Psych 215L: Language Acquisition

Lecture 13
Poverty of the Stimulus

About Language

One way to think about how to classify the knowledge that you have when you know a language:

You know what items (sounds, words, sentences, questions, etc.) are part of the language. You can tell whether or not a given item is grammatical in the language.

Hoggle is definitely an ornery dwarf. [grammatical]
* Hoggle an dwarf definitely ornery is. [ungrammatical]

The reason you can do this is because you know the rules & patterns that generate the items that are part of the language. (mental grammar)
About Children Learning Language

Adult knowledge: grammar that generates the items that are part of the language.

The child’s job: figure out the rules that generate the items that belong in the language and that don’t generate items that don’t.

For example, the child wants rules to generate

“Hoggle is definitely an ornery dwarf.”

but not

“Hoggle an dwarf definitely ornery is.”

Want to learn rules that generate this set of items…

…and exclude this set of items
So what's the problem?
It's not clear that children encounter all the items that are part of the language.
If they only encounter a subset of the language's items, how do they know everything that belongs in the language?

<table>
<thead>
<tr>
<th>Items Encountered</th>
<th>Items in English</th>
<th>Items not in English</th>
</tr>
</thead>
</table>

So what's the problem?
One solution: children generalize
But how do they generalize?

<table>
<thead>
<tr>
<th>Items Encountered</th>
<th>Items in English</th>
<th>Items not in English</th>
</tr>
</thead>
</table>

So what's the problem?
One solution: children generalize
But how do they generalize?

<table>
<thead>
<tr>
<th>Items Encountered</th>
<th>Items in English</th>
<th>Items not in English</th>
</tr>
</thead>
</table>
So what’s the problem?

One solution: children generalize
But how do they generalize?

The problem is that children must make the right generalization from data that are compatible with multiple generalizations. In this sense, the data encountered are impoverished. They do not single out the correct generalization by themselves.

A numerical analogy

Items encountered: 3, 5, 7
What set are these numbers drawn from? That is, what is the right “number rule” for this language that will allow you to predict what numbers will appear in the future?
Poverty of the Stimulus: Logic

Children encounter data that are compatible with many hypotheses about the correct rules and patterns of the language. Specifically, the data encountered are compatible with both the correct hypothesis and other, incorrect hypotheses about the rules and patterns of the language.

A rational learner would consider all compatible hypotheses, and perhaps make errors before choosing the correct hypothesis. Expectation for rational learners: errors in performance. Children will behave as if they think ungrammatical items are part of the language at some point.
Argument for Prior Knowledge

But what if children never behave as if they consider the incorrect hypotheses? That is, they never produce errors compatible with the incorrect hypotheses or accept items that are compatible with the incorrect hypotheses.

Conclusion: children have some learning bias that causes them never to consider the incorrect hypotheses. Instead, they only consider the correct hypothesis for what the rules and patterns of the language might be.

Linguistic nativist conclusion: the learning bias children have is specific to language (domain-specific) and is innate (not derivable from the child’s experience). This kind of learning bias is sometimes called “Universal Grammar”.

Specific Example: Yes/No Question Formation

Jareth can alter time. To turn the sentence into a yes/no question, move the auxiliary verb (“can”) to the front.

Can Jareth alter time?

The child’s task: figure out a rule that will form yes/no questions from their corresponding sentences.
Specific Example: Yes/No Question Formation

Jareth can alter time. Can Jareth alter time?

Rule?

Specific Example: Yes/No Question Formation

Jareth can alter time. Can Jareth alter time?

Rule: Move first auxiliary?

Specific Example: Yes/No Question Formation

Jareth can alter time. Can Jareth alter time?

Rule: Move first auxiliary?

Specific Example: Yes/No Question Formation

Jareth can alter time. Can Jareth alter time?

Rule?

Specific Example: Yes/No Question Formation

Jareth can alter time. Can Jareth alter time?

Rule: Move first auxiliary?

Specific Example: Yes/No Question Formation

Jareth can alter time. Can Jareth alter time?

Rule?

Specific Example: Yes/No Question Formation

Jareth can alter time. Can Jareth alter time?

Rule: Move first auxiliary?

Specific Example: Yes/No Question Formation

Jareth can alter time. Can Jareth alter time?

Rule?

Specific Example: Yes/No Question Formation

Jareth can alter time. Can Jareth alter time?

Rule: Move first auxiliary?
Specific Example: Yes/No Question Formation

Jareth can alter time.
Can Jareth alter time?

Anyone who can wish away their brother would be tempted to do it.
Would anyone who can wish away their brother be tempted to do it?

Rule: Move first auxiliary?
Rule: Move last auxiliary?

Specific Example: Yes/No Question Formation

Jareth can alter time.
Can Jareth alter time?

Anyone who can wish away their brother would be tempted to do it.
Would anyone who can wish away their brother be tempted to do it?

Rule: Move first auxiliary?
Rule: Move last auxiliary?

Specific Example: Yes/No Question Formation

Jareth can alter time.
Can Jareth alter time?

Anyone who can wish away their brother would be tempted to do it.
Would anyone who can wish away their brother be tempted to do it?

Rule: Move first auxiliary?
Rule: Move last auxiliary?

Specific Example: Yes/No Question Formation

Jareth can alter time.
Can Jareth alter time?

Anyone who can wish away their brother would be tempted to do it.
Would anyone who can wish away their brother be tempted to do it?

Rule: Move first auxiliary?
Rule: Move last auxiliary?

Specific Example: Yes/No Question Formation

Jareth can alter time.
Can Jareth alter time?

Anyone who can wish away their brother would be tempted to do it.
Would anyone who can wish away their brother be tempted to do it?

Rule: Move first auxiliary?
Rule: Move last auxiliary?

Specific Example: Yes/No Question Formation

Jareth can alter time.
Can Jareth alter time?

Anyone who can wish away their brother would be tempted to do it.
Would anyone who can wish away their brother be tempted to do it?

Rule: Move first auxiliary?
Rule: Move last auxiliary?

Specific Example: Yes/No Question Formation

Jareth can alter time.
Can Jareth alter time?

Anyone who can wish away their brother would be tempted to do it.
Would anyone who can wish away their brother be tempted to do it?

Rule: Move first auxiliary?
Rule: Move last auxiliary?

Specific Example: Yes/No Question Formation

Jareth can alter time.
Can Jareth alter time?

Anyone who can wish away their brother would be tempted to do it.
Would anyone who can wish away their brother be tempted to do it?

Rule: Move first auxiliary?
Rule: Move last auxiliary?

Specific Example: Yes/No Question Formation

Jareth can alter time.
Can Jareth alter time?

Anyone who can wish away their brother would be tempted to do it.
Would anyone who can wish away their brother be tempted to do it?

Rule: Move first auxiliary?
Rule: Move last auxiliary?

Specific Example: Yes/No Question Formation

Jareth can alter time.
Can Jareth alter time?

Anyone who can wish away their brother would be tempted to do it.
Would anyone who can wish away their brother be tempted to do it?

Rule: Move first auxiliary?
Rule: Move last auxiliary?

Specific Example: Yes/No Question Formation

Jareth can alter time.
Can Jareth alter time?

Anyone who can wish away their brother would be tempted to do it.
Would anyone who can wish away their brother be tempted to do it?

Rule: Move first auxiliary?
Rule: Move last auxiliary?

Specific Example: Yes/No Question Formation

Jareth can alter time.
Can Jareth alter time?

Anyone who can wish away their brother would be tempted to do it.
Would anyone who can wish away their brother be tempted to do it?

Rule: Move first auxiliary?
Rule: Move last auxiliary?

Specific Example: Yes/No Question Formation

Jareth can alter time.
Can Jareth alter time?

Anyone who can wish away their brother would be tempted to do it.
Would anyone who can wish away their brother be tempted to do it?

Rule: Move first auxiliary?
Rule: Move last auxiliary?

Specific Example: Yes/No Question Formation

Jareth can alter time.
Can Jareth alter time?

Anyone who can wish away their brother would be tempted to do it.
Would anyone who can wish away their brother be tempted to do it?

Rule: Move first auxiliary?
Rule: Move last auxiliary?

Specific Example: Yes/No Question Formation

Jareth can alter time.
Can Jareth alter time?

Anyone who can wish away their brother would be tempted to do it.
Would anyone who can wish away their brother be tempted to do it?

Rule: Move first auxiliary?
Rule: Move last auxiliary?

Specific Example: Yes/No Question Formation

Jareth can alter time.
Can Jareth alter time?

Anyone who can wish away their brother would be tempted to do it.
Would anyone who can wish away their brother be tempted to do it?

Rule: Move first auxiliary?
Rule: Move last auxiliary?

Specific Example: Yes/No Question Formation

Jareth can alter time.
Can Jareth alter time?

Anyone who can wish away their brother would be tempted to do it.
Would anyone who can wish away their brother be tempted to do it?

Rule: Move first auxiliary?
Rule: Move last auxiliary?

Specific Example: Yes/No Question Formation

Jareth can alter time.
Can Jareth alter time?

Anyone who can wish away their brother would be tempted to do it.
Would anyone who can wish away their brother be tempted to do it?

Rule: Move first auxiliary?
Rule: Move last auxiliary?

Specific Example: Yes/No Question Formation

Jareth can alter time.
Can Jareth alter time?

Anyone who can wish away their brother would be tempted to do it.
Would anyone who can wish away their brother be tempted to do it?

Rule: Move first auxiliary?
Rule: Move last auxiliary?

Specific Example: Yes/No Question Formation

Jareth can alter time.
Can Jareth alter time?

Anyone who can wish away their brother would be tempted to do it.
Would anyone who can wish away their brother be tempted to do it?

Rule: Move first auxiliary?
Rule: Move last auxiliary?

Specific Example: Yes/No Question Formation

Jareth can alter time.
Can Jareth alter time?

Anyone who can wish away their brother would be tempted to do it.
Would anyone who can wish away their brother be tempted to do it?

Rule: Move first auxiliary?
Rule: Move last auxiliary?

Specific Example: Yes/No Question Formation

Jareth can alter time.
Can Jareth alter time?

Anyone who can wish away their brother would be tempted to do it.
Would anyone who can wish away their brother be tempted to do it?

Rule: Move first auxiliary?
Rule: Move last auxiliary?

Specific Example: Yes/No Question Formation

Jareth can alter time.
Can Jareth alter time?

Anyone who can wish away their brother would be tempted to do it.
Would anyone who can wish away their brother be tempted to do it?

Rule: Move first auxiliary?
Rule: Move last auxiliary?

Specific Example: Yes/No Question Formation

Jareth can alter time.
Can Jareth alter time?

Anyone who can wish away their brother would be tempted to do it.
Would anyone who can wish away their brother be tempted to do it?

Rule: Move first auxiliary?
Rule: Move last auxiliary?

Specific Example: Yes/No Question Formation

Jareth can alter time.
Can Jareth alter time?

Anyone who can wish away their brother would be tempted to do it.
Would anyone who can wish away their brother be tempted to do it?

Rule: Move first auxiliary?
Rule: Move last auxiliary?

Specific Example: Yes/No Question Formation

Jareth can alter time.
Can Jareth alter time?

Anyone who can wish away their brother would be tempted to do it.
Would anyone who can wish away their brother be tempted to do it?

Rule: Move first auxiliary?
Rule: Move last auxiliary?

Specific Example: Yes/No Question Formation

Jareth can alter time.
Can Jareth alter time?

Anyone who can wish away their brother would be tempted to do it.
Would anyone who can wish away their brother be tempted to do it?

Rule: Move first auxiliary?
Rule: Move last auxiliary?

Specific Example: Yes/No Question Formation

Jareth can alter time.
Can Jareth alter time?

Anyone who can wish away their brother would be tempted to do it.
Would anyone who can wish away their brother be tempted to do it?

Rule: Move first auxiliary?
Rule: Move last auxiliary?

Specific Example: Yes/No Question Formation

Jareth can alter time.
Can Jareth alter time?

Anyone who can wish away their brother would be tempted to do it.
Would anyone who can wish away their brother be tempted to do it?

Rule: Move first auxiliary?
Rule: Move last auxiliary?

Specific Example: Yes/No Question Formation

Jareth can alter time.
Can Jareth alter time?

Anyone who can wish away their brother would be tempted to do it.
Would anyone who can wish away their brother be tempted to do it?

Rule: Move first auxiliary?
Rule: Move last auxiliary?

Specific Example: Yes/No Question Formation

Jareth can alter time.
Can Jareth alter time?

Anyone who can wish away their brother would be tempted to do it.
Would anyone who can wish away their brother be tempted to do it?

Rule: Move first auxiliary?
Rule: Move last auxiliary?

Specific Example: Yes/No Question Formation

Jareth can alter time.
Can Jareth alter time?

Anyone who can wish away their brother would be tempted to do it.
Would anyone who can wish away their brother be tempted to do it?

Rule: Move first auxiliary?
Rule: Move last auxiliary?

Specific Example: Yes/No Question Formation

Jareth can alter time.
Can Jareth alter time?

Anyone who can wish away their brother would be tempted to do it.
Would anyone who can wish away their brother be tempted to do it?

Rule: Move first auxiliary?
Rule: Move last auxiliary?

Specific Example: Yes/No Question Formation

Jareth can alter time.
Can Jareth alter time?

Anyone who can wish away their brother would be tempted to do it.
Would anyone who can wish away their brother be tempted to do it?

Rule: Move first auxiliary?
Rule: Move last auxiliary?

Specific Example: Yes/No Question Formation

Jareth can alter time.
Can Jareth alter time?

Anyone who can wish away their brother would be tempted to do it.
Would anyone who can wish away their brother be tempted to do it?

Rule: Move first auxiliary?
Rule: Move last auxiliary?
Specific Example: Yes/No Question Formation

Jareth can alter time.
Can Jareth alter time?

Anyone who can wish away their brother would be tempted to do it.
Would anyone who can wish away their brother be tempted to do it?

Someone who can solve the labyrinth can show someone else who can't how.
Can someone who can solve the labyrinth show someone else who can't how?

Idea: Try looking at the sentence structure, not just the linear order of the words in the sentences.

Let's look just at the main clauses in these examples.

Specific Example: Yes/No Question Formation

Jareth can alter time.
Can Jareth alter time?

Anyone who can wish away their brother would be tempted to do it.
Would anyone who can wish away their brother be tempted to do it?

Someone who can solve the labyrinth can show someone else who can't how.
Can someone who can solve the labyrinth show someone else who can't how?

Idea: Try looking at the sentence structure, not just the linear order of the words in the sentences.

Let's look just at the main clauses in these examples.

Specific Example: Yes/No Question Formation

Jareth can alter time.
Can Jareth alter time?

Anyone who can wish away their brother would be tempted to do it.
Would anyone who can wish away their brother be tempted to do it?

Someone who can solve the labyrinth can show someone else who can't how.
Can someone who can solve the labyrinth show someone else who can't how?

Idea: Try looking at the sentence structure, not just the linear order of the words in the sentences.

Let's look just at the main clauses in these examples.

Specific Example: Yes/No Question Formation

Jareth can alter time.
Can Jareth alter time?

Anyone who can wish away their brother would be tempted to do it.
Would anyone who can wish away their brother be tempted to do it?

Someone who can solve the labyrinth can show someone else who can't how.
Can someone who can solve the labyrinth show someone else who can't how?

Idea: Try looking at the sentence structure, not just the linear order of the words in the sentences.

Let's look just at the main clauses in these examples.
Specific Example: Yes/No Question Formation

Jareth can alter time.
Can Jareth alter time?

Anyone would be tempted to do it.
Would anyone be tempted to do it?

Someone can show someone else how.
Can someone show someone else how?

Rule that works for all of these examples (and all English examples): Move the auxiliary verb in the main clause to make a yes/no question.

This is a rule dependent on the structure of the sentences.

Children’s Knowledge

Children seem to know this rule by the age of 3. (Crain & Nakayama 1987)

Learning problem: Children don’t encounter all the examples we saw. They encounter a subset of the possible yes/no questions in English.

Most of the data they encounter (particularly before the age of 3) are simple yes/no questions.

Jareth can alter time.
Can Jareth alter time?

Learning Difficulties: Yes/No Questions

The problem is that these simple yes/no questions are compatible with a lot of different rules.

Rule: Move first auxiliary?
Rule: Move last auxiliary?
Rule: Move main clause auxiliary?
Rule: Move auxiliary in even-numbered position in sentence?
Rule: Move auxiliary closest to a noun?

Learning Difficulties: Yes/No Questions

Rational learner prediction: if children considered all these hypotheses, they should make mistakes on more complex yes/no questions. Let’s look at two hypotheses in detail.

Rule: Move first auxiliary?
Rule: Move main clause auxiliary?
Learning Difficulties: Yes/No Questions

The girl who can solve the labyrinth is happy.

Predictions of questions generated

Rule: Move first auxiliary?

* Can the girl who solve the labyrinth is happy?

Rule: Move main clause auxiliary?

Is the girl who can solve the labyrinth happy?

Learning Difficulties: Yes/No Questions

Crain & Nakayama (1987) showed that children as young as 3 years old don’t make these mistakes. They use the right rule for this complex yes/no question.

Predictions of questions generated

Rule: Move first auxiliary?

* Can the girl who solve the labyrinth is happy?

Rule: Move main clause auxiliary?

Is the girl who can solve the labyrinth happy?

Learning Difficulties: Yes/No Questions

But the simple questions they see are compatible with both of these hypotheses (along with many others). How do children choose the right rule from all the possible rules that are compatible? That is, how do they generalize the right way from the subset of the data they encounter?

Correct rule = grammatical question

* Can the girl who solve the labyrinth is happy?
Learning Difficulties: Yes/No Questions

Linguistic nativist position: Children have an innate bias to look for rules that make use of sentence structure. Specifically, they only consider rules that are structure-dependent.

- Rule: Move first auxiliary?
- Rule: Move last auxiliary?
- Rule: Move auxiliary in even-numbered position in sentence?
- Rule: Move auxiliary closest to a noun?
- Rule: Move main clause auxiliary?

Is the girl who can solve the labyrinth happy?

Another example of children’s constrained generalization

Crain & McKee (1985): pronoun interpretation

While he danced around the throne room, Jareth smiled.

(Adults: he = Jareth)
(Children: he = Jareth)

While he danced around the throne room, Jareth smiled.

(he = Jareth)
Jareth smiled while he danced around the throne room.

Crain & McKee (1985): pronoun interpretation
Another example of children's constrained generalization

While he danced around the throne room, Jareth smiled.
(he = Jareth)

Jareth smiled while he danced around the throne room.
(Adults: he = Jareth)
(Children: he = Jareth)

Possible generalization: Can put pronoun before name or name before pronoun

Crain & McKee (1985): pronoun interpretation
Another example of children's constrained generalization

Crain & McKee (1985): pronoun interpretation

While Jareth danced around the throne room, he smiled.
(he = Jareth)

He smiled while Jareth danced around the throne room.
(Adults: he cannot be Jareth)
(Children: he cannot be Jareth)

Possible generalization fails: Order of pronoun and name matters. Why?

Another example of children's constrained generalization

Crain & McKee (1985): pronoun interpretation

While he danced around the throne room, Jareth smiled.
(he = Jareth)

Jareth smiled while he danced around the throne room.
(he = Jareth)

While Jareth danced around the throne room, he smiled.
(he = Jareth)

He smiled while Jareth danced around the throne room.
(he = Jareth)

The point: Children generalize only in a very specific way. In particular, they don't just generalize everything that they can. Their generalizations appear to be constrained.

Linguistic nativist idea for how their generalizations/hypotheses are constrained: innate learning bias about language = Universal Grammar.
Poverty of the Stimulus leads to Innate Knowledge about Language:
Summary of Logic

1) Suppose there are some data.
2) Suppose there is an incorrect hypothesis compatible with the data.
3) Suppose children behave as if they never entertain the incorrect hypothesis.

Conclusion: Children possess prior (innate) learning biases ruling out the incorrect hypothesis from the hypotheses they do actually consider.

Hypothesis = Generalization

1) Suppose there are some data.
2) Suppose there are multiple generalizations compatible with the data.
3) Suppose children behave as if they only make one generalization.

Conclusion: Children possess prior (innate) learning biases that bias them away from the incorrect generalizations.

Making generalizations that are underdetermined by the data

Children encounter a subset of the language’s data, and have to decide how to generalize from that data.
Choosing generalizations

Generalization = predictions about what data are in the language

Choosing generalizations: the less general hypothesis

Choosing generalizations: the more general hypothesis
Potential child responses when multiple generalizations are possible

Reality check

What do these correspond to in a real language learning scenario?

Data: Simple yes/no questions in English

“Is the dwarf laughing?”
“Can the goblin king sing?”
“Will Sarah solve the Labyrinth?”

Reality check

What do these correspond to in a real language learning scenario?

less-general hypothesis:
Some complex grammatical yes-no questions

“Is the dwarf laughing about the fairies he sprayed?”
“Can the goblin king sing whenever he wants?”

Reality check

What do these correspond to in a real language learning scenario?

more-general hypothesis:
Full range of complex grammatical yes-no questions

“Can the girl who ate the peach and forgot everything save her brother?”
“Will the dwarf who deserted Sarah help her reach the castle that’s beyond the goblin city?”
Experimental Study: Gerken (2006)

How can we tell what generalizations children actually make? Let’s try an artificial language learning study.

Children will be trained on data from an artificial language. This language will consist of words that follow a certain pattern.

The child’s job: determine what the pattern is that allows a word to be part of the artificial language.

Artificial language: AAB/ABA pattern

Marcus et al. (1999) found that very young infants will notice that words made up of 3 syllables follow a pattern that can be represented as AAB or ABA.

Example: A syllables = le, wi B syllables = di, je
AAB language words: leledi, leleje, wiwidi, wiwije
ABA language words: ledile, lejele, widiwi, wijewi

Artificial language: AAB/ABA pattern

Gerken (2006) decided to test what kind of generalization children would make if they were given particular kinds of data from this same artificial language.

Words in the AAB pattern artificial language.

<table>
<thead>
<tr>
<th>di</th>
<th>je</th>
<th>li</th>
<th>we</th>
</tr>
</thead>
<tbody>
<tr>
<td>le</td>
<td>leli</td>
<td>leleje</td>
<td>leleli</td>
</tr>
<tr>
<td>wi</td>
<td>wiwidi</td>
<td>wiwije</td>
<td>wiwili</td>
</tr>
<tr>
<td>ji</td>
<td>jijidi</td>
<td>jijije</td>
<td>jijili</td>
</tr>
<tr>
<td>de</td>
<td>dededi</td>
<td>dedeje</td>
<td>dedeli</td>
</tr>
</tbody>
</table>

What if children were only trained on a certain subset of the words in the language?
Question: If children are given this subset of the data that is compatible with both generalizations, which generalization will they make (AAdi or AAB)?

(Experimental Condition) Training on four word types: leledi, wiwidi, jijidi, dededi

These data are consistent with a less-general pattern (AAdi) as well as the more-general pattern of the language (AAB)

(Experimental Condition) Training on four word types: leledi, wiwide, jijili, dedewe

These data are only consistent with the more-general pattern (AAB)

This control condition is used to see what children’s behavior is when the data are only consistent with one of the generalizations (the more general AAB one).

If children fail to make the generalization in the control condition, then the results in the experimental condition will not be informative. (Perhaps the task was too hard for children.)

(Control Condition) Training on four word types: leledi, wiwije, jijili, dedewe

These data are only consistent with the more-general pattern of the language (AAB)
Experiment 1

Task type: Head Turn Preference Procedure

Stimuli: 2 minutes of artificial language words.

Test condition words: AAB pattern words using syllables the children had never encountered before in the language. Ex: kokoba (novel syllables: ko, ba)

Children: 9-month-olds

Experimental: leledi…wiwidi…jijidi…dededi

Control: leledi…wiwije…jijili…dedewe

Experiment 1 Predictions

If children learn the more-general pattern (AAB), they will prefer to listen to an AAB pattern word - even if it doesn’t end in di - like kokoba, over a word that does not follow the AAB pattern, like kobako.

If children learn the less-general pattern (AAdi), they will not prefer to listen to an AAB pattern word that does not end in di, like kokoba, over a word that does not follow the AAB pattern, like kobako.

Experiment 1 Results

Children listened longer on average to test items consistent with the AAB pattern (like kokoba) [13.51 sec], as opposed to items inconsistent with it (like kobako) [10.14].

Implication: They can notice the AAB pattern and make the generalization from this artificial language data.
Experiment 1 Results

Control: leledi…wiwije…jijili…dedewe

They can notice the AAB pattern and make the generalization from this artificial language data.

Experimental: leledi…wiwidi…jijidi…dededi

Children did not listen longer on average to test items consistent with the AAB pattern (like kokoba) [10.74 sec], as opposed to items inconsistent with it (like kobako) [10.18].

Implication: They do not make the more-general generalization (AAB).

Experiment 2

Task type: Head Turn Preference Procedure

Stimuli: 2 minutes of artificial language words.

Test condition words: novel AAdi pattern words using syllables the children had never encountered before in the language Ex: kokodi (novel syllable: ko)

Experimental: leledi…wiwidi…jijidi…dededi

Children: 9-month-olds

Experiment 2 Predictions

If children learn the less-general pattern (AAdi), they will prefer to listen to an AAdi pattern word, like kokodi, over a word that does not follow the AAdi pattern, like kodiko.

If children don’t learn any pattern, they will not prefer to listen to an AAdi pattern word, like kokodi, over a word that does not follow the AAdi pattern, like kodiko.
Experiment 2 Results

Experimental: leledi...wiwidi...jjidi...dededi

Children prefer to listen to novel words that follow the less-general AAdi pattern, like kokodi [9.33 sec] over novel words that do not follow the AAdi pattern, like kodiko [6.25 sec].

Implication: They make the less-general generalization (AAdi) from this data. It is not the case that they fail to make any generalization at all.

Gerken (2006) Results

When children are given data that is compatible with a less-general and a more-general generalization, they prefer to be conservative and make the less-general generalization.

Specifically for the artificial language study conducted, children prefer not to make unnecessary abstractions about the data. They prefer the AAdi pattern over a more abstract AAB pattern when the AAdi pattern fits the data they have encountered.

Why would a preference for the less-general generalization be a sensible preference to have?

What if children preferred this one…

…but the language really was this one?

Problem: There are no data the child could receive that would clue them in that the less-general generalization is right. All data compatible with the less-general one are compatible with the more-general one.
Why would a preference for the less-general generalization be a sensible preference to have?

What if children preferred this one...

...but the language really was this one?

This is known as the Subset Problem for language learning.

Let’s take a closer look at the Subset Problem

A is the superset
B is the subset

What data are compatible with A? x_1, x_2

What data are compatible with B? x_2

Suppose A is the correct generalization, and the child’s hypothesis is that A is correct. (No fixing necessary.)

What data will the child see? x_1, x_2

What data will the child expect to see? x_1, x_2

Suppose B is the correct generalization, and the child’s hypothesis is that B is correct. (No fixing necessary.)

What data will the child see? x_2

What data will the child expect to see? x_2
Let's take a closer look at the Subset Problem

A is the superset
B is the subset

x₁ and x₂ are examples of data points

What data will the child see? x₁, x₂
What data will the child expect to see? x₂

Data like x₁ let the child realize that B is incorrect.

Suppose A is the correct generalization, and the child’s hypothesis is that B is correct. (Fixing required.)
What data will the child see? x₁, x₂
What data will the child expect to see? x₂

There are no data the child will see that indicate A is incorrect. This is the Subset Problem - when the subset is correct but the superset is chosen.

Solutions to the Subset Problem

Subset Principle (Wexler & Manzini 1987): In order to learn correctly in this scenario where one generalization covers a subset of the data another generalization covers, children should prefer the less-general generalization.

This is a learning strategy that can result very naturally from a Bayesian learner which uses the Size Principle (Tenenbaum & Griffiths 2001).

The Size Principle & Suspicious Coincidences

A Bayesian learner can assign a probability to any hypothesis under consideration by balancing two things:
The prior probability of that hypothesis being correct
The likelihood of that hypothesis producing the observed data

\[P(\text{hypothesis} \mid \text{data}) \propto P(\text{hypothesis}) \times P(\text{data} \mid \text{hypothesis}) \]

The likelihood calculation allows a Bayesian learner to follow the Size Principle (Tenenbaum & Griffiths 2001), and automatically prefer less-general hypotheses (which correspond to sets of smaller size) to more-general hypotheses (which correspond to sets of larger size). This is sometimes referred to as a sensitivity to “suspicious coincidences” (Xu & Tenenbaum 2007).
Suppose there are only 5 words in the language that we know about, as shown in this diagram.

Hypothesis 1 (H1): The less-general hypothesis is true, and AAdi is the pattern.

Hypothesis 2 (H2): The more-general hypothesis is true, and AAB is the pattern.

What’s the likelihood of selecting this word for each hypothesis?

\[
p(\text{memedi} \mid H1) = \frac{1}{3} \quad \text{(since only three words are possible)}\]

\[
p(\text{memedi} \mid H2) = \frac{1}{5} \quad \text{(since all five words are possible)}\]

This means the likelihood for the less-general hypothesis is always going to be larger than the likelihood of the more-general hypothesis for data points that both hypotheses can account for.

If the prior is equal (ex: before any data, both hypotheses are equally likely), then the posterior probability will be greater for the less-general hypothesis.

\[
p(H1|\text{memedi}) = p(\text{memedi}|H1) \cdot p(H1) = \frac{1}{3} \cdot p(H1)\]

\[
p(H2|\text{memedi}) = p(\text{memedi}|H2) \cdot p(H2) = \frac{1}{5} \cdot p(H2)\]
Another way to think about it

Has to do with children’s expectation of the data points that they should encounter in the input.

If more-general generalization (AAB) is correct, the child should encounter some data that can only be accounted for by the more-general generalization (like memewe or nanaje). These data would be incompatible with the less-general generalization (AAdi).

Children as rational learners

Gerken (2006) suggests that children behave like rational (Bayesian) learners. If so, this means that if children do receive counterexamples to the less-general hypothesis, they should update their beliefs about its probability. In particular, they should believe it is less probable than the more-general hypothesis. Is this true?

Gerken (2010)

Experimental: leledi…wiwidi…jjidi…dededi + 3 AAB

Stimuli: 2 minutes of artificial language words following the AAdi pattern, with three of the last stimuli heard being examples of the AAB pattern (like memewe)

Test condition words: novel AAB pattern words using syllables the children had never encountered before in the language. Ex: kokoba (novel syllable: ko)
Children prefer to listen to novel words that follow the more-general AAB pattern, like kokoba (~11 sec) over novel words that do not follow the AAB pattern, like kobako (~8 sec).

Implication: They update their beliefs about which hypothesis is more probable, given a few data that implicate the more-general AAB hypothesis.

Gerken (2010)