Origins of language: A conspiracy theory

Jeff Elman

Models of Language Class Kenny Vaden

I. Introduction: *language is puzzling*

Is language a species-specific adaptation?

All humans acquire and use language, *in all of its complexity*, while no other animals can; similarities in languages and development patterns across cultures; (common patterns in language formation too).

Is language is an **instinct**, a genetically scripted for acquisition and use, as Pinker (1994) claims?

OR is Innateness an over-simplistic explanation? Genome is required for all sorts of behaviors, Scant evidence of specifically genetic linguistic defects Consider complexity of gene function, versus Pinker's claim

I. Introduction: language is puzzling

Alternative to language instinct:

Connectionist perspective on language acquisition Biology and development interact to produce lang. Certain forms of innateness are plausible, others not

Goals: 1. Taxonomy of Innateness

- 2. Two connectionist simulations
- 3. How results fit into Conspiracy Theory

II. Ways to be innate What does it mean to be innate?

Innateness would impose constraints on some level:

- 1. Representational constraints (*brain-state*) Could genes pre-specify brain circuitry & connectivity? *Pinker's favorile, but it is the most unlikely...*
- 2. Architectures: unit, local, global constraints Could genes specify some specific brain hardware for language? Maybe connection pattern among modular systems is important...
- **3. Chronotopic constraints (timing)** Could genes affect endogenous and exogenous interactions? Small changes in development could make language happen...

II. Ways to be inna	ite
What does it mean to	be innate?

1 / /·		C" 4
V a transad and a	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	trona i
$\mathbf{N} \mathbf{P} = \mathbf{N} \mathbf{P} \mathbf{P} \mathbf{P} \mathbf{P} \mathbf{P} \mathbf{P} \mathbf{P} P$	<i>NNPLINNNN I PTM</i>	Inome i
I I U U U U U U U U U U	101000000010050 0011105.	ILCUIC I

Source of constraint Representations		Examples in brains synapses; specific microcircuitry	Examples in networks weights on connections
Architectures	local	number of layers; packing density; recurrence; basic (recurring) cortical circuitry	network type (e.g., recurrent, feed forward); number of layers; num- ber of units in layers
	global	connections between brain regions; location of sensory and motor affer- ents/efferents	expert networks; separate input/ output channels
Timing		number of cell divisions during neurogenesis; spatio-temporal waves of synaptic growth and prun- ing/decay; temporal development of sensory systems	incremental presentation of data; cell división in growing networks intrinsic changes resulting from node saturation; adaptive learning rates

III. Problem w. representational innateness Representational Innateness is wrong

- Numbers don't work: Nematodes have identical connectivity, with only 959 neurons. No two humans share exact patterns; we have trillions of synapses.
- **Recycling:** Even for fruit flies, most genes play a role in multiple expressions and interact.
- Specifying particular language microcircuits in human brains is too much of a burden for individual genes.

IV. The importance of time Architectural and timing constraints In closed systems, internal timing is critical ex 2: loss of interactions in tooth formation vs beaks With the system of the system

V. The importance of starting small

Children must learn to communicate

Symbolic activity: function decoupled from content Symbols have an arbitrary correspondence to referents Structures have a complex relation to constiuents

Theory of Semantics: meaning from sentence constituents
 Theory of Syntax: what sort of structures are grammatical

Embedded information can then be successfully detangled:

The cat who the dogs chase runs toward me.

V. The importance of starting small

Embedding is plausible candidate for innate language ability.

Gold's Proof (1967)

Embedding cannot be learned inductively using positive input only. *Violations should occur, then be corrected or identified.* Direct negative evidence is not present.

(parents ignore children's grammar, tend toward truthfulness) Critical knowledge about grammar must be innate. Learning involves fine-tuning child's UG to environment.

How specific is constraint to learn embedding? Do constraints even need to be of a linguistic sort?

V. The importance of starting small

Artificial Language Time!

- Grammatical categories: words belonged to diff categories (eg. noun, verb, etc.)
 Basic sentence structure: noun followed by a verb; transitive verbs followed by a second noun (eg. cat chased <u>dog</u>)
- number agreement between subject noun & verb (eg. cat runs, dogs chase)
 verb argument structure: some verbs transitive; others intransitive; others were
- optionally transitive (eg. lions cat vs. lions eat dogs) **5. relative clauses:** nouns could be modified by a relative clause (e.g., who the dogs chase); both subject relatives (girl who sees the boy) and object relatives (girl who the boys see) were possible.

Elman used these rules to generated a bunch of non-repeating artificial sentences in the form of orthogonal [0,1] sentence vectors (each entry is a random word in the artificial language).

ex. sentence: [000100000110000000000000]

V. The importance of starting small

Can network learn embedding from <u>positive evidence</u>? ex. sentence: [0001000001100000000000000]

V. The importance of starting small

Timing-Structure interact in language acquisition

Development of memory capacity and perception can **limit search space** enough for learning to succeed.

- Limitations instead of a specialized acquisition system that *comes on-line* Less is more: critical periods as mature systems settling on unstructured solutions – *too many possibilities.*
- Evidence from the kinds of error at different stages of maturity: Adult L2 learners: incomplete control, frozen morphology Young native learners: errors of omission

VI. Where cortical structure comes from

Functionally specialized language areas in cortex

First simulation demonstrates that developmental *constraints* could explain acquisition pattern instead of an *innate* LAD.

BUT how does specific functional organization arise *across individuals*, if the architecture is not pre-specified genetically?

Innate architecture or convergent development?

VI. Where cortical structure comes from

Convergence: Shrager & Johnson's XOR Model

Fun Biological Facts:

Cortex begins with **high pluripotentiality**, and over time becomes a cascade of specialized, nearly modular filters.

Arborization and thinning begin in primary sensory and motor areas, and spread anteriorly through the cortex from ages 4-25.

Changes do not happen everywhere simultaneously - do functional specializations result from *trophic waves of plasticity*?

VI. Where cortical structure comes from

Spatial Trophic Plasticity Waves

Shrager & Johnson found that first order functions present in fast traveling trophic waves, second order functions increase with slow trophic waves.

Rebotier & Elman replicated that result, and found XOR detectors using a spatial wave of trophic change.

Demonstrates that powerful non-linear relationships could be learned with plausible unsupervised Hebbian learning over time and space.

VII. Conclusion

Conspiracy Theory of Language

Language is unique to human species, and it takes a constrained set of possible forms. But this is not evidence for a radical evolutionary change, or a *language gene*, per se.

Biological basis of language be can explained

1. Nonlinear effects of small developmental changes on outcome

2. Conservative genome, nature of **interactions** within development

Phenotypic variation, even if a single gene leads to it – involves complex interplay of developmental and regulatory mechanisms

Tweaks and twiddles in communicative behaviors are allometric in nature

Account of the processes involved in language is the ultimate goal