP	Labyrinth. S --> NP VP
$\begin{aligned} & \text { NP --> Det N } \\ & \text { NP --> N } \end{aligned}$	$\begin{array}{cl} \text { NP --> N } & \text { VP } \\ \mathrm{N} & \text {--> V S' } \\ S^{\prime} \end{array}$
VP --> V NP	Sarah thought Comp S
VP --> V	
VP --> V S	
VP --> V S'	
S' --> Comp S	

A Slightly Bigger Grammar	
9 Rules	
S --> NP VP	Sentences it can generate:
S --> S' VP	Larah thought that she solved the NP --> Det N\quad NP --> N VP --> V S'

A Slightly Bigger Grammar	
9 Rules	
	Sentences it can generate:
S --> NP VP	Sarah thought that she solved the
S --> S' VP	Labyrinth. S --> NP VP
$\begin{aligned} & \text { NP --> Det N } \\ & \text { NP --> N } \end{aligned}$	$\begin{array}{cl} \text { NP --> N } & \text { VP } \\ \mathrm{N} & \text { V } \mathrm{S}^{\prime} \end{array}$
VP --> V NP	Sarah thought that NP VP
VP --> V	
VP --> V S	
VP --> V S'	
S' --> Comp S	

A Slightly Bigger Grammar			
9 Rules			
S --> NP VP Sentences it can generate:			
S --> S VP	Sarah thought that she solved the Labyrinth.S --> NP VP		
$\begin{aligned} & \text { NP --> Det N } \\ & \text { NP --> N } \end{aligned}$	$\begin{array}{cc} \text { NP --> N } & \text { VP } \\ \mathrm{N} & \text {--> } S^{\prime} \\ \text { Sarah } & \text { thought that NP VP } \end{array}$		
VP --> V NP			
VP $-->$ V	NP --> N VP --> V NP		
VP --> V S			
VP --> V S'			
S' --> Comp S			

A Slightly Bigger Grammar			
9 Rules			
	Sentences it can generate:		
S --> NP VP			
S --> S' VP	Sarah thought that she solved the Labyrinth.		
NP --> Det N	NP --> N VP --> V S'		
NP --> N	N Sarah	\checkmark S'	
		thought that NP	VP
VP --> V		NP --> N	VP --> V NP
VP --> V S		N	V NP
VP --> V S'		she	solved
			NP --> Det N
S' --> Comp S			

Figuring out structure: bottom-up
9 Rules
S --> NP VP
S--> S' VP
NP --> Det N
NP --> N
VP --> V NP
VP --> V
VP --> V S
VP --> V S'

S' --> Comp S Sarah thought that Hoggle was a cheat

Figuring out structure: bottom-up
9 Rules
S --> NP VP
S --> S' VP
NP --> Det N
NP --> N
VP --> VNP
VP --> V
VP --> V S
VP --> V S' Sarah thought that Hoggle was a cheat

Figuring out structure: bottom-up 9 Rules

S --> NP VP
S --> S' VP

NP --> Det N
NP --> N
VP --> V NP
VP --> V
VP --> V S
VP --> V S'

S' --> Comp S
$N \quad V$ Comp $N \quad V$ Det Sarah thought that Hoggle was a cheat.

Figuring out structure: bottom-up 9 Rules
S--> NP VP
S --> S' VP

NP --> Det N
NP --> N
VP --> V NP
VP --> V
VP --> V S
VP --> V S'
S' --> Comp S Sarah thought that Hoggle was a cheat

Figuring out structure: bottom-up
9 Rules
S --> NP VP
S --> S' VP
NP --> Det N
NP --> N
VP --> V NP
VP --> V
VP --> V S
VP --> V S'
S' --> Comp S
Sarah thought that Hoggle was a cheat

Figuring out structure: bottom-up
9 Rules
S --> NP VP
S --> S' VP
NP --> Det N
NP --> N
VP --> VNP
VP --> V
VP --> V S
VP --> V S'
S' --> Comp S Sarah thought that Hoggle was a cheat.

Figuring out structure: bottom-up 9 Rules

S --> NP VP
S --> S' VP

NP --> Det N
NP $-->N$
VP --> V NP
VP --> V
VP --> V S
VP --> V S'
S' --> Comp S
Comp N
Sarah thought that Hoggle was a cheat

Figuring out structure: bottom-up 9 Rules

S --> NP VP
S --> S' VP

NP --> Det N
NP --> N
VP --> V NP
VP --> V
VP --> V S
VP --> V S'
S' --> Comp S Sarah thought that Hoggle was a cheat.

Figuring out structure: bottom-up
9 Rules
S --> NP VP
S --> S' VP
NP --> Det N
NP --> N
VP --> V NP
VP --> V
VP --> V S
VP --> V S'

S' --> Comp S

Sarah thought that Hoggle was a cheat.

Figuring out structure: bottom-up
9 Rules
S --> NP VP
S --> S' VP
NP --> Det N
NP --> N
VP --> V NP
VP --> V
VP --> V S
VP --> V S'

S' --> Comp S

Syntax Recap

The structure of language (syntax) involves more than simply the meaning of the words. It involves rules about how the words themselves are allowed to go together.

It isn't enough to know the list of possible sentences in the language. Because adults can generate novel sentences and sentences of infinite length, adults need to know a generative rule system.

Adults know (unconsciously) a system of rules for generating the word orders they use. A fairly small set of rules can generate a fairly large set of sentences.

Questions?

You should be able to answer up through question 3 on the review questions, and up through question 2 on HW3.

