Psych215L:
 Language Acquisition

Lecture 19
Grammar \& Complex Systems II

Complex Linguistic Systems

What is the generative system that creates the observed (structured) data of language (ex: syntax, metrical phonology)?
Observable data: word order Subject Verb Object
Kabject $t_{\text {Object }}$ Verb Object English
Subject Verb Object

Complex Linguistic Systems

What is the generative system that creates the observed (structured) data of language (ex: syntax, metrical phonology)?

Observable data: stress contour EMphasis

Complex Linguistic Systems

What is the generative system that creates the observed (structured) data of language (ex: syntax, metrical phonology)?

Observable data: stress contour

	(S S) S
$\left(\begin{array}{ll}H & \text { L }) \text { H } \\ \text { EM pha sis }\end{array}\right.$	

EMphasis

$$
\left.\begin{array}{llll}
& & (\mathrm{H} & \mathrm{L} \\
& & \mathrm{~L}) \\
& & \\
& \text { EM pha } & \text { sis } \\
\text { EM pha } & \mathrm{S} & \mathrm{~S}
\end{array}\right)
$$

General Problems

with Learning Complex Linguistic Systems

General Problems

with Learning Complex Linguistic Systems

The Hypothesis Space

Hypothesis for a language consists of a
combination of generalizations about
that language (grammar). But this
leads to a theoretically infinite
hypothesis space.

The Hypothesis Space

Hypothesis for a language consists of a combination of generalizations abou that language (grammar). But this leads to a theoretically infinite

Which syllable of a larger unit is stressed? \{Leftmost, Rightmost, Second from Left,...\} Are all syllables included? \{Yes, No-not leftmost, No-not rightmost, ...\}

Are syllables differentiated? $\{$ No, Yes-2 distinctions, Yes-3 distinctions, ...\}

Rhyming matters? \{No, Yes-every other, ...\}

The Hypothesis Space

Hypothesis for a language consists of a combination of generalizations about that language (grammar). But this hypothesis space.

Observation:
Languages only differ in constrained ways from each other. Not all generalizations are possible.

Are all syllables included?

Are syllables differentiated?

Which syllable of a larger unit is stressed? \{Leftmost, Rightmost, Evouncivimiourw.
\{Yes, No-not leftmost, No-not rightmost, m , (No, Yes-2 distinctions, Yes-3 distinctions, - m

The Hypothesis Space

Hypothesis for a language consists of a combination of generalizations abou that language (grammar). But this leads to a theoretically infinite hypothesis space.

Observation:
Languages only differ in constrained
Languages only differ in constra
ways from each other. Not all
generalizations are possible

Idea: Bias on hypothesis space -
children's hypotheses are constrained so
they only consider generalizations that
are possible in the world's languages.
Chomsky (1981), Halle \& Vergnaud (1987) Tesar \& Smolensky (2000)
7), Lin

Linguistic parameters = finite (if large) hypothesis space of possible grammars

Learning Parametric Linguistic Systems

Linguistic parameters give the benefit of a finite hypothesis space. Still, the hypothesis space can be quite large.

For example, assuming there are n binary parameters, there are 2^{n} core grammars to choose from.

Exponentially growing hypothesis space
(Clark 1994)

Parametric Metrical Phonology

Metrical phonology:
What tells you to put the EMphasis on a particular SYLlable
Process speakers use:
Basic input unit: syllables
Larger units formed: metrical feet
The way these are formed varies from language to language.

Stress assigned within metrical feet The way this is done also varies from language to language.

Observable Data: stress contour of word

Learning Parametric Linguistic Systems

Also, data are often ambiguous between competing hypotheses, since multiple grammars can account for the same data point.

Parametric Metrical Phonology

Metrical phonology:
What tells you to put the EMphasis on a particular SYLlable
Process speakers use:
Basic input unit: syllables

Larger units formed: metrical feet The way these are formed varies from language to language.

Stress assigned within metrical feet The way this is done also varies from language to language.

Observable Data: stress contour of word

Parametric Metrical Phonology
Metrical phonology system here: 5 main parameters, 4 sub-parameters (adapted from Dresher 1999 and Hayes 1995) - 156 viable grammars

All combine to generate stress contour output

Parametric Metrical Phonology

Metrical phonology system here: 5 main parameters, 4 sub-parameters (adapted from Dresher 1999 and Hayes 1995) - 156 viable grammars

All combine to generate stress contour output

Parametric Metrical Phonology

Metrical phonology system here: 5 main parameters, 4 sub-parameters (adapted from Dresher 1999 and Hayes 1995) - 156 viable grammars

All combine to generate stress contour output

A Brief Tour of Parametric Metrical Phonology

Are syllables differentiated?

No: system is quantity-insensitive (QI)

S S S
CVV CV CCVC
lu di crous

Yes: system is quantity-sensitive (QS)
Only allowed method: differ by rime weight
kras
crous
Syllable
nucleus coda
CVV CV CCVC
lu di crous
?

\mathbf{H}	\mathbf{L}	H
CVV	CV	CCVC
lu	di	crous

A Brief Tour of Parametric Metrical Phonology

```
Are all syllables included in
metrical feet?
Yes: system has no extrametricality (Em-None)
```

$\begin{array}{lll}(& \ldots & \\ \mathrm{L} & \mathrm{L} & \mathrm{H}\end{array}$
VC VC VV
af ter noon

A Brief Tour of Parametric Metrical Phonology

Are all syllables included in

 metrical feet?Yes: system has no extrametricality (Em-None)
No: system has extrametricality (Em-Some)

Only allowed \# of exclusions: 1

Only allowed exclusions:
Leftmost or Rightmost syllable
narrowing of hypothesis space

A Brief Tour of Parametric Metrical Phonology

```
Are all syllables included in
metrical feet?
Yes: system has no extrametricality (Em-None)
L L
    af ter noon
No: system has extrametricality (Em-Some)
```

 Only allowed \# of exclusions: 1
 Only allowed exclusions:
Only allowed exclusions:
Leftmost or Rightmost syllable
excluded: Em-Left
(...)
L H L
V VC V
a gen da
Rightmost syliable
excluded: Em-Right
(...)
H L H
VV V VC
lu di crous

A Brief Tour of Parametric Metrical Phonology
What direction are metrical feet constructed?
Two logical options
From the left:
Metrical feet are constructed from the
left edge of the word (Ft Dir Left)

From the right:
Metrical feet are constructed from the right edge of the word (Ft Dir Right)

C		
H	L	H
VV	V	VC
lu	di	crous

VV V VC

A Brief Tour of Parametric Metrical Phonology

Are metrical feet unrestricted in size?

Yes: Metrical feet are unrestricted, delimited only by Heavy syllables if there are any (Unbounded).
narrowing of
hypothesis space

A Brief Tour of Parametric Metrical Phonology

Are metrical feet unrestricted in size?
Yes: Metrical feet are unrestricted,
delimited only by Heavy syllables if
there are any (Unbounded).
Ft Dir Left \longrightarrow
L L L H L
(L L L H L
(L L L) (H L
(L L L) (H L)

A Brief Tour of Parametric Metrical Phonology
 Are metrical feet unrestricted in size?

Yes: Metrical feet are unrestricted,
delimited only by Heavy syllables if there are any (Unbounded).
Ft Dir Left $\longrightarrow \quad \longleftarrow$ Ft Dir Right
(L L L) (H L)
L L L L
L L L H L)
L L L H) (L)
(L L L H) (L)

A Brief Tour of Parametric Metrical Phonology
Are metrical feet unrestricted in size?
Yes: Metrical feet are unrestricted,
delimited only by Heavy syllables if
there are any (Unbounded).
Ft Dir Left $\longrightarrow \quad \longleftarrow$ Ft Dir Right
Ft Dir Left/Right
(L L L) (H)
(L L L H) (L)
(L L L L
($\mathrm{L} \mathrm{L}^{\downarrow} \mathrm{L} \mathrm{L} \mathrm{L}$)

S S S S S)
(S s s s s)

A Brief Tour of Parametric Metrical Phonology

(L L L)(H L)
Yes: Metrical feet are unrestricted, delimited only by Heavy syllables if there are any (Unbounded).
(L L L H) (L)
(L L L L)
(S S S S S)
No: Metrical feet are restricted (Bounded)
The size is restricted to 2 options: 2 or 3 . \longleftarrow narrowing of hypothesis space

A Brief Tour of Parametric Metrical Phonology

(L L L)(H L)

Yes: Metrical feet are unrestricted,
delimited only by Heavy syllables if there are any (Unbounded).
(L L L H) (L)
(L L L L)
(S S S S S)

No: Metrical feet are restricted (Bounded)
The size is restricted to 2 options: 2 or $3 . \longleftarrow \begin{aligned} & \text { narrowing of } \\ & \text { hypothesis space }\end{aligned}$

$$
2 \text { units per foot (Bounded-2) } 3 \text { units per foot (Bounded-3) }
$$

$$
x \quad x_{\perp} \times x
$$

$(x \quad x)(x \quad x$
$(x \quad x)\left(\begin{array}{ll}x & x\end{array}\right) \quad\left(\begin{array}{ll}x & x\end{array}\right)(x)$

A Brief Tour of Parametric Metrical Phonology

Are metrical feet unrestricted in size?

(L L L)(H L)

Yes: Metrical feet are unrestricted, delimited only by Heavy syllables if there are any (Unbounded). (L L L H) (L) (L L L L) (S S S s)
No: Metrical feet are restricted (Bounded).
The size is restricted to 2 options: 2 or 3 . \longleftarrow narrowing of The size is restricted to 2 options: 2 or 3.
The counting units are restricted to 2 options: $\quad \begin{aligned} & \text { narrowing of } \\ & \text { hypothesis space }\end{aligned}$ syllables or moras.
$(\mathrm{x} x)(\mathrm{x} \quad \mathrm{x}) \quad \mathrm{B}-2$
$(x \mathrm{x} x)(\mathrm{x}) \quad$ B-3

A Brief Tour of Parametric Metrical Phonology
Are metrical feet unrestricted in size?
 (L L L)(H L)
Yes: Metrical feet are unrestricted, delimited only by Heavy syllables if
(L L L H) (L)
there are any (Unbounded).
No: Metrical feet are restricted (Bounded).

$$
\text { The size is restricted to } 2 \text { options: } 2 \text { or } 3 \text {. } \longleftarrow \text { narrowing of }
$$

$$
\text { The counting units are restricted to } 2 \text { options: hypothesis space }
$$syllables or moras

Ft Dir Left
Bounded-2
$\longrightarrow\left(\begin{array}{lll}\mathrm{H} & \mathrm{L})(\mathrm{L} & \mathrm{H})\end{array}\right.$
$(\mathrm{L}, \mathrm{L})(\mathrm{L}) \longleftarrow$ Count by syllables
(S S) (S S)
(Bounded-Syllabic)

A Brief Tour of Parametric Metrical Phonology

Are metrical feet unrestricted in size?

(L L L) (H L)
Yes: Metrical feet are unrestricted,
delimited only by Heavy syllables if
(L L L H) (L)
there are any (Unbounded).
No: Metrical feet are restricted (Bounded).
The size is restricted to 2 options: 2 or 3 . \longleftarrow narrowing of The counting units are restricted to 2 options: hypothesis space syllables or moras.
$(x \quad x)(x \quad x) \quad B-2$

Count by syllables Count by syliables
(Bounded-Syllabic
($\mathrm{H} \quad \mathrm{L}$)(L H)

Ft Dir Left

Bounded-2
(Bounded-Moraic)

$\overrightarrow{\mathrm{x} \mathrm{X}} \quad \mathrm{Xx} \quad \mathrm{x} \quad \mathrm{x} \quad \mathrm{xx}_{4}$| Moras (unit of weight): |
| :---: |

H L L H $\quad \mathrm{H}=2$ moras xx
(H) (L L) (H

A Brief Tour of Parametric Metrical Phonology

Are metrical feet unrestricted in size?

$(\mathrm{L} L \mathrm{~L})\left(\begin{array}{ll}\mathrm{H} & \mathrm{L}\end{array}\right)$
Yes: Metrical feet are unrestricted, delimited only by Heavy syllables if
(L L L H) (L)
there are any (Unbounded).
No: Metrical feet are restricted (Bounded)


```
A Brief Tour of Parametric Metrical Phonology
Within a metrical foot, which syllable is stressed?
```

```
wo options, hypothesis space restriction
    Leflmost:
    Stress the leftmost syllable (Ft Hdl Left)
    (H)(LL L)(H)
    (H)(L L)(H)
Rightmost:
Stress the rightmost syllable (Ft Hl Right)
```

Generating a Stress Contour

Process speaker uses to generate stress contour

em pha sis

Generating a Stress Contour

Process speaker uses to generate stress contour

Learner's task: Figure out which parameter values were used to generate this contour

Case study: English metrical phonology

Estimate of child input: caretaker speech to children between the ages of 6 months and 2 years (CHILDES [Brent \& Bernstein corpora]: MacWhinney 2000)

Total Words: 540505 Mean Length of Utterance: 3.5

Words parsed into syllables using the MRC
Psycholinguistic database (Wilson, 1988) and assigned likely stress contours using the American English CALLHOME database of telephone conversation (Canavan et al., 1997)

Case study: English metrical phonology

Non-trivial language: English (full of exceptions)
Noisy data: 27.03\% tokens (38.86% types) incompatible with English grammar on at least one parameter value

Adult English system values:
QS, QSVCH, Em-Some, Em-Right, Ft Dir Right, Bounded, Bounded-2, Bounded-Syllabic, Ft Hd Left

Exceptions:
QI, QSVCL, Em-None, Ft Dir Left, Unbounded, Bounded-3,
Bounded-Moraic, Ft Hd Right

Case study: English metrical phonology

Non-trivial language: English (full of exceptions)
Noisy data: 27.03% tokens (38.86% types) incompatible with
English grammar on at least one parameter value

English child-directed speech has a significant quantity of misleading data and is comprised mostly of ambiguous data - it's hard to learn, and therefore interesting!

Key point for cognitive modeling: psychological plausibility

Any probabilistic update procedure that children are likely to use must, at the very least, be incremental/online (Vallabha et al. 2007).

Why? Humans (especially human children) don't have infinite memory.
Unlikely: human children can hold a whole corpus's worth of data in their minds for analysis later on

Key point for cognitive modeling: psychological plausibility
Any probabilistic update procedure that children are likely to use must, at the very least, be incremental/online (Vallabha et al. 2007).

Why? Humans (especially human children) don't have infinite memory.
Unlikely: human children can hold a
Unikely. human chiluren can hold a
whole corpus's worth of data in their whole corpus's worth of dat
minds for analysis later on

Learning algorithms that operate over an entire data set do not have this property.
(ex: Foraker et al. 2007, Goldwater et al. 2007)

Desired: Learn from a single data
point, or perhaps a small number of
data points at most.

Previous modeling work (Pearl 2008)
(1) Hypothesis space

(2) Data

Modify the data the learner uses
(3) Update procedure

Data Intake Filtering

"Selective Learning", "Interpretive Bias"
"Equal Opportunity" Intuition: Use all
available data to uncover a full range of
systematicity, and allow probabilistic
model enough data to converge.

"Selective" Intuition: Use the really good data only
One instantiation of "really good" = highly informative.
One instantiation of "highly informative" = data viewed by the learner as unambiguous (Fodor, 1998; Dresher 1999; Lightfoot, 1999; Pearl \& Weinberg, 2007)

Previous modeling work (Pearl 2008)
(1) Hypothesis space
(2) Data
(3) Update procedure

Biased learner, using only unambiguous data

Pearl (2008): Success is guaranteed as long as the parameters are learned in a particular order.

However...this requires the learner to identify unambiguous data and know/derive the appropriate parameter-setting order, which may not be trivial.

So...is this selective learning bias really necessary? How well do unbiased learners do?

Two psychologically plausible probabilistic update procedures

Naïve Parameter Learner (NParLearner)
Probabilistic generation \& testing of grammars. (incremental) Hypothesis update: Linear reward-penalty
Yang (2002) (Bush \& Mosteller 1951)

Two psychologically plausible probabilistic update procedures

Naïve Parameter Learner (NParLearner)
Probabilistic generation \& testing of grammars. (incremental) Hypothesis update: Linear reward-penalty
Yang (2002) (Bush \& Mosteller 1951)

MAP Bayesian Learner (BayesLearner)
Probabilistic generation \& testing of grammars. (incremental) Hypothesis update: Bayesian updating (Chew 1971: binomial distribution)

Probabilistic learning for English

Probabilistic generation and testing of grammars (Yang 2002)
For each parameter, the learner associates a probability with each of the competing parameter values.

Probabilistic learning for English

Probabilistic generation and testing of grammars (Yang 2002)
For each data point encountered, the learner probabilistically generates a grammar.

Probabilistic learning for English

Probabilistic generation and testing of grammars (Yang 2002)
The learner then uses this grammar to generate a stress contour for the observed data point.

If the generated stress contour matches the observed stress contour, all participating parameter values are rewarded.
(L) (L H

QS, QSVCL, Em-None, Ft Dir Right,
 VC CVC CVVC
AF ter NOON

Probabilistic learning for English

Probabilistic generation and testing of grammars (Yang 2002)
The learner then uses this grammar to generate a stress contour for the observed data point

AFterNOON $\begin{aligned} & \text { If the generated stress contour does not match the observed } \\ & \text { stress contour, all participating parameter values are punishe }\end{aligned}$
$\begin{aligned} & \text { QS, QSVCL, Em-None, Ft Dir Left, } \\ & \text { Bounded, Bounded-2, Bounded-Syl, Ft Hd Right }\end{aligned}$
$\begin{array}{llll}(L & \text { L) } & \text { (H) } \\ \text { VC } & \text { CVC } & \text { CVVC } \\ \text { af } & \text { TER } & \text { NOON }\end{array}$

Probabilistic learning for English
Probabilistic generation and testing of grammars (Yang 2002)
The learner then uses this grammar to generate a stress contour for the observed data point.

QS, QSVCL, Em-None, Ft Dir Right, Bounded, Bounded-2, Bounded-Syl, Ft Hd Right	(L)	(L	HC
VC	CVC CVVC		
AF	ter NOON		

Match (success): reward all

| QS, QSVCL, Em-None,
 Ft Dir Left, Bounded,
 Bounded-2, Bounded-
 Syl, Ft Hd Right | $\mathbf{(L}$ L) (\mathbf{H})
 VC CVC CVVC
 af TER NOON |
| :--- | :--- | :--- | :--- |

QS, QSVCL, Em-None,

Mismatch (failure): punish all
t Dir Left, Bounded, Bounded-2, Bounded- \rightarrow

Probabilistic learning for English

Probabilistic generation and testing of grammars (Yang 2002)
Update parameter value probabilities
NParLearner (Yang 2002): Linear Reward-Penalty

sarge = large changes
punish v1

Probabilistic learning for English

Probabilistic generation and testing of grammars (Yang 2002)
Update parameter value probabilities
NParLearner (Yang 2002): Linear Reward-Penalty

BayesLearner: Bayesian update of binomial distribution (Chew 1971)

Probabilistic learning for English

Probabilistic generation and testing of grammars (Yang 2002)
Update parameter value probabilities

After learning: expect probabilities of parameter values to converge near endpoints (above/below some threshold).

$\mathrm{QI}=0.3$	QS $=0.7$
$\mathrm{QSVCL}=0.6$	QSVCH $=0.4$
Em-Some $=0.1$	Em-None $=0.9$

Once set, a parameter value is always used during generation,
since its probability is 1.0.
Q//QS?...if QS, QSVCL or QSVCH? (Em-Some $=0.0$)
Em-None
\longrightarrow QS, QSVCL, Em-None, Ft Dir Right, Bounded, Bounded-2, Bounded-Syl, Ft Hd Right

Probabilistic learning for English

Probabilistic generation and testing of grammars (Yang 2002)
Update parameter value probabilities

After learning: expect probabilities of parameter values to converge near endpoints (above/below some threshold).

QI $=0.3$	QS $=0.7$
QSVCL $=0.6$	QSVCH $=0.4$
Em-Some $=0.1$	Em-None $=0.9$

Probabilistic learning for English

Goal: Converge on English values after learning period is over
QS, QSVCH, Em-Some, Em-Right, Ft Dir Right, Bounded, Bounded-2, Bounded-Syllabic, Ft Hd Left
Model (based on estimates of words heard in a 6
NParLearner, $y=.001, .0025, .01, .025$
BayesLearner
Success rate (1000 runs)

Examples of incorrect target grammars

NParLearner:
Em-None, Ft Hd Left, Unb, Ft Dir Left, QI
QS, Em-None, QSVCH, Ft Dir Rt, Ft Hd Left, B-Mor, Bounded, Bounded-2
BayesLearner:
QS, Em-Some, Em-Right, QSVCH, Ft Hd Left, Ft Dir Rt, Unb
Bounded, B-Syl, QI, Ft Hd Left, Em-None, Ft Dir Left, B-2

Probabilistic learning for English: Modifications

Probabilistic generation and testing of grammars (Yang 2002)
Update parameter value probabilities
Count-learning: smooth out some of the irregularities in the data, better deal with complex systems (Yang 2002)

Implementation (Yang 2002):
Matching contour = increase parameter value's batch counter by 1
Mismatching contour = decrease parameter value's batch counter by 1

Invoke update procedure (Linear Reward-Penalty or Bayesian
Updating) when count limit c is reached.

Probabilistic learning for English: Modifications
Probabilistic generation and testing of grammars (Yang 2002)
Update parameter value probabilities + Count Learning
NParLearner (Yang 2002): Linear Reward-Penalty

	Parameter values v 1 vs . v 2
Invoke when the batch	$\mathrm{p}_{\mathrm{v} 1}=\mathrm{p}_{\mathrm{v}}+\gamma\left(1-\mathrm{pvin}^{2} \quad \mathrm{p}_{\mathrm{v}}=(1-\gamma) \mathrm{p}_{\mathrm{v}}\right.$
counter for $p_{v 1}$ or $p_{v 2}$	$\mathrm{p} 22=1-\mathrm{p} \mathrm{v}^{2} \quad \mathrm{p} 22=1-\mathrm{p} 2$
	reward v1 punish v1

BayesLearner: Bayesian update of binomial distribution (Chew 1971)

Probabilistic learning for English

Goal: Converge on English values after learning period is over Learning Period Length: 1,666,667 words (based on estimates of words heard in a 6 month period, using Akhtar et al. (2004)).

QS, QSVCH, Em-Some, Em-Right, Ft Dir Right, Bounded, Bounded-2, Bounded-Syllabic, Ft Hd Left

Model	Success rate (1000 runs)
NParLearner, $\gamma=.001, .0025, .01, .025$	0.0%
BayesLearner	0.0%

Probabilistic learning for English

$\left.\begin{array}{l}\text { Goal: Converge on English } \\ \text { values after learning period is } \\ \text { over }\end{array} \begin{array}{c}\text { Learning Period Length: } 1,666,667 \text { words } \\ \text { (based on estimates of words heard in a } 6 \\ \text { month period, using Akhtar et al. (2004). }\end{array}\right\}$

What gives?

Metrical phonology system here: 5 main parameters, 4 sub-parameters (adapted from Dresher 1999 and Hayes 1995)

156 viable grammars

English is not the optimal grammar

Adult English system values:
QS, QSVCH, Em-Some, Em-Right, Ft Dir Right, Bounded, Bounded-2, Bounded-Syllabic, Ft Hd Left

Of the 156 available grammars, English is ranked 52nd by token compatibility
56th by type compatibility

Unbiased probabilistic learning is more likely to find the optimal grammar

English is compatible with 72.97% of the data by tokens, and 62.14% of the data by types.

Unbiased probabilistic learning is more likely to find the optimal grammar

English is compatible with 72.97% of the data by tokens, and 62.14% of the data by types.

The average compatibility of the grammars selected by unbiased probabilistic learning (using batch learning) was 73.56% of the data by tokens and 63.3% of the data by types.

Unbiased probabilistic learning is more likely to

 find the optimal grammarEnglish is compatible with 72.97% of the data by tokens, and 62.14% of the data by types.

The average compatibility of the grammars selected by unbiased probabilistic learning (using batch learning) was 73.56% of the data by tokens and 63.3% of the data by types.

Unbiased probabilistic learning works just fine - it's the English child-
directed speech that's the problem!

Since we believe children converge on the English grammar, maybe
children aren't unbiased learners. So what kind of bias might work?

Probabilistic learning for English: Bias
Probabilistic generation and testing of grammars (Yang 2002)
Learner hypothesis bias: metrical phonology relies in part on knowledge of rhythmical properties of the language

English infants may already have knowledge of Ft Hd Left and QS.
Jusczyk, Cutler, \& Redanz (1993): English 9-month olds prefer strong-weak stress bisyllables (trochaic) to weak-strong ones (iambic).

$$
\begin{gathered}
\text { Ft Hd Left } \\
\mathrm{S} \text { StHd Rt } \\
\mathrm{S} S
\end{gathered}
$$

Turk, Jusczyk, \& Gerken (1995): English infants are sensitive to the difference between long vowels and short vowels in syllables

Probabilistic learning for English

Goal: Converge on English
values after learning period is over

Learning Period Length: 1,666,667 words (based on estimates of words heard in a 6 month period, using Akhtar et al. (2004)).
QS, QSVCH, Em-Some, Em-Right, Ft Dir Right, Bounded, Bounded-2 Bounded-Syllabic, Ft Hd Left

Model	Success rate (1000 runs)
NParLearner, $\gamma=.001, .0025, .01, .025$	0.000%
BayesLearner	0.100%
NParLearner + Counting, $\gamma=.001, .0025, .01,025, c=2,5,7,10,15,20$	1.650%
BayesLearner + Counting, $==2,5,7,10,15,20$	1.780%

The best isn't so great, even with this restricted hypothesis space

Why not?

Because English is still not the optimal grammar

Adult English system values:
QS, QSVCH, Em-Some, Em-Right, Ft Dir Right, Bounded, Bounded-2, Bounded-Syllabic, Ft Hd Left

Of the 60 available grammars, English is ranked
18th by token compatibility
18th by type compatibility

Other Biases for Children

One idea: selective learning bias to heed only unambiguous data (Pearl 2007, 2008)

A general class of probabilistic learning models is guaranteed to succeed as long as parameters are acquired in particular orders. (Many of these special orders can be derived from properties of the data.)

Why does learning from unambiguous data work?
If parameters are set in these special orders, the unambiguous data distribution favors the correct parameter value for English and so English parameter values are in fact optimal.

Where we are now

Modeling: aimed at understanding how children learn language, generating child behavior by using psychologically plausible methods

Learning complex systems: difficult
Correct grammar is not the optimal grammar for child's input data withou some kind of additional bias.

Where we can go

(1) Selective bias:

How successful on other difficult learning cases (noisy data sets, other complex systems)?
Are there other methods of implementing selective biases that lead to successful learning (productive data: Yang 2005)?
How necessary is a selective bias? Are there other biases tha might cause the correct grammar to be the optimal grammar for the English data?

Where we can go

(1) Selective bias:

How successful on other difficult learning cases (noisy data
sets, other complex systems)?
Are there other methods of implementing selective biases that
ead to successful learning (productive data: Yang 2005)?
How necessary is a selective bias? Are there other biases that
might cause the correct grammar to be the optimal grammar for he English data?

+ biases?
(2) Hypothesis space bias:

Will other hypothesis space instantiations allow the correct
grammar to be the optimal grammar (constraints (Tesar \& Smolensky
2000))? What learning mechanisms make the correct grammar
earnable in these hypothesis spaces?
Is it possible to converge on the correct grammar given a less well-defined hypothesis space a priori (e.g. only knowing that units arger than syllables are required)?

\author{

+ other/fewer biases?
}

