Computational Problem: Figure out the order of words (syntax)

Jareth juggles crystals

Remember: Children only see the output of the system (the observable word order of Subject Verb Object) and have to reverse engineer the generative process behind it.

Thinking About Syntactic Variation

Similarities & Differences: Parameters

Chomsky: Different combinations of different basic elements (parameters) would yield the observable languages (similar to the way different combinations of different basic elements in chemistry yield many different-seeming substances).

Big Idea: A relatively small number of syntax parameters yields a large number of different languages' syntactic systems.
Chomsky: Different combinations of different basic elements (parameters) would yield the observable languages (similar to the way different combinations of different basic elements in chemistry yield many different-seeming substances).

Big Idea: A relatively small number of syntax parameters yields a large number of different languages’ syntactic systems.

Total languages that can be represented $= 2^5 = 32$
Chomsky: Children are born knowing the parameters of variation (and also potentially what values that can have). This is part of Universal Grammar. Input from the native linguistic environment determines what values these parameters should have.
Yang (2004): Learning Complex Systems Like Language

Only humans seem able to learn human languages. Something in our biology must allow us to do this.

This is what Universal Grammar is: innate biases for learning language that are available to humans because of our biological makeup (specifically, the biology of our brains).

But obviously language is learned, so children can’t know everything beforehand. How does this fit with the idea of innate biases/knowledge?

Observation: we see constrained variation across languages in their sounds, words, and structure. The knowledge of the ways in which languages vary is children’s innate knowledge.

The big point: even if children have innate knowledge of language structure, we still need to understand how they learn what the correct structural properties are for their particular language. One idea is to remember that children are good at tracking statistical information (like transitional probabilities) in the language data they hear.

Yang (2004): Learning Complex Systems

The linguist-psychologist breakdown

Linguists
- Characterize “scope and limits of innate principles of Universal Grammar that govern the world’s languages”.

Psychologists
- Emphasize the “role of experience and the child’s domain-general learning ability”.

Noam Chomsky
David Lightfoot
Michael Tomasello
Elizabeth Bates
Stephen Crain
Brian MacWhinney
“Modeling shows that the statistical learning (Saffran et al. 1996) does not reliably segment words such as those in child-directed English. Specifically, precision is 41.6%, recall is 23.3%. In other words, about 60% of words postulated by the statistical learner are not English words, and almost 80% of actual English words are not extracted. This is so even under favorable learning conditions”.

Unconstrained (simple) statistics: not so good.

If statistical measure is constrained by language-specific knowledge (words have only one main stress), performance increases dramatically: 73.5% precision, 71.2% recall.

Constrained statistics - much better!

Although infants seem to keep track of statistical information, any conclusion drawn from such findings must presuppose that children know what kind of statistical information to keep track of.

Ex: Transitional Probability
 …of rhyming syllables?
 …of syllables with nasal consonants?
 …of syllables of the form CV (ba, ti)?

Linguistic Knowledge for Learning Structure

Parameters = constraints on language variation. Only certain rules/patterns are possible. This is linguistic knowledge.

A language’s grammar = combination of language rules = combination of parameter values

Idea: use statistical learning to learn which value (for each parameter) that the native language uses for its grammar. This is a combination of using linguistic knowledge & statistical learning.

Idea taken from evolutionary biology: In a population, individuals compete against each other. The fittest individuals survive while the others die out.

How do we translate this to learning language structure?
Yang (2004): Variational Learning

Idea taken from evolutionary biology:
In a population, individuals compete against each other. The fittest individuals survive while the others die out.

How do we translate this to learning language structure?

Individual = grammar (combination of parameter values that represents the structural properties of a language)

Fitness = how well a grammar can analyze the data the child encounters

Variational Learning Details

Intuition: The most successful (fittest) grammar will be the native language grammar because it can analyze all the data the child encounters. This grammar will “win” once the child encounters enough native language data because none of the other competing grammars can analyze all the data.

At any point in time, a grammar in the population will have a probability associated with it. This represents the child’s belief that this grammar is the correct grammar for the native language.
Variational Learning Details

Before the child has encountered any native language data, all grammars are equally likely. So, initially all grammars have the same probability, which is 1 divided the number of grammars available.

\[P = \frac{1}{3} \]

If there are 3 grammars, the initial probability for any given grammar = \(\frac{1}{3} \)

Variational Learning Details

As the child encounters data from the native language, some of the grammars will be more fit because they are better able to account for the structural properties in the data.

\[\frac{1}{3} \rightarrow \frac{4}{5} \]

\[\frac{1}{3} \rightarrow \frac{1}{20} \]

\[\frac{1}{3} \rightarrow \frac{3}{20} \]

Other grammars will be less fit because they cannot account for some of the data encountered. Grammars that are more compatible with the native language data will have their probabilities increased while grammars that are less compatible will have their probabilities decreased over time.

Variational Learning Details

After the child has encountered enough data from the native language, the native language grammar should have a probability near 1.0 while the other grammars have a probability near 0.0.

\[P = 1.0 \]

\[P = 0.0 \]

How do we know if a grammar can successfully analyze a data point or not?

Example: Suppose \(S \) is the subject-drop parameter.

\(S \) is \(+\)subject-drop, which means the language may optionally choose to leave out the subject of the sentence, like in Spanish.

\(S \) is \(-\)subject-drop, which means the language must always have a subject in a sentence, like English.

Here, one grammar is \(+\)subject-drop while two grammars are \(-\)subject-drop.
Variational Learning Details

How do we know if a grammar can successfully analyze a data point or not?

Example data: \textit{Vamos} = \textit{coming-1st-pl} = "We're coming"

- The \texttt{+subject-drop} grammar is able to analyze this data point as the speaker optionally dropping the subject.
 - Prob = \(\frac{1}{3}\) 1/4 1/3
 - Prob = \(\frac{1}{4}\) 1/3

- The \texttt{-subject-drop} grammars cannot analyze this data point since they require sentences to have a subject.
 - Prob = \(\frac{1}{3}\) 1/4 1/3
 - Prob = \(\frac{1}{4}\) 1/3

Variational Learning Details

Important idea: From the perspective of the subject-drop parameter, certain data will only be compatible with \texttt{+subject-drop} grammars. These data will always reward grammars with \texttt{+subject-drop} and always punish grammars with \texttt{-subject-drop}.

- Certain data always reward \texttt{+subject-drop} grammar(s).
 - 1/3 \(\rightarrow\) 1/4
 - 1/3 \(\rightarrow\) 1/2

- Certain data always punish \texttt{-subject-drop} grammar(s).
 - 1/3 \(\rightarrow\) 1/4

These are called \textbf{unambiguous data} for the \texttt{+subject-drop} parameter value because they unambiguously indicate which parameter value is correct (here: \texttt{+subject-drop}) for the native language.

The Power of Unambiguous Data

Unambiguous data from the native language can only be analyzed by grammars that use the native language's parameter value.

This makes unambiguous data very influential data for the child to encounter, since it is incompatible with the parameter value that is incorrect for the native language.

Ex: the \texttt{-subject-drop} parameter value is not compatible with sentences that drop the subject. So, these sentences are unambiguous data for the \texttt{+subject-drop} parameter value.

Important to remember: To use the information in these data, the child must know the subject-drop parameter exists.
Yang (2004): Learning Complex Systems

Learning Parametric Systems: Variational Learning
Grammars compete against each other to see which can best analyze the available data.

Added perk: Learning is then gradual (probabilistic).

Problem: Do unambiguous data exist for entire grammars?
This requires data that are incompatible with every other possible parameter of every other possible grammar.

The Learning Algorithm
For each data point encountered in the input
Choose a grammar probabilistically from available grammars by probabilistically accessing the parameter values.

If this grammar can analyze the data point, increase the probability of all participating parameter values slightly (reward).
The Learning Algorithm

For each data point encountered in the input:

Choose a grammar probabilistically from available grammars by probabilistically accessing the parameter values.

If this grammar can analyze the data point, increase the probability of all participating parameters values slightly (reward).

Else:

decrease the probability of all participating parameters values slightly (punish).

Problem ameliorated: unambiguous data much more likely to exist for individual parameter values instead of entire grammars.
Yang (2004): Learning Complex Systems

Variational Learning: Sample Case
Null subjects: 2 binary parameters, 4 grammars

- pro-drop, +topic-drop
 Warlpiri, American Sign Language
 Italian, Spanish

- pro-drop, -topic-drop
 Chinese
 English

What happens for an English-learning child?

Pro-drop languages usually depend on rich subject-verb agreement morphology. English doesn’t have that, which is something a child will easily notice. Knock out +pro-drop grammars.

What happens for an English-learning child?

But this still leaves the +topic-drop option. What data will rule that out?

Answer: Expletive subjects. (Can’t topic-drop them.)

“There’s a goblin in the castle.”

“It’s raining outside.”

But this only occurs in 1.2% of the data. (fairly rare)
Yang (2004): Learning Complex Systems

Variational Learning: General Predictions

The time course of when a parameter is set depends on how frequent the necessary evidence is in child-directed speech.

Parameters set early: more unambiguous data
Parameters set late: less unambiguous data
Parameters set at the same time: equal quantity of unambiguous data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Target language</th>
<th>Evidence measure</th>
<th>Number of instances</th>
<th>Time of acquisition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air hashing</td>
<td>English</td>
<td>WH questions</td>
<td>26</td>
<td>very early [0.0]</td>
</tr>
<tr>
<td>Object affordance</td>
<td>English</td>
<td>WH questions</td>
<td>2</td>
<td>14.500</td>
</tr>
<tr>
<td>Object affordance</td>
<td>Spanish</td>
<td>WH questions</td>
<td>2</td>
<td>5.600</td>
</tr>
<tr>
<td>Gender</td>
<td>English</td>
<td>Choosing a child-adult question</td>
<td>1</td>
<td>13.500</td>
</tr>
<tr>
<td>Gender</td>
<td>English</td>
<td>Choosing a child-child question</td>
<td>1</td>
<td>13.500</td>
</tr>
<tr>
<td>Syntax marker</td>
<td>English</td>
<td>CHI sentences (0.8)</td>
<td>12</td>
<td>5.328 [0.8]</td>
</tr>
<tr>
<td>Markers and key</td>
<td>English</td>
<td>Long distance with questions</td>
<td>12</td>
<td>5.328 [0.8]</td>
</tr>
</tbody>
</table>

Note: More WH questions is 0.8, 5.328; 0.8 times N values. Otherwise data.