Psych 156A/ Ling 150:
Acquisition of Language II

Lecture 3
Sounds

Announcements

Be working on HW1 (due 4/14/16)
Review questions available for sounds & sounds of words
IPA sound conversion chart available

Learning sounds

Sound waves

A wave is a disturbance of a medium which transports energy through the medium without permanently transporting matter.

Listening

Hearing Frequency:
- 20 Hz and 20000 Hz
Speech:
- 200-8000 Hz
Most sensitive to
- 1000-3500 Hz
Phones (speech sounds):
- 300-3400 Hz

Sounds of language (Speech perception)

Learner’s job: Identify phonemes (contrastive sounds that signal a change in meaning)

Phonemes are language-specific - r/l is a phonemic contrast in English but not in Japanese

Lisa = Risa for some of my Japanese friends

Curious timing:
Kids of the world require knowledge of phonemes before they can figure out what different words are - and when different meanings are signaled by different words
Distinctive sounds for some adults

http://sites.sinauer.com/languageinmind/wa04.06.html

Irish, Ewe

About speech perception

Important: Not all languages use the same contrastive sounds.
Languages draw from a common set of sounds (which can be represented by the International Phonetic Alphabet (IPA)), but only use a subset of that common set.

The World Phonotactic Database can show you some of the variation we see across the world's languages when it comes to which phonemes they use

http://phonotactics.anu.edu.au

Click on this to get this

Cross-linguistic variation in sounds (called segments)

Then look through the features till you find segments
Cross-linguistic variation in sounds (called segments)

Select something of interest

And see how the languages of the world look

The world's languages are full of lots of fun variation when it comes to the sounds they use.

About speech perception

Important: Not all languages use the same contrastive sounds.

Child's task: Figure out what sounds their native language uses contrastively.

meaningful sounds in the language: “contrastive sounds” or phonemic contrasts

Speech perception: Computational problem

Divide sounds into contrastive categories (phonemes)
Here, 23 acoustically-different sounds are clustered into 4 contrastive categories. Sounds within categories are perceived as being identical to each other.

Speech perception: Computational problem

Note:
Real life sounds are actually much harder because categories overlap.

Each color represents one vowel (that is, a sound perceived by native speakers as one vowel, like “oo” or “ee”)
Categorical perception

Categorical perception occurs when a range of stimuli that differ continuously are perceived as belonging to only a few categories, with no degrees of difference within a given category.

Actual stimuli

Categorical perception of stimuli

Acoustic-level information

Includes: timing and frequency
Tones: frequency (close-up)

Vowels combine acoustic energy at a number of different frequencies
Different vowels ([a] “ah”, [i] “ee”, [u] “oo” etc.) contain acoustic energy at different frequencies
Listeners must (unconsciously) perform a ‘frequency analysis’ of vowels in order to identify them (Fourier Analysis)

Acoustic-level information

Male Vowels (close up)

Female Vowels (close up)
Synthesized speech

 Allows for precise control of sounds

 http://www.fon.hum.uva.nl/praat/

 Valuable tool for investigating perception: Praat

Acoustic-level information

Timing: Voice Onset Time (VOT)

Perceiving VOT:
Forced Choice Identification Task

Forced choice identification is one common way to test for categorical perception: Have people listen to many examples of speech sounds and indicate which one of two categories each sound represents. (This is a two-way forced choice.)

Ex: “Is this sound a /dæ/ or a /tʃe/?”
Categorical perception

Adult categorical perception: Voice Onset Time (VOT)

Even though the sounds change acoustically, it seems easy to decide which kind of sound is being heard, except in a few cases.

Perceiving VOT

‘Categorical Perception’: [dæ] vs. [tæ]

Decision between d/t

Identification task: “Is this sound dæ or tæ?”

Time to make decision

Uncertainty at category boundary

More uncertainty/error at category boundary

Decision between dæ/tæ

Longer decision time at category boundary

Other places where we don’t seem to have categorical perception: pitch, intensity

http://sites.sinauer.com/languageinmind/wa04.07.html

Discrimination task

“Are these two sounds the same or different?”

Same/Different

0ms 60ms

Same/Different

0ms 10ms

Same/Different

40ms 40ms

Why is this pair difficult?

(i) Acoustically similar?

(ii) Same Category?
Discrimination task

“Are these two sounds the same or different?”

<table>
<thead>
<tr>
<th></th>
<th>0ms</th>
<th>20ms</th>
<th>40ms</th>
<th>60ms</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Across-category discrimination is easy

Within-category discrimination is hard

Cross-language differences

Identification task: “Which sound is this?”

English speakers can discriminate r and l, and seem to show a similar pattern of categorical perception to what we saw for d vs. t

Cross-language differences

Discrimination task: “Are these sounds the same or different?”

English speakers have higher performance at the r/l category boundary, where one sound is perceived as r and one sound is perceived as l. Japanese speakers generally perform poorly (at chance), no matter what sounds are compared because r and l are not contrastive for them.

Miyawaki et al. 1975

Cross-language differences

Hindi
dental [d]
(tip of tongue touches back of teeth)

retroflex [D]
(tongue curled so tip is behind alveolar ridge)

English [d] is usually somewhere between these

Salish
(Native North American language):
glottalized voiceless stops

Uvular – tongue is raised against the velum

Velar – tongue is raised behind the velum

(they are actually ejectives - ejectives are produced by obstructing the airflow by raising the back of the tongue against or behind the velum)
Perceiving sound contrasts

Kids...

This ability to distinguish sound contrasts extends to phonemic contrasts that are non-native. (Japanese infants can discriminate contrasts used in English but that are not used in Japanese, like r/l.) This goes for both vowels and consonants.

...vs. adults

Adults can't, especially without training - even if the difference is quite acoustically salient.

So when is this ability lost?

And what changes from childhood to adulthood?

A useful indirect measurement

High Amplitude Sucking (HAS) Procedure

- Infant given a pacifier that measures sucking rate
- Habituation – Infant sucks to hear sound (e.g. ba) until bored.
- Test – Play sound (e.g., ba or pa). Is there dishabituation?
 - Infants will suck to hear sound if the sound is no longer boring.

Studying infant speech perception

http://www.thelingspace.com/episode-16
https://www.youtube.com/watch?v=3-A9TnuSya8

beginning through 3:34: High Amplitude Sucking Procedure (HAS)

Testing categorical perception in infants: Eimas et al. (1971)

- BA vs. PA
- Vary Voice Onset Time (VOT): time between consonant release and vocal cord vibration

![Figure 4.7](image)

- Dishabituate
- Control

VOT in milliseconds

![MEAN NUMBER OF SUCKING RESPONSES](image)

- Mean number of sucking responses for 4-month-old infants as a function of time and experimental condition. The dashed line indicates the orientation of the stimulus shift, or, in the case of the control group, the time at which the stimuli would have occurred. Adapted from Eimas et al. (1971). Speech perception in infants. Science 171, 307-308. © 1971 by the AAAS.
Studying infant speech perception

http://www.thelingspace.com/episode-16
https://www.youtube.com/watch?v=3-A9Tu59W8

3:34 - 5:48: Head-Turn Preference Procedure

A useful indirect measurement

Head-Turn Preference Procedure

Infant sits on caretaker’s lap. The wall in front of the infant has a green light mounted in the center of it. The walls on the sides of the infant have red lights mounted in the center of them, and there are speakers hidden behind the red lights.

A useful indirect measurement

Head-Turn Preference Procedure

Sounds are played from the two speakers mounted at eye-level to the left and right of the infant. The sounds start when the infant looks towards the blinking side light, and end when the infant looks away for more than two seconds.

A useful indirect measurement

Head-Turn Preference Procedure

Thus, the infant essentially controls how long he or she hears the sounds. Differential preference for one type of sound over the other is used as evidence that infants can detect a difference between the types of sounds.

Head-Turn Preference Procedure

“How Babies Learn Language” (first part, up to 2:04)

http://www.youtube.com/watch?v=mZAuZ-Yeqo

A useful indirect measurement

Head-Turn Technique

Babies tend to be interested in moving toys. Using the presentation of a moving toy as a reward, babies are trained to turn their heads when they hear a change in the sound being presented.
A useful indirect measurement

Head-Turn Technique

A sound is played over and over, and then the sound is changed followed immediately by the presentation of the moving toy. After several trials, babies turn their heads when the sounds change even before the moving toy is activated.

Note on infant attention:

Familiarity vs. novelty effects

For procedures that involve measuring where children prefer to look (such as head turn preference), sometimes children seem to have a “familiarity preference” where they prefer to look at something similar to what they habituated to. Other times, children seem to have a “novelty” preference where they prefer to look at something different to what they habituated to.

This may have to do with the Goldilocks effect (Kidd et al. 2010, 2012), effect where children prefer to look at stimuli that are neither too boring nor too surprising, but are instead “just right” for learning, given the child’s current knowledge state.

Speech perception of non-native sounds

Werker et al. 1981: English-learning 6-8 month olds compared against English & Hindi adults on Hindi contrasts

Hindi adults can easily distinguish sounds that are used contrastively in their language

English adults are terrible (below chance), though there is some variation depending on which sounds are being compared
Speech perception of non-native sounds

Werker et al. 1981: English-learning 6-8 month olds compared against English & Hindi adults on Hindi contrasts

English infants between the ages of 6-8 months aren’t quite as good as Hindi adults - but they’re certainly much better than English adults! They haven’t yet learned to ignore these non-native contrasts.

Sound-learning movie

Infant speech discrimination (~6.5min)

http://www.youtube.com/watch?v=G5IwuMhl4A

When change happens

But when after 6-8 months is the ability to lost? Werker & Tees (1984)

Testing ability to distinguish Salish & Hindi contrasts

Control (make sure experiment is doable by infants): Hindi and Salish infants do perfectly

When change happens

But when after 6-8 months is the ability to lost? Werker & Tees (1984)

Testing ability to distinguish Salish & Hindi contrasts

English 6 to 8-month-olds do well

When change happens

But when after 6-8 months is the ability to lost? Werker & Tees (1984)

Testing ability to distinguish Salish & Hindi contrasts

English 8 to 10-month-olds do less well
When change happens

But when after 6-8 months is the ability to lost? Werker & Tees (1984)

Testing ability to distinguish Salish & Hindi contrasts

English 10 to 12-month-olds do very poorly

Implication: The ability to distinguish non-native contrasts is lost by 10-12 months. Change seems to be happening between 8-10 months.

Doing a longitudinal study with English infants (where the same infants are tested over time), change seems to happen somewhere around 10-12 months, depending on the sound contrast.

Yoshida et al. (2010) suggest that infants have some malleability still at 10 months, but it’s much less than at 6 or 8 months.

Distinctive sounds for all six-month-olds

http://sites.sinauer.com/languageinmind/wa04.08.html

Hindi, Nama

Infants seem to figure out their native language phonemes around 10-12 months.

Next time: How do children do this?

Recap: Speech perception

One task for children is to figure out the contrastive sound categories (phonemes) for their language.

Categorical perception will occur once sounds are grouped into these contrastive sound categories – even though the sounds within a category differ acoustically, these language sounds will be perceived as being the same.

For more examples of which sounds infants learn when and how to run studies that test this, check out the Infant Phonemic Discrimination DataBase.

https://sites.google.com/site/inphondb/
Questions?

You should be able to do up through question 10 on the sounds review questions, and up through question 6 on HW1.

Extra Material

Forget spelling

http://www.youtube.com/watch?v=XTnT3j9p4H
http://www.thelingspace.com/episode-12
beginning through 2:27

Our Strange Lingo, by Lord Cromer (1902)

When the English tongue we speak.
Why is break not rhymed with freak?
Will you tell me why it’s true
We say sew but likewise few?
And the maker of the verse,
Cannot rhyme his horse with worse?
Beard is not the same as heard
Cord is different from word.
Cow is cow but low is low
Shoe is never rhymed with foe.
Think of hose, dose, and lose
And think of goose and yet with choose
...

Sounds: Vocal tract overview

http://www.youtube.com/watch?v=0fTRdGj9KOY
http://www.thelingspace.com/episode-8
0:38 through 1:17

... Think of comb, tomb and bomb,
Doll and roll or home and some.
Since pay is rhymed with say
Why not paid with said I pray?
Think of blood, food and good.
Mould is not pronounced like could.
Wherefore done, but gone and lone -
Is there any reason known?
To sum up all, it seems to me
Sound and letters don’t agree.
Major division: consonants vs vowels

Consonantal sounds: narrow or complete closure somewhere in the vocal tract.

Vowels: very little obstruction in the vocal tract. Can form the basis of syllables (also possible for some consonants).

Place of articulation: Where the airflow is blocked

Manner of articulation: How the airflow is blocked
Manner: How the air is flowing

Stops (sometimes called plosives)
[p] [t] [k] [b] [d] [ɡ] [m] [n] [ŋ]

Fricatives
[f] [v] [θ] [ð] [s] [z] [ʃ] [ʒ] [s]

Approximants/Glides
[w] [j] (Like in “water” and “you”)

Liquids
[l]

Tap/Flap
[r] (Like in “water” and “butter”)

Voicing: What the vocal folds are doing

https://www.youtube.com/watch?v=x1aQbQGmKg
http://www.thespace.com/episode-20
beginning through 9:20 - 9:52

What are the vocal folds doing?
closed
voiced
open
voiceless

"The air leaves the lungs through the trachea (windpipe), which opens into the larynx (the voice-box, visible on the outside as the Adam’s apple). The larynx is a valve consisting of an opening (the glottis) covered by two flaps of retractable muscular tissue called the vocal folds...The vocal folds can also be partly stretched over the glottis to produce a buzz as the air rushes past." - Pinker, The Language Instinct

Voiced & Voiceless consonants

Consonants are either voiced or voiceless.

English pairs:

b p v f d t
z s ŋ θ ʒ ʒ tʃ ɹ ʒ dʒ

Fricatives & Affricates

Postalveolar sounds [ʃ] [ʒ] Palatal sounds [dʒ] [tʃ]
(fricatives) (affricates)

Affricates - combination of stop + fricative - [dʒ] [tʃ], as in judge, church

Ex: affricates in fast speech:

"What should...?" becomes "Whachould...?"

"What did you...?" becomes "What did zha...?"

Vowels

b p v f d t
z s ŋ θ ʒ ʒ tʃ ɹ ʒ dʒ

What are the vocal folds doing?

"The air leaves the lungs through the trachea (windpipe), which opens into the larynx (the voice-box, visible on the outside as the Adam’s apple). The larynx is a valve consisting of an opening (the glottis) covered by two flaps of retractable muscular tissue called the vocal folds...The vocal folds can also be partly stretched over the glottis to produce a buzz as the air rushes past." - Pinker, The Language Instinct

Voiced & Voiceless consonants

Consonants are either voiced or voiceless.

English pairs:

b p v f d t
z s ŋ θ ʒ ʒ tʃ ɹ ʒ dʒ

Vowels
Vowels

https://www.youtube.com/watch?v=arMntA15A0s
http://www.thelingspace.com/episode-27
beginning through 4:10

Cross-language differences

https://www.youtube.com/watch?v=arMntA15A0s
http://www.thelingspace.com/episode-27
4:10 through 5:08

Cross-language differences

https://www.youtube.com/watch?v=arMntA15A0s
http://www.thelingspace.com/episode-27
5:08 through 7:02

Diphthongs

https://www.youtube.com/watch?v=arMntA15A0s
http://www.thelingspace.com/episode-27
7:02 through 7:38