Announcements

Be working on HW1 (due 4/19/12)

Be working on the sounds & sounds of words review questions

Read Stager & Werker (1997) for next time

What Happens

Divide sounds into contrastive categories (phonemes)

When It Happens

Around 10 months

Werker & Tees (1984), testing English infants
How Change Happens

Maintenance & Loss Theory

"Use it or lose it"

Infants maintain contrasts being used in their language and lose all the others.

Phonology

Structure-changing

Phonetics

"Perceptual Magnet"

Acoustics

Patricia Kuhl

Natural boundaries
(acoustically salient)

"Perceptual Magnet"

Sounds from Language 1
How Change Happens

Maintenance & Loss Theory

"Use it or lose it"

Infants maintain contrasts being used in their language and lose all the others.

Category boundaries that are maintained to keep these sound clusters distinct

Patricia Kuhl

"Perceptual Magnet"

How Change Happens

Maintenance & Loss Theory

"Use it or lose it"

Infants maintain contrasts being used in their language and lose all the others.

Sounds from Language 2

Patricia Kuhl

"Perceptual Magnet"
How Change Happens

Maintenance & Loss Theory
"Use it or lose it"

Prediction for performance on non-native contrasts over time:

Loss of discrimination ability is permanent and absolute

Should never be able to hear this distinction again

How change happens

Problems with the Maintenance & Loss Theory

Pisoni et al. (1982), Werker & Logan (1985): adults can be trained if given enough trials or tested in sensitive procedures with low memory demands.

Maintenance & Loss would predict that this ability should be irrevocably lost - and it shouldn’t matter how much training adults receive, or how the task is manipulated to help them.

http://hctv.humnet.ucla.edu/departments/linguistics/VowelsandConsonants/course/chapter6/zulu/zulu.html
How change happens
Another theory: Functional reorganization

Explanatory power: the whole story

Very young infants respond to any detectable variation - so they can pick up any salient contrasts in surrounding language. Adults have a bias for phonemic contrasts since those are the ones relevant to language. If they’re in a non-language setting, adults can distinguish non-native contrastive sounds because their postperceptual language filter isn’t activated.

Problem: Doesn’t seem to be permanent loss, and doesn’t seem to affect sounds if processed as non-language
How it happens

Idea 2: Functional Reorganization
Unconscious filter imposed when sounds are processed as language. Data distributions determine what the boundaries are in the filter.

Common theme: data distributions determine construction of relevant category boundaries for language.

Learning Sounds: Taking stock

One of the things children must do is figure out what the meaningful contrastive sounds (phonemes) in their native language are.

Phonemes vary from one language to another.

Children initially can hear many contrastive sounds, even non-native ones. However, they seem to have lost this ability by 10-12 months and instead only consciously hear the contrastive sounds of their native language.

Evidence suggests that this perceptual change is a specialized unconscious filter that is only active when the brain believes it is processing language sounds.

More about contrastive sounds

There are a number of acoustically salient features for sounds. All it takes for sounds to be contrastive is for them to have "opposite" values for one feature.

Example:
English sounds "k" and "g" differ only with respect to voicing. They are pretty much identical on all other features. Many contrastive sounds in English use the voicing feature as the relevant feature of contrast (p/b, t/d, s/z, etc.). However, there are other features that are used as well (air flow, manner of articulation, etc.).

Task for the child: Figure out which features are used contrastively by the language. Contrastive sounds for the language will usually vary with respect to one of those features.

Experimental Study: Dietrich, Swingley & Werker (2007)

Testing children’s perception of contrastive sounds

Dutch and English contrastive features differ.

In English, the length of the vowel is not contrastive

“cat” = “caat”

In Dutch, the length of the vowel is contrastive

“cat” = “caat”

(Japanese also uses this feature)
Does the data distribution show this?
Dutch and English vowel sounds in the native language environment also seem to differ

“…studies suggest that differences between the long and short vowels of Dutch are larger than any analogous differences for English.”

Does the data distribution show this?
Dutch and English vowel sounds in the native language environment also seem to differ

“…studies suggest that differences between the long and short vowels of Dutch are larger than any analogous differences for English.”
Does the data distribution show this?
Dutch and English vowel sounds in the native language environment also seem to differ

"…studies suggest that differences between the long and short vowels of Dutch are larger than any analogous differences for English."

Learning from real data distributions

How do we know that children are sensitive to distributional information?

Maye, Werker, & Gerken (2002)

Created synthetic sounds ranging from [da] to [ta] that were non-native for the infants (because they were unaspirated).

Maye, Werker, & Gerken (2002)

- Familiarized 6 to 8-month-old infants to one of two sets
 - Bimodal Set: Sounds on the ends near [da] and [ta].
 - Unimodal Set: Sounds in the middle.
- Test preference for:
 - 3 6 3 6… (Alternating) vs. 3 3 3 3… (Non-alternating) stimuli
Infants trained on the Bimodal data had a novelty preference for non-alternating trials. They learned to expect alteration, and were surprised by non-alteration.

Infants trained on the Unimodal data did not prefer/disprefer one over the other. They did not seem to learn any expectation.

Dutch and English vowel sounds in the native language environment also seem to differ. "...studies suggest that differences between the long and short vowels of Dutch are larger than any analogous differences for English."
Back to Dietrich, Swingley, & Werker (2007)

Prediction if children are sensitive to this distribution
Dutch children interpret vowel duration as a meaningful contrast because the distribution is more bimodal
Implication: Change to vowel duration = new word
English children should not interpret vowel duration as a meaningful contrast because the distribution is more unimodal
Implication: Change to vowel duration = same word as before

Dietrich, Swingley, & Werker (2007)
Tests with 18-month-old children who know some words (and so have figured out the meaningful sounds in their language)

"Switch" Procedure: measures looking time
...this is a tam...look at the tam

Habituation
Test

Frequency of sound in input
Vowel duration

Dietrich, Swingley, & Werker (2007)
Experiment 1: Testing English and Dutch kids on Dutch vowel durations

<table>
<thead>
<tr>
<th></th>
<th>Dutch kids</th>
<th>English kids</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.04 sec</td>
<td>6.66 sec</td>
<td>9.23 sec</td>
</tr>
<tr>
<td>9.23 sec</td>
<td>7.15 sec</td>
<td>no difference</td>
</tr>
</tbody>
</table>

Test

Dietrich, Swingley, & Werker (2007)
Experiment 2: Testing English and Dutch kids on English vowel durations

<table>
<thead>
<tr>
<th></th>
<th>Dutch kids</th>
<th>English kids</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.92 sec</td>
<td>7.34 sec</td>
<td>8.16 sec</td>
</tr>
<tr>
<td>8.16 sec</td>
<td>8.04 sec</td>
<td>no difference</td>
</tr>
</tbody>
</table>

Test

Test
Dietrich, Swingley, & Werker (2007)

Experiment 3: Testing English and Dutch kids on vowel quality contrast (a/e)

<table>
<thead>
<tr>
<th>Test</th>
<th>Frequency of sound in input</th>
<th>Vowel duration</th>
<th>Dutch kids 4.08 sec</th>
<th>English kids 6.31 sec</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dutch</td>
<td>5.72 sec</td>
<td></td>
<td>0</td>
<td>9.31 sec</td>
<td></td>
</tr>
<tr>
<td>English</td>
<td>9.31 sec</td>
<td></td>
<td>0</td>
<td>6.31 sec</td>
<td></td>
</tr>
</tbody>
</table>

(This is a control condition to make sure English kids can do the task when the sound is contrastive for them)

Implications of experiments 1, 2, and 3: Dutch children recognize vowel duration as contrastive for their language while English children do not. This can only be due to the data encountered by each set of children in their language.

Dutch children have a category boundary approximately here. English children do not.

What drives children to learn the distinction?

"One frequently raised hypothesis...is that it is driven by contrast in the vocabulary. Dutch children might learn that [a] and [ə] are different because the words [stat]...and [sta:t]...mean different things...however, children that young do not seem to know many word pairs that could clearly indicate a distinction between [a] and [ə]." - Dietrich, Swingley, & Werker (2007)

"The other current hypothesis is that children begin to induce phonological categories "bottom-up", based on their discovery of clusters of speech sounds in phonetic space...undoubtedly implicated in infants' early phonetic category learning, which begins before infants know enough words for vocabulary-based hypotheses to be feasible..." - Dietrich, Swingley, & Werker (2007)
Dietrich, Swingley, & Werker (2007)

“A necessary condition for such learning to be the driving force behind Dutch children’s phonological interpretation in the present studies is that long and short vowels be more clearly separable in Dutch than in English…preliminary examination of this problem using corpora of Dutch child-directed speech indicated that the set of long and short instances formed largely overlapping distributions.”

Implication: Dutch children need other cues to help them out

Swingley (2009)

One potential source of information: keep some contextual information for each vowel sound (what word it came from, if it comes from a frequent word).

Feldman et al. (2009) also suggest that associating sounds with particular words (specifically, learning about sounds and words at the same time) can be helpful.

Discovering contrastive sounds:
What’s the point of it again?

The idea is that once children discover the meaningful sounds in their language, they can begin to figure out what the words are.

Ex: An English child will know that “cat” and “caat” are the same word (and should have the same meaning).

As adults, we can look at a language and figure out what the contrastive sounds are by looking at what changes a word’s meaning. But children can’t do this - they figure out the contrastive sounds before they figure out words and word meanings.

Recap: Sounds

It seems that we learn to have a language filter that abstracts away from the raw acoustic signal when we think we’re listening to language (a language sound filter that creates phonemes).

Children need to learn what the phonemes of their language are by listening to their native language input, and phonemes will be contrastive with respect to at least one phonetic feature (like duration or voicing).

It may be helpful for children to keep track of where they hear particular sounds (that is, in which words) in order to figure out the phonemes of their language.
Questions?

You should be able to do up through question 5 on HW1 and up through question 17 on the sounds review questions.