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Psych 215L: 
Language Acquisition 

Lecture 8 
Word-Meaning Mapping  

Computational Problem 

“Look!  There’s a goblin!” 

Goblin = ???? 

Basic time course 
Bergelson & Swingley 2012 

“Learning to understand words, as opposed to just perceiving their 
sounds, is said to come…between 9 and 15 mo of age, when infants 
develop a capacity for interpreting others’ goals and intentions. Here, we 
demonstrate that this consensus about the developmental sequence of 
human language learning is flawed: in fact, infants already know the 
meanings of several common words from the age of 6 mo onward….This 
surprising accomplishment indicates that, contrary to prevailing beliefs, 
either infants can already grasp the referential intentions of adults at 6 
mo or infants can learn words before this ability emerges. The 
precocious discovery of word meanings suggests a perspective in which 
learning vocabulary and learning the sound structure of spoken language 
go hand in hand as language acquisition begins.” 

Vocab items: food (apple, cookie, etc.) & body parts (eyes, hand, etc.) 

Sound structure + word meaning 
Graf-Estes, Edwards, & Saffran 2011: 18-month-olds can make some 
educated guesses as to which words are good labels and which aren’t 

“There is ample evidence of infants’ precocious acquisition of native 
language sound structure during the first year of life, but much less 
evidence concerning how they apply this knowledge to the task of 
associating sounds with meanings in word learning. To address this 
question, 18-month-olds were presented with two phonotactically legal 
object labels (containing sound sequences that occur frequently in 
English) or two phonotactically illegal object labels (containing sound 
sequences that never occur in English), paired with novel objects. Infants 
were then tested using a looking-while-listening measure. The results 
revealed that infants looked at the correct objects after hearing the legal 
labels, but not the illegal labels.” 
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One solution: fast mapping 

ball 
bear 

kitty 

[unknown] 

Children begin by making an initial fast mapping between a new 
word they hear and its likely meaning.  They guess, and then 
modify the guess as more input comes in. 

Experimental evidence of fast mapping  
 (Carey & Bartlett 1978, Dollaghan 1985, Mervis & Bertrand 
1994, Medina, Snedecker, Trueswell, & Gleitman 2011) 

One solution: fast mapping 

ball 
bear 

kitty 

[unknown] 

“Can I have the ball?” 

Children begin by making an initial fast mapping between a new 
word they hear and its likely meaning.  They guess, and then 
modify the guess as more input comes in. 

Experimental evidence of fast mapping  
 (Carey & Bartlett 1978, Dollaghan 1985, Mervis & Bertrand 
1994, Medina, Snedecker, Trueswell, & Gleitman 2011) 

One solution: fast mapping 
Children begin by making an initial fast mapping between a new 

word they hear and its likely meaning.  They guess, and then 
modify the guess as more input comes in. 

ball 
bear 

kitty 

[unknown] 

“Can I have the zib?” 

20 months 

Experimental evidence of fast mapping  
 (Carey & Bartlett 1978, Dollaghan 1985, Mervis & Bertrand 
1994, Medina, Snedecker, Trueswell, & Gleitman 2011) 

A slight problem… 
“…not all opportunities for word learning are as uncluttered as the 

experimental settings in which fast-mapping has been 
demonstrated. In everyday contexts, there are typically many 
words, many potential referents, limited cues as to which words go 
with which referents, and rapid attentional shifts among the many 
entities in the scene.” - Smith & Yu (2008) 
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A slight problem… 
 “…many studies find that children even as old as 18 months have 
difficulty in making the right inferences about the intended referents of 
novel words…infants as young as 13 or 14 months…can link a name to 
an object given repeated unambiguous pairings in a single session. 
Overall, however, these effects are fragile with small experimental 
variations often leading to no learning.” - Smith & Yu (2008) 

Smith & Yu (2008) 
New approach: infants accrue statistical evidence across multiple trials that 

are individually ambiguous but can be disambiguated when the 
information from the trials is aggregated. 

How does learning work? 
Bayesian inference is one way. 

In Bayesian inference, the belief in a particular hypothesis (H) (or the 
probability of that hypothesis), given the data observed (D) can be 
calculated the following way: 

P(H | D) =   P(D | H) * P(H) 
   ! P(D|h)*P(h) 

h 

Cross-situational Learning 
Let’s apply Bayesian inference to this scenario. 
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Cross-situational Learning 
Let’s apply Bayesian inference to this scenario. 

Posterior probability that “ball” refers to  

Cross-situational Learning 
Let’s apply Bayesian inference to this scenario. 

Observable data 

Hypothesis 1 (H1): “ball” =           

Hypothesis 2 (H2): “ball” =      

Since there are two hypotheses in the 
hypothesis space at this point 
P(H1) =  1/2 = 0.5 
P(H2) =  1/2 = 0.5  

Cross-situational Learning 
Let’s apply Bayesian inference to this scenario. 

Observable data 

Hypothesis 1 (H1): “ball” =           

Hypothesis 2 (H2): “ball” =      

If this is the only data available, 

P(D | H1) = would this be observed if H1 were 
true?  Yes.  Therefore p(D | H1) = 1.0. 

P(D | H2) = would this be observed if H2 were 
true?  Yes.  Therefore p(D | H2) = 1.0. 

Cross-situational Learning 
Let’s apply Bayesian inference to this scenario. 

Observable data 

Hypothesis 1 (H1): “ball” =           

Hypothesis 2 (H2): “ball” =      

If this is the only data available, 

P(D) = ! P(D | h) P(h) =  

P(D | H1) * P(H1) = 1.0 * 0.5 = 0.5  
P(D | H2) * P(H2) = 1.0 * 0.5 = 0.5 

so  
! P(D | h) P(h) = 0.5 + 0.5 = 1.0 

h 

h 
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Cross-situational Learning 
Let’s apply Bayesian inference to this scenario. 

Observable data 

Hypothesis 1 (H1): “ball” =           

Hypothesis 2 (H2): “ball” =      

If this is the only data available, 

   = P(D | H1) * P(H1) 
   P(D) 

  = 1.0 * 0.5  = 0.5 
        1.0 

This feels intuitively right, since “ball” could refer to either object, given 
this data point. 

Cross-situational Learning 
Let’s apply Bayesian inference to this scenario. 

Observable data 

Hypothesis 1 (H1): “ball” =           

Hypothesis 2 (H2): “ball” =      

Since there are three hypotheses in the 
hypothesis space at this point 
P(H1) =  1/3 = 0.33 
P(H2) =  1/3 = 0.33 
P(H3) =  1/3 = 0.33 Hypothesis 3 (H3): “ball” =      

Cross-situational Learning 
Let’s apply Bayesian inference to this scenario. 

Observable data 

Hypothesis 1 (H1): “ball” =           

Hypothesis 2 (H2): “ball” =      

Hypothesis 3 (H3): “ball” =      

If this is the only data available, 

P(D | H1) = would this be observed if H1 were 
true?  Yes.  Therefore p(D | H1) = 1.0. 

Cross-situational Learning 
Let’s apply Bayesian inference to this scenario. 

Observable data 

Hypothesis 1 (H1): “ball” =           

Hypothesis 2 (H2): “ball” =      

Hypothesis 3 (H3): “ball” =      

If this is the only data available, 

P(D | H2) = would this be observed if H2 were 
true?  No. (Why would “ball” be said in the 
second scene?)  Therefore p(D | H2) = 0.0. 

P(D | H3) = would this be observed if H3 were 
true?  No. (Why would “ball” be said in the 
first scene?)  Therefore p(D | H3) = 0.0. 
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Cross-situational Learning 
Let’s apply Bayesian inference to this scenario. 

Observable data 

Hypothesis 1 (H1): “ball” =           

Hypothesis 2 (H2): “ball” =      

Hypothesis 3 (H3): “ball” =      

If this is the only data available, 

P(D) = ! P(D | h) P(h) =  

P(D | H1) * P(H1) = 1.0 * 0.33 = 0.33  
P(D | H2) * P(H2) = 0.0 * 0.33 = 0.0 
P(D | H3) * P(H3) = 0.0 * 0.33 = 0.0 

so  
! P(D | h) P(h) = 0.33 + 0.0 + 0.0 = 0.33 

h 

h 

Cross-situational Learning 
Let’s apply Bayesian inference to this scenario. 

Observable data 

Hypothesis 1 (H1): “ball” =           

Hypothesis 2 (H2): “ball” =      

Hypothesis 3 (H3): “ball” =      

If this is the only data available, 

   = P(D | H1) * P(H1) 
   P(D) 

  = 1.0 * 0.33  = 1.0 
        0.33 

This feels intuitively right, since “ball” could only refer to the ball, when 
these two scenes are reconciled with each other. 

Smith & Yu (2008) 
Yu & Smith (2007): Adults seem able to 

accomplish this. 

Smith & Yu ask: Can 12- and 14-month-old 
infants do this? (Relevant age for 
beginning word-learning.)  

Requirements: 
(1)! Learner notices absence 
of b in Trial 4 
(2)! Learner remembers 
absence of g in Trial 1 
(3)! Learner registers 
occurrences & non-
occurrences 
(4)! Learner calculates 
correct statistics based off 
this information 

Smith & Yu (2008): Experiment 
Six novel words obeying phonotactic probabilities of English: 
bosa, gasser, manu, colat, kaki, regli  

Six brightly colored shapes (sadly greyscale in the paper) 

What the shapes are probably more like 
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Smith & Yu (2008): Experiment 
Training: 30 slides with 2 objects named with two words (total time: 4 min) 

manu 
colat 

bosa 
manu 

Example training slides 

Smith & Yu (2008): Experiment 

Testing: 12 trials with one word repeated 4 times and 2 objects (correct one 
and distracter) present 

manu 
manu 
manu 
manu 

Which one does the infant 
think is manu? That should 
be the one the infant 
prefers to look at. 

Smith & Yu (2008): Experiment 
Results: Infants preferentially look at target over distracter, and 14-month-

olds looked longer than 12-month-olds. This means they were able to 
tabulate distributional information across situations. 

Implication: 12 and 14-month-old infants can do cross-situational learning 

Smith & Yu (2008) 
Interesting point: More ambiguity within trials may lead to better learning 

overall 

“Yu and Smith (2007; Yu et al., 2007), using a task much like the infant task 
used here, showed that adults actually learned more word-referent pairs 
when the set contained 18 words and referents than when it contained 
only 9. This is because more words and referents mean better evidence 
against spurious correlations. Although much remains to be discovered 
about the relevant mechanisms, they clearly should help children learn 
from the regularities that accrue across the many ambiguous word-scene 
pairings that occur in everyday communication.” 
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Smith & Yu (2008) 
This kind of statistical learning vs. transitional probability learning 

“The statistical regularities to which infants must attend to learn word-
referent pairings are different from those underlying the segmentation of a 
sequential stream in that word-referent pairings require computing co-
occurrence frequencies across two streams of events (words and 
referents) simultaneously for many words and referents. Nonetheless, the 
present findings, like the earlier ones showing statistical learning of 
sequential probabilities, suggest that solutions to fundamental problems in 
learning language may be found by studying the statistical patterns in the 
learning environment and the statistical learning mechanisms in the 
learner (Newport & Aslin, 2004; Saffran et al., 1996)” 

Also, Ramscar et al. (2011) 
Kids vs. adults: word-meaning mapping in cases of ambiguity 

“These findings…are consistent with other cross-situational approaches to 
word learning (Yu & Smith, 2007; Smith & Yu, 2008), which have 
established that in word learning tasks, both children and adults can 
“rapidly learn multiple word-referent pairs by accruing statistical evidence 
across multiple and individually ambiguous word-scene pairings”…. 
However, in this experiment, we explicitly tested for children’s sensitivity 
to the information provided by cues, rather than their co-occurrence 
rates…pattern of children’s responses indicates that they can and do use 
informativity in learning to use words…what a child learns about any 
given word is dependent on the information it provides about the 
environment, in relation to other words…it is quite clear that the adults we 
tested did not place the same value on informativity in their learning that 
the children did…” 

However… 
See Medina, Snedecker, Trueswell, & 

Gleitman (2011) for evidence 
against learners having multiple 
meaning hypotheses and cross-
tabulating them via statistical 
procedures. (An issue again: the 
sheer number of items in real 
world situations, and the different 
perceptual instances of the items 
in question.) 

Instead, learners “appear to use a 
one-trial ‘fast-mapping’ procedure, 
even under conditions of 
referential uncertainty.” 

Frank, Goodman, & Tenenbaum (2009) 
Redefining the problem: (It’s harder) 
Not just about learning stable lexicon of word-meaning mappings, but also 

about the intention of the speaker at the moment. 

“Social theories suggest that learners rely on a rich understanding of the 
goals and intentions of speakers…once the child understands what is 
being talked about, the mappings between words and referents are 
relatively easy to learn (St. Augustine, 397/1963; Baldwin, 1993; Bloom, 
2002; Tomasello, 2003). These theories must assume some mechanism 
for making mappings, but this mechanism is often taken to be 
deterministic, and its details are rarely specified. In contrast, cross-
situational accounts of word learning take advantage of the fact that 
words often refer to the immediate environment of the speaker, which 
allows learners to build a lexicon based on consistent associations 
between words and their referents (Locke, 1690/1964; Siskind, 1996; 
Smith, 2000; Yu & Smith, 2007).” 
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Frank, Goodman, & Tenenbaum (2009) 

Problems for learning based on cross-situational idea that referents are 
present:  

“…speakers often talk about objects that are not visible and about actions 
that are not in progress at the moment of speech (Gleitman, 1990), 
adding noise to the correlations between words and objects.” 

Solution: appeal to external social/communication cues 
“…cross-situational and associative theories often appeal to external social 

cues, such as eye gaze (Smith, 2000; Yu & Ballard, 2007), but these are 
used as markers of salience (the ‘‘warm glow’’ of attention), rather than as 
evidence about internal states of the speaker, as in social theories.” 

The importance of social cues 

Frank, Tenenbaum, & Fernald 2012 
 “While cross-situational associations can sometimes be informative, 
social cues about what a speaker is talking about can provide a powerful 
shortcut to word meaning. The current study takes steps towards 
quantifying the informativeness of cues that signal speakers’ chosen 
referent, including their eye-gaze, the position of their hands, and the 
referents of their previous utterances. We present results based on a 
hand-annotated corpus of 24 videos of child-caregiver play sessions with 
children from 6 to 18 months old, which we make available to researchers 
interested in similar issues. Our analyses suggest that although they can 
be more useful than cross-situational information in some contexts, social 
and discourse information must also be combined probabilistically to be 
effective in determining reference.” 

Frank, Goodman, & Tenenbaum (2009) 

Task: Identify lexicon items for 
object nouns 

Frank, Goodman, & Tenenbaum (2009) 

Assumption: 
What people intend to say (I) is a function of the world 

around them (specifically, the objects O present). 

Assumption: 
The words people say (W) are a function of what people 

intend to say (I = objects intended) and how those 
intentions can be translated with the language they 
speak (using lexicon items L) 
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Model 

Model learns a probability distribution over unobserved 
lexicons L (one L = set of lexicon items), given an 
observed corpus C of situations. 

    Prior P(L) favors parsimony (fewer lexical items): exponentially 
penalized for each additional lexical item , using constant ! 

 P(L)  e-!|L| 

Model 

Model learns a probability distribution over unobserved 
lexicons L (one L = set of lexicon items), given an 
observed corpus C of situations. 

    Likelihood P(C|L) is product of the words, objects, and intentions given 
the lexicon L for all situations in C: 

Model 

Model learns a probability distribution over unobserved 
lexicons L (one L = set of lexicon items), given an 
observed corpus C of situations. 

    
W & O are conditionally independent, so P(Ws, Os, Is | L) can be 
rewritten… 

Model 

Model learns a probability distribution over unobserved 
lexicons L (one L = set of lexicon items), given an 
observed corpus C of situations. 

    
…as the product of the words given the speaker’s intended objects and 
lexicon (P(Ws | Is, L)… 

P(Ws | Is, L) *… 
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Model 

Model learns a probability distribution over unobserved 
lexicons L (one L = set of lexicon items), given an 
observed corpus C of situations. 

    
…multiplied by the probability of the speaker’s intended objects (I) 
given the objects present (P(Is  | Os). 

P(Ws | Is, L) * P(Is  | Os)  

Model 

Model learns a probability distribution over unobserved 
lexicons L (one L = set of lexicon items), given an 
observed corpus C of situations. 

    

Since we can’t observe speaker’s intended referent directly, we sum 
over all possible values of intended referent I, assuming the object is 
present (I  Os).   

Note that Is can be empty if the speaker is not 
referring to an object that is present. 

"I O P(Ws | Is, L) * P(Is  | Os)  

Model 

Model learns a probability distribution over unobserved 
lexicons L (one L = set of lexicon items), given an 
observed corpus C of situations. 

    

Simplicity assumption: P(Is | Os)  1 
(all intentions equally likely) 

Remaining term: P(Ws | Is,L)  

Model 

Model learns a probability distribution over unobserved 
lexicons L (one L = set of lexicon items), given an 
observed corpus C of situations. 
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Model 

Model learns a probability distribution over unobserved 
lexicons L (one L = set of lexicon items), given an 
observed corpus C of situations. 

Assumption: words are generated as a bag of words (no order or 
dependencies, so can multiply them together) 
Assumption: words are generated because 

 (1) they are referential to some item present [PR] or 
 (2) they are non-referential [PNR] 

Model 

Model learns a probability distribution over unobserved 
lexicons L (one L = set of lexicon items), given an 
observed corpus C of situations. 

    

! = probability a word is used referentially, given context 
(1 – !) = probability word is not used referentially (specifically, not 
referring to objects: function words, adjectives, verbs, …) 

Model 

Model learns a probability distribution over unobserved 
lexicons L (one L = set of lexicon items), given an 
observed corpus C of situations. 

PR(w|o, L) = probability of word used referentially for an object = 
probability of word being chosen, given the object and the lexicon 

Uniform over words linked to object in the lexicon.  If a word is not linked 
to an object, its referential probability is 0 for that object. 

Averaged over all possible intended referents (Is). 

Model 

Model learns a probability distribution over unobserved 
lexicons L (one L = set of lexicon items), given an 
observed corpus C of situations. 

    

PNR(w|L) = probability of word used non-referentially w.r.t objects = probability of 
word being chosen, given lexicon. 

If word not in lexicon already, probability of choosing word  1. 
If word in lexicon already, probability of choosing word  #. 

When # < 1, words in lexicon less likely to be uttered non-referentially than 
words not in lexicon. 
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Testing the Model: Corpus Evaluation 
Input Corpus: Rollins videos of parents interacting with preverbal infants 
Annotated with all mid-size objects judged to be visible to the infant.  

Other word-learning models evaluated on same data, and all models judged on 
the accuracy of the lexicons learned and inferences on speaker intentions 

Lexicons: Each model produced 
association probability between word 
& object.  Chose lexicon that 
maximized F-score (harmonic mean 
of precision & recall). 

Note: Intentional model with “one 
parameter” is when ! is the only free 
parameter.  

Testing the Model: Corpus Evaluation 

Best lexicon found by intentional model 

Testing the Model: Corpus Evaluation 
Input Corpus: Rollins videos of parents interacting with preverbal infants 
Annotated with all mid-size objects judged to be visible to the infant.  

Other word-learning models evaluated on same data, and all models judged on 
the accuracy of the lexicons learned and inferences on speaker intentions 

Speaker Intentions:  
Intentional model = intention with 
highest posterior probability given 
lexicon 

Other models = objects for which 
matching words in best lexicon had 
been uttered 

Note: Intentional model with “one 
parameter” is when ! is the only free 
parameter.  

Testing the Model: Corpus Evaluation 

Why did the intentional model work so well? 

“The high precision of the lexicon found by our model was likely due to 
two factors. First, the distinction between referential and nonreferential 
words allowed our model to exclude from the lexicon words that were 
used without a consistent referent. Second, the ability of the model to 
infer an empty intention allowed it to discount utterances that did not 
contain references to any object in the immediate context.” 
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Using the model to explain experimental results 

Cross-situational word-learning (Yu & Smith 2007, Smith & Yu 2008) 
All models (even the non-intentional ones) successfully learned the 
word-meaning mappings, given those experimental stimuli. 

Doesn’t help to differentiate – just shows that all these models can use 
statistical information like this. 

Using the model to explain experimental results 
Mutual Exclusivity 
“Can you give me the dax?” (“bird” = BIRD already known) 

Children give novel object, presumably 
assuming bird can’t also be called “dax”. 

Intentional model has soft preference for one-to-one mappings already, 
since having multiple words for object reduces consistency of word use 
with that object. 

(Though note that some of the other comparison models can also show 
this behavior, such as the conditional probability models.) 

Using the model to explain experimental results 
Mutual Exclusivity 
“Can you give me the dax?” (“bird” = BIRD already known) 

Children give novel object, presumably 
assuming bird can’t also be called “dax”. 

Intentional model scoring 
for four potential word-
referent mappings.  
Mapping to novel object 
is the best. 

Note also that this is a 
case of one-trial learning 
(Carey 1978, Markson & 
Bloom 1997). 

Using the model to explain experimental results 
Object Individuation 
Xu 2002: Infants use words to individuate objects  

Habituation: toys coming out 
from behind screens  

(figure shows two-word 
habituation, where words are 
“duck” and “ball” - alternative is 
one-word habituation, where 
both objects would be labeled 
“toy”) 
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Using the model to explain experimental results 
Object Individuation 
Xu 2002: Infants use words to individuate objects  

Habituation: 
“Look, a duck!”  “Look, a ball!” 

vs. 

Habituation: 
“Look, a toy!”  “Look, a toy!” 

Test: screen removed to reveal… 

Infant reaction: 
Infants looked longer.   
(surprised to see two objects) 

Infant reaction: 
Infants didn’t look as long.  
(not surprised) 

Using the model to explain experimental results 
Object Individuation 
Xu 2002: Infants use words to individuate objects  

Interpretation: Infants expect words to be used referentially.  One object 
= one label, two objects = two labels. 

Intentional model: Simulate looking time with surprisal (negative log 
probability) and get equivalent results. 

Using the model to explain experimental results 
Intention Reading 
Baldwin 1993: Children sensitive to intentional labeling, not just timing of 
labeling.  

Children told the name of a toy that was unseen and given a second toy 
to play with.  Children learned to label the first toy with the name. 

Easy to simulate in intentional model: Instead of intended objects being 
unknown, intended objects are known.   

Note: Perceptual salience models cannot capture this. 

Frank, Goodman, & Tenenbaum (2009) 

“Our model operates at the ‘‘computational theory’’ level of explanation 
(Marr, 1982). It describes explicitly the structure of a learner’s assumptions 
in terms of relationships between observed and unobserved variables. Thus, 
in defining our model, we have made no claims about the nature of the 
mechanisms that might instantiate these relationships in the human brain.” 

“The success of our model supports the hypothesis that specialized 
principles may not be necessary to explain many of the smart inferences 
that young children are able to make in learning words. Instead, in some 
cases, a representation of speakers’ intentions may suffice.” 
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Fazly, Alishahi, & Stevenson (2010) 

A computational model of something that looks similar to cross-situational 
word learning, but with more than just nouns 

“We present a novel computational model of early word learning…[which] 
learns word meanings as probabilistic associations between words and 
semantic elements, using an incremental and probabilistic learning 
mechanism, and drawing only on general cognitive abilities. The results 
presented here demonstrate that much about word meanings can be 
learned from naturally-occurring child-directed utterances (paired with 
meaning representations), without using any special biases or constraints, 
and without any explicit developmental changes in the underlying learning 
mechanism. Furthermore, our model provides explanations for the 
occasionally contradictory child experimental data, and offers predictions for 
the behaviour of young word learners in novel situations.”  


