

Sounds of Language (Speech Perception)

About Speech Perception

Important: Not all languages use the same contrastive sounds.
Languages draw from a common set of sounds (which can be represented by the International Phonetic Alphabet (IPA)), but only use a subset of that common set

Child's task: Figure out what sounds their native language uses contrastively.
meaningful sounds in the language: "contrastive sounds" or phonemic contrasts

Speech Perception: Computational Problem

Real world data are actually much harder than this... (from Swingley 2009)

Discrimination Task
＂Are these two sounds the same or different？＂
作信
Same／Different
$0 \mathrm{~ms} \quad 60 \mathrm{~ms}$
排的
Same／Different
$0 \mathrm{~ms} \quad 10 \mathrm{~ms}$
楽的
Same／Different
40 ms 40 ms

Discrimination Task
＂Are these two sounds the same or different？＂

Cross－Language Differences

Discrimination task：
English speakers have higher performance at the r / l category boundary， where one sound is perceived as r and one sound is perceived as 1 ．
Japanese speakers generally perform poorly（at chance），no matter what sounds are compared because r and l are not contrastive for them．

Miyawaki et al． 1975

Cross－Language Differences

Hindi	作
dental［d］	假
（tip of tongut touches back of teeth）	绯
\downarrow	绯
	（1）
retroflex［D］	作
（tongue cured ss ot ip is betind alveolar ridge）	作
	根
English［d］is usually somewhere between these	

Perceiving sound contrasts

Kids.
This ability to distinguish sound contrasts
extends to phonemic contrasts that are non-
native. (Japanese infants can discriminate
contrasts used in English but not in Japanese,
like r/l.) This goes for both vowels and
consonants.

..vs. adults
Adults can't, especially without training - even if the different is quite acoustically salient.

So when is this ability lost?
And what changes from childhood to adulthood?

Werker (1995): Speech Perception

But when after 6-8 months is the ability to lost? Werker \& Tees (1984)
Key into "critical period" hypothesis for language (Lenneberg 1967) - when language can be learned natively
"To test for this critial period, children of 12 and 8 years were tested, with the expectation that the 8-year-olds but not the 12-year-olds would be able to discriminate nonnative contrasts. English-speaking children of both ages, however, performed like English-speaking adults...study was extended to 4year old children, who actually performed most year old children, who actually performed most
poorly of all on nonnative contrasts....findings
poorly of all on nonnative contrasts....findings
revealed that experience must begin to influence
revealed that experience must begin to influence
speech perception long before 4, certainly well
speech perception long before 4, certainly well
before the critical period suggested by Lenneberg."

Speech Perception of Non-Native Sounds

Werker \& Tees (1984)
Salish \& Hindi contrasts

Change happens somewhere around 8-10 months,
depending on the sound
contrast.
See Yoshida et al. (2010) for
evidence that infants have some malleability still at 10 some malleability still at 10 months, but it's much le
than at 6 or 8 months.

Discovering contrastive sounds: What's the point of it again?

The idea is that once children discover the meaningful sounds in their language, they can begin to figure out what the words are.

Ex: An English child will know that "cat" and "caat" are the same word (and should have the same meaning).

As adults, we can look at a language and figure out what the contrastive sounds are by looking at what changes a word's meaning. But children can't do this - they figure out the contrastive sounds before they figure out words and word meanings.

More about contrastive sounds

There are a number of acoustically salient features for sounds. All it takes for sounds to be contrastive is for them to have "opposite" values for one feature.

Example:

English sounds " k " and " g " differ only with respect to voicing. They are pretty much identical on all other features. Many contrastive sounds in English use the voicing feature as the relevant feature of contrast ($\mathrm{p} / \mathrm{b}, \mathrm{t} / \mathrm{d}, \mathrm{s} / \mathrm{z}$, etc.). However, there are other features that are used as well (air flow, manner of articulation, etc.).

Task for the child: Figure out which features are used contrastively by the language. Contrastive sounds for the language will usually vary with respect to one of those features.

Experimental Study:
Dietrich, Swingley \& Werker (2007)
Testing children's perception of contrastive sounds

Dutch and English contrastive features differ.
In English, the length of the vowel is not contrastive
"cat" = "caat"

In Dutch, the length of the vowel is contrastive
"cat" = "caat"
(Japanese also uses this feature)

Does the data distribution show this?

Dutch and English vowel sounds in the native language environment also seem to differ
"...studies suggest that differences between the long and short vowels of Dutch are larger than any analogous differences for English."

Does the data distribution show this?

Dutch and English vowel sounds in the native language environment also seem to differ
"...studies suggest that differences between the long and short vowels of Dutch are larger than any analogous differences for English."

English vowel length not used
Frequency of sound in input
contrastively; vowels tend to be less
short and less long (comparatively) Dutch

Does the data distribution show this?

Dutch and English vowel sounds in the native language environment also seem to differ
"...studies suggest that differences between the long and short vowels of Dutch are larger than any analogous differences for English."

Dutch vowel length used
Frequency contrastively; vowels tend to be
Frequency of sound in input

either very short or very long	Dutch
	English

Does the data distribution show this?

Dutch and English vowel sounds in the native language environment also seem to differ
"...studies suggest that differences between the long and short vowels of Dutch are larger than any analogous differences for English."

Dutch = bimodal distribution?

Does the data distribution show this?
Dutch and English vowel sounds in the native language environment also seem to differ
"...studies suggest that differences between the long and short vowels of Dutch are larger than any analogous differences for English."

Dutch $=$ bimodal distribution?

Maye, Werker, \& Gerken (2002)

Created synthetic sounds ranging from [da] to [ta] that were nonnative for the infants (because they were unaspirated).

Learning from real data distributions

How do we know that children are sensitive to distributional information?

Maye, Werker, \& Gerken (2002)

- Familiarized 6 to 8 -month-old infants to one of two sets - Bimodal Set: Sounds on the ends near [da] and [ta]. - Unimodal Set: Sounds in the middle.
- Test preference for:
- 363 6... (Alternating) vs. 333 3... (Non-alternating) stimuli

Back to Dietrich, Swingley, \& Werker (2007)
Dutch and English vowel sounds in the native language environment also seem to differ
"...studies suggest that differences between the long and short vowels of Dutch are larger than any analogous differences for English."

Dutch $=$ bimodal distribution?
Frequency
of sound in
input
Back to Dietrich, Swingley, \& Werker (2007)
Prediction if children are sensitive to this distribution
Dutch children interpret vowel duration as a meaningful contrast
because the distribution is more bimodal
Implication: Change to vowel duration = new word
English children should not interpret vowel duration as a
meaningful contrast because the distribution is more unimodal
Implication: Change to vowel duration = same word as before

Dietrich, Swingley, \& Werker (2007)
Experiment 2: Testing English and Dutch kids on English vowel durations
Frequency of sound in input

Dietrich, Swingley, \& Werker (2007)
Implications of experiments 1, 2, and 3: Dutch children recognize vowel duration as contrastive for their language while English children do not. This can only be due to the data encountered by each set of children in their language.

Dutch children have a category
boundary approximately here.
English children do not.
Frequency of sound in input

What drives children to learn the distinction?
"One frequently raised hypothesis...is that it is driven by contrast in the vocabulary. Dutch children might learn that [a] and [a:] are different because the words [stat]...and [sta:t]...mean different things...however, children that young do not seem to know many word pairs that could clearly indicate a distinction between [a] and [a:]."

Dietrich, Swingley, \& Werker (2007)

"A necessary condition for such learning to be the driving force behind Dutch children's phonological interpretation in the present studies is that long and short vowels be more clearly separable in Dutch than in English...preliminary examination of this problem using corpora of Dutch child-directed speech indicated that the set of long and short instances formed largely overlapping distributions."
Frequency
of sound in
input
Implication: Dutch children need other cues to help them out

Vallabha et al. (2007)
A model trained on child-directed speech data can (mostly) find the four vowels approriate for each language.

Monahan \& Idsardi (2010)

Human brains may be biased to extract this information by using certain normalization procedures.
"...We propose a novel formant ratio algorithm in which the first (F1) and second (F2) formants are compared against the third formant (F3). Results from two magnetoencephalographic experiments are presented that suggest auditory cortex is sensitive to formant ratios...we present statistical evidence that this algorithm eliminates speaker-dependent variation based on age and gender from vowel productions..."

