Psych 215L: Language Acquisition

Lecture 7
Grammatical Categories I

Grammatical Categorization

Computational Problem: Identify grammatical categories
These will tell you how words are used in the language.

"This is a DAX." "He is sibbing."

DAX = noun SIB = verb

Categorization: How?
How might children initially learn what categories words belong to?

Semantic Bootstrapping Hypothesis (Pinker 1984)
Children can initially determine a word's category by observing what kind of entity in the world it refers to.

(objects, substance = noun)
(action = verb)
(goblins, glitter)
(steal, sing)

Word's semantic category (meaning) is then linked to innate grammatical category knowledge (noun, verb)

Slight problem: hard to identify the referent in the world for words sometimes (like verbs)
"Look! He's frepping!"

frep = climb, perch, glower, grab, yell, ...?

Semantic Bootstrapping

Pinker (1984) premise: who and what are being talked about are meaning aspects of an utterance that are transparent to learners even before they have acquired much knowledge about the vocabulary and structure of their language

What is the innate knowledge children have?
"Innate linking rules" between "action-words" and "Verb", for example.

Another problem: mapping rules are not perfect
Ex: not all action-like words are verbs
"active", "action" action-like meaning, but they're not verbs

Categorization: How?
How might children initially learn what categories words belong to?

Deriving Categories from Semantic Information
Semantic Bootstrapping Hypothesis (Pinker 1984)
Children can initially determine a word's category by observing what kind of entity in the world it refers to.

Slight problem: hard to identify the referent in the world for words sometimes (like verbs)
"Look! He's frepping!"

frep = climb, perch, glower, grab, yell, ...?
Categorization: How?

A very different view assumes that distributional relationships among form-based cues are central to category-based abstraction....Examples of such cues are relative locations of words in strings, phonological regularities within words of a class and co-occurrence relations between classes....functor categories tend to have shorter vowel durations, weaker amplitudes and simplified syllable structure compared to lexical categories such as noun and verb.... - Gómez & Lakusta

Distributional Learning Evidence

Distributional Learning (Evidence)

Children are sensitive to the distributional properties of their native language when they’re born (Shi, Werker, & Morgan 1999).

7-month-olds can recognize and track specific functor words (a, the, to, will...) in fluent speech (Höhle & Weissenborn 2003)

15- to 16-month German infants can determine novel words are nouns, based on the distributional information around the novel words (Höhle et al. 2004)

16-month English infants can track distributional information like "is...ing" to signal that a word is a verb (Santeleman & Jusczyk 1998)

Categorization: How?

Idea (Gómez & Lakusta 2004)

If infants are able to identify categories in the speech stream by means of their phonological properties, they might then use this information to learn the predictive relationships between categories.

(1) Sound properties of certain words can be tracked distributionally (ex: monosyllabic, simple syllables = noticeable to infants).

(2) Infants can group words together into categories based on these properties.

About Categorization

<table>
<thead>
<tr>
<th>Data Observed</th>
<th>A1 = the king girl baby goblin dwarf</th>
<th>A2 = a king girl baby</th>
</tr>
</thead>
<tbody>
<tr>
<td>X1</td>
<td>x2 x3 x4 x5</td>
<td></td>
</tr>
<tr>
<td>A1 = will sing</td>
<td>Y1 Y2 Y3 Y4 Y5</td>
<td></td>
</tr>
<tr>
<td>B1 = can sing</td>
<td>x2 x3 x4 x5</td>
<td></td>
</tr>
<tr>
<td>B2 = can sing</td>
<td>x2 x3 x4 x5</td>
<td></td>
</tr>
</tbody>
</table>
About Categorization

Data Observed

<table>
<thead>
<tr>
<th>A1 = the</th>
<th>X1</th>
<th>X2</th>
<th>X3</th>
<th>X4</th>
<th>X5</th>
</tr>
</thead>
<tbody>
<tr>
<td>king</td>
<td>girl</td>
<td>baby</td>
<td>goblin</td>
<td>dwarf</td>
<td></td>
</tr>
</tbody>
</table>

A2 = a

<table>
<thead>
<tr>
<th>Y1</th>
<th>Y2</th>
<th>Y3</th>
<th>Y4</th>
<th>Y5</th>
</tr>
</thead>
<tbody>
<tr>
<td>sing</td>
<td>laugh</td>
<td>steal</td>
<td>run</td>
<td>sneeze</td>
</tr>
</tbody>
</table>

B1 = will

B2 = can

Prediction: “can” goes with almost all the same words

Inference: “can” has almost the same distribution as “will”, so “can” is the same category as “will”

Conclusion: “can sneeze” is in language
Previous studies with aX, bY paradigm

"Interestingly, although learners readily acquire the legal positions of words with respect to which occur first versus which occur second... categories and their relationships (i.e. that words belong to particular a, b, X, and Y classes, and that a-words go with Xs and not Ys) are virtually impossible to acquire unless some subset of the X- and Y-category members are marked with salient conceptual or perceptual cues." - Gómez & Lakusta

Something besides statistical learning abilities is needed?

What the child has to do

"...there are two essential steps in an aX bY category abstraction. Learners must first associate a- and b-elements with cues differentiating X and Y categories. They can then categorize a- and b-elements based on their co-occurrence... In the second step, learners group (or categorize) a- and b-elements by merit of their joint association with particular distinguishing cues. Once a- and b-categories are formed, learners can rely on memory for a pair they have heard... to make inferences about a pair they have not heard..." - Gómez & Lakusta (2004)

What the child has to do

"By this view, Step 1 learning is evidenced by the ability to discriminate correct from incorrect pairings of functional and lexical test items with distinguishing cues present. Step 2 learning is evidenced by discrimination of test items in the absence of distinguishing cues." - Gómez & Lakusta (2004)

17-month-olds can do both steps, and...

"We know that by 7 and 12 months of age, infants are able to abstract patterns from artificial grammars as evidenced by their ability to discriminate grammatical from ungrammatical strings in new vocabulary...also know from Gerken et al. (2003) that 12-month-olds do not show Step 2 learning...[but] might be able to engage in a more preliminary form of category-based abstraction."

Gómez & Lakusta 2004: Categorization Experiment

Testing 12-month-olds, using artificial language paradigm (so children couldn’t have any experience with the categories beforehand)

On the validity of artificial language experiment designs (how much are they really like language for the children tested): Lany et al. (2007) show this knowledge persists for at least 24 hours and enables learning of related artificial language constructions

General procedure:
Infants exposed to one of two training languages (L1 or L2).
Used same set of vocabulary (all novel words).

L1 generalization: a goes with X, b goes with Y (aX, bY language)
L2 generalization: a goes with Y, b goes with X (aY, bX language)

Gómez & Lakusta 2004: Categorization Experiment

L1
A1 = alt
A2 = ush
B1 = ong
deech ghope jic skige vabe tam
B2 = erd
deech ghope jic skige vabe tam

L1
A1 = alt
A2 = ush
B1 = ong
deech ghope jic skige vabe tam
B2 = erd
deech ghope jic skige vabe tam

Disyllabic words

Monosyllabic words
Gómez & Lakusta 2004: Categorization Experiment

L1

A1 = alt
coomo fengle kicey loga paylig wazil

A2 = ush
coomo fengle kicey loga paylig wazil

B1 = ong
deech ghope jic skige vabe tam

B2 = erd
deech ghope jic skige vabe tam

Association: alt/ush (a1,a2) go with these words (X1-X6)
Abstraction: alt/ush (a1,a2) go with disyllabic words
Categorization: alt/ush are a category whose behavior is to go with disyllabic words

L2

A1 = alt
deech ghope jic skige vabe tam

A2 = ush
deech ghope jic skige vabe tam

Y1 Y2 Y3 Y4 Y5 Y6

B1 = ong
coomo fengle kicey loga paylig wazil

B2 = erd
coomo fengle kicey loga paylig wazil

The point: Children needed to complete association, abstraction, and categorization in order to realize that these new instances of aX and bY were part of the artificial language L1.

General procedure:
Infants exposed to one of two training languages (L1 or L2). Used same set of vocabulary (all novel words).

L1 generalization: a goes with X, b goes with Y (aX, bY language)
L2 generalization: a goes with Y, b goes with X (aY, bX language)

Test phase:
Infants exposed to new phrases from their training language
L1 children: new aX, bY examples
L2 children: new aY, bX examples

Test phase:
Infants exposed to new phrases from their training language
L1 children: new aX, bY examples
L2 children: new aY, bX examples

Test phase:
Infants exposed to new phrases from their training language
L1 children: new aX, bY examples
L2 children: new aY, bX examples

Test phase:
Infants exposed to new phrases from their training language
L1 children: new aX, bY examples
L2 children: new aY, bX examples
Gómez & Lakusta 2004: Categorization Experiment

L1 process

\[X_1 = \text{alt} \]
\[X_2 = \text{coomo} \]
\[X_3 = \text{fengle} \]
\[X_4 = \text{wazil} \]
\[X_5 = \text{wazil} \]
\[X_6 = \text{wazil} \]

Association

\[Y_1 = \text{dong} \]
\[Y_2 = \text{deech} \]
\[Y_3 = \text{ghope} \]
\[Y_4 = \text{tam} \]

Categorization based on similar distribution: disyllabic words

\[B_1 = \text{erd} \]
\[B_2 = \text{erd} \]

Categorization based on similar distribution: monosyllabic words

Test Items

<table>
<thead>
<tr>
<th>L1 test</th>
<th>L2 test</th>
</tr>
</thead>
<tbody>
<tr>
<td>X1</td>
<td>X2</td>
</tr>
<tr>
<td>X3</td>
<td>X4</td>
</tr>
<tr>
<td>X5</td>
<td>X6</td>
</tr>
<tr>
<td>Y1</td>
<td>Y2</td>
</tr>
<tr>
<td>Y3</td>
<td>Y4</td>
</tr>
<tr>
<td>Y5</td>
<td>Y6</td>
</tr>
</tbody>
</table>

Note: The strings were presented in each (L:1 test, L2 test) phase. The strings in the test sets were constructed to ensure balanced distribution.

Expt 1 Results:

"A Wilcoxon Signed Ranks Test showed that infants listened significantly longer to strings from their training language than to strings from the other language. Eighteen out of 24 infants showed this pattern..." - G & L (2004)

This suggests that 12-month-olds were able to complete association, abstraction, and categorization for this artificial language - based only on the distributional information available.

Specifically, the distributional information was the occurrence of one item next to another one in the training phase (L1: aX, bY).
Real Categorization…?

‘The ability to discriminate legal from illegal marker-feature pairings…reflects sensitivity to the co-occurrence relations between markers and X- and Y-categories based on their distinguishing features…The fact that infants were able to generalize the novel X- and Y-elements suggests that learning was to some degree abstract (involving grouping of the X- and Y-elements according to syllable number).’

-G&L

‘Does such grouping count as categorization? We would argue ‘yes’ to the extent that categorization involves distinguishing elements according to some features…’

-G&L

Experiment 2: Real Life Ain’t Pretty

‘…whether young learners are able to separate more probable from less probable structure by exposing them to artificial languages with varying degrees of probabilistic structure.’ - G&L

G&L on the applicability of their results to real life

Expt 1

‘…Infants in this study were not simply learning associations…they were generalizing based on abstract feature of syllable number, demonstrating they are capable of categorizing at a level at least one step removed from physical identity…Such generalization is an important precursor…by 17 months old, [they] can form a- and b-categories comprised of elements with no common features other than their co-occurrence patterns…’

-G&L on what Expt 2 means

Expt 2

‘…important for determining whether infant learners are equipped to tolerate some degree of inconsistency in their linguistic input…were indeed able to focus on the predominant patterns in their training data…appear to be limits on such learning, however…in Condition 67/33…’

G&L on explaining Expt 2 results

‘Were infants in Condition 83/17 learning two forms of structure simultaneously or only the more predominant abstract structure?’

‘Because infants were tested on their ability to generalize to new marker-word phrases…we are unable to distinguish these explanations in the present studies.’

-G&L on explaining Expt 2 results

‘What about learning in Condition 67/33? Infants…were clearly not generalizing the marker-word pairing. Nor were they engaged in learning two forms of structure simultaneously…or they would have shown discrimination on the test…’

Possibility 1: “disrupted learning entirely” (nothing to generalize)

Possibility 2: “…infants learned only specific marker-word phrases from the non-predominant language…” (why not from the predominant language?)

Possibility 3: Infants learned associations probabilistically (67/33) and forced choice test won’t distinguish that from chance.

‘…we are unable to distinguish these possibilities with the present data because we did not test infants on marker-word phrases from training.’
Favoring disrupted learning...
“Infants show some selectivity in terms of their tendency to focus on different types of structure. Given two sources of statistical information, infants will favor the source of greater statistical regularity. ...it is reasonable to hypothesize that learners will only focus on a particular source of information to the extent that it yields some degree of statistical regularity.”

“...the question of whether learning degrades gradually or catastrophically with increases in noise. The present findings suggest that learning degrades gradually in that there were no significant decreases in learning from the 100/0 to the 83/17 conditions, and then a marginal decrease between Conditions 83/17 and 67/33.”

Another study on inconsistent input
Hudson Kam & Newport (2005):
Artificial language study with variable input (45%, 60%, 75%, 100% of one type)

Children behave differently from adults
- children tended to show categorical behavior with 60% of one type (pick one option or the other most of the time, even if one appeared 60% of the time)
- adults tended to probability match (pick one option 60% of the time if it appeared 60% of the time)