Psych 156A/ Ling 150: Acquisition of Language II

Lecture 13
Poverty of the Stimulus II

Announcements

Pick up your graded HW2 (and your HW1 if you haven’t already done so)

Be working on HW3 (due: 5/29/12)

Poverty of the Stimulus leads to Prior Knowledge about Language: Summary of Logic

1) Suppose there are some data.
2) Suppose there is at least one incorrect hypothesis compatible with the data.
3) Suppose children behave as if they never entertain incorrect hypotheses.

Conclusion: Children possess prior (innate) knowledge ruling out the incorrect hypotheses from consideration.

Hypothesis = Generalization

1) Suppose there are some data.
2) Suppose there are multiple generalizations compatible with the data.
3) Suppose children behave as if they only make one generalization.

Conclusion: Children possess prior (innate) learning biases that rule out the incorrect generalizations from consideration.
Children encounter a subset of the language’s data, and have to decide how to generalize from that data.

Making generalizations that are underdetermined by the data

Here’s a question (Gerken 2006): is there any way to check what kinds of generalizations children prefer to make?

Example: Suppose they’re given a data set that is compatible with two generalizations: a less-general one and a more-general one.

Choosing generalizations

Do children think this generalization is the right one?

Or do children think this generalization is the right one?

How can we tell?

Generalization = predictions about what data are in the language

Data children encounter
Choosing generalizations: the less general hypothesis

If children think the less-general hypothesis is correct, they will think data covered by that hypothesis are in the language - in addition to the data they encountered.

Choosing generalizations: the more general hypothesis

If children think the more-general hypothesis is correct, they will think data covered by that hypothesis are in the language - in addition to the data they encountered and the data in the less-general hypothesis.

Potential child responses when multiple generalizations are possible

Reality check

What do these correspond to in a real language learning scenario?

Data: Simple yes/no questions in English

* "Is the dwarf laughing?"
* "Can the goblin king sing?"
* "Will Sarah solve the Labyrinth?"

5/22/12
Experimental Study: Gerken (2006)

How can we tell what generalizations children actually make? Let’s try an artificial language learning study.

Children will be trained on data from an artificial language. This language will consist of words that follow a certain pattern.

The child’s job: determine what the pattern is that allows a word to be part of the artificial language.

Artificial language: AAB/ABA pattern

Marcus et al. (1999) found that very young infants will notice that words made up of 3 syllables follow a pattern that can be represented as AAB or ABA.

Example: A syllables = le, wi B syllables = di, je

AAB language words: leledi, leleje, wiwidi, wiwije

ABA language words: ledile, lejele, widiwi, wije
Gerken (2006) decided to test what kind of generalization children would make if they were given particular kinds of data from this same artificial language.

Words in the AAB pattern artificial language.

<table>
<thead>
<tr>
<th></th>
<th>di</th>
<th>je</th>
<th>li</th>
<th>we</th>
</tr>
</thead>
<tbody>
<tr>
<td>le</td>
<td>leledi</td>
<td>leleje</td>
<td>leleli</td>
<td>lelewe</td>
</tr>
<tr>
<td>wi</td>
<td>wiwidi</td>
<td>wiwijje</td>
<td>wiwili</td>
<td>wiwiwe</td>
</tr>
<tr>
<td>ji</td>
<td>jijidi</td>
<td>jijije</td>
<td>jijili</td>
<td>jijiwe</td>
</tr>
<tr>
<td>de</td>
<td>dededi</td>
<td>dedeje</td>
<td>dedeli</td>
<td>dedewe</td>
</tr>
</tbody>
</table>

What if children were only trained on a certain subset of the words in the language?

(Experimental Condition) Training on four word types: leledi, wiwidi, jijidi, dededi

These data are consistent with a less-general pattern (AAdi) as well as the more-general pattern of the language (AAB)

Question: If children are given this subset of the data that is compatible with both generalizations, which generalization will they make (AAdi or AAB)?

(Experimental Condition) Training on four word types: leledi, wiwidi, jijidi, dededi

These data are consistent with a less-general pattern (AAdi) as well as the more-general pattern of the language (AAB)
Words in the AAB pattern artificial language.

<table>
<thead>
<tr>
<th></th>
<th>di</th>
<th>je</th>
<th>li</th>
<th>we</th>
</tr>
</thead>
<tbody>
<tr>
<td>le</td>
<td>leledi</td>
<td>leleje</td>
<td>leleli</td>
<td>lelewe</td>
</tr>
<tr>
<td>wi</td>
<td>wiwidi</td>
<td>wiwije</td>
<td>wiwili</td>
<td>wiwiwe</td>
</tr>
<tr>
<td>ji</td>
<td>jijidi</td>
<td>jijije</td>
<td>jijili</td>
<td>jijiwe</td>
</tr>
<tr>
<td>de</td>
<td>dededi</td>
<td>dedeje</td>
<td>dedeli</td>
<td>dedewe</td>
</tr>
</tbody>
</table>

(Control Condition) Training on four word types: leledi, wiwije, jijili, dedewe

These data are only consistent with the more-general pattern of the language (AAB)

Experiment 1

Task type: Head Turn Preference Procedure

Experimental: leledi...wiwidi...jijili...dededi

Control: leledi...wiwije...jijili...dedewe

Children: 9-month-olds

Stimuli: 2 minutes of artificial language words.

Test condition words: AAB pattern words using syllables the children had never encountered before in the language. Ex: kokoba (novel syllables: ko, ba)

Experiment 1 Predictions

Control: leledi...wiwije...jijili...dedewe

If children learn the more-general pattern (AAB), they will prefer to listen to an AAB pattern word like kokoba, over a word that does not follow the AAB pattern, like kobako.
Experiment 1 Results
Control: leledi…wiwije…jjili…dedewe
Children listened longer on average to test items consistent with the AAB pattern (like kokoba) [13.51 sec], as opposed to items inconsistent with it (like kobako) [10.14].
Implication: They can notice the AAB pattern and make the generalization from this artificial language data. This task is not too hard for infants.

Experiment 1 Results
Control: leledi…wiwije…jjili…dedewe
Children did not listen longer on average to test items consistent with the AAB pattern (like kokoba) [10.74 sec], as opposed to items inconsistent with it (like kobako) [10.18].
Implication: They do not make the more-general generalization (AAB)

Experiment 1 Predictions
Experimental: leledi…wiwidi…jjidi…dededi
If children learn the less-general pattern (AAdi), they will not prefer to listen to an AAB pattern word that does not end in di, like kokoba, over a word that does not follow the AAB pattern, like kobako.

If children learn the more-general pattern (AAB), they will prefer to listen to an AAB pattern word - even if it doesn't end in di - like kokoba, over a word that does not follow the AAB pattern, like kobako.

Question: Do they make the less-general generalization (AAdi), or do they just fail completely to make a generalization?
Experiment 2

Task type: Head Turn Preference Procedure

Experimental: leledi...wiwidi...jijidi...dededi

Stimuli: 2 minutes of artificial language words.

Test condition words: novel AAdi pattern words using syllables the children had never encountered before in the language. Ex: kokodi (novel syllable: ko)

Children: 9-month-olds

Experiment 2 Predictions

Experimental: leledi...wiwidi...jijidi...dededi

If children learn the less-general pattern (AAdi), they will prefer to listen to an AAdi pattern word, like kokodi, over a word that does not follow the AAdi pattern, like kodiko.

If children don't learn any pattern, they will not prefer to listen to an AAdi pattern word, like kokodi, over a word that does not follow the AAdi pattern, like kodiko.

Experiment 2 Results

Experimental: leledi...wiwidi...jijidi...dededi

Children prefer to listen to novel words that follow the less-general AAdi pattern, like kokodi [9.33 sec] over novel words that do not follow the AAdi pattern, like kodiko [6.25 sec].

Implication: They make the less-general generalization (AAdi) from this data. It is not the case that they fail to make any generalization at all.

Gerken (2006) Results Summary

Expt 1: Control (leledi...wiwije...jijili...dedewe)
Children notice the AAB pattern and make the generalization from artificial language data.

Expt 1: Experimental (leledi...wiwidi...jijidi...dededi)
Children do not make the more-general generalization (AAB) from this data.

Expt 2: Experimental (leledi...wiwidi...jijidi...dededi)
Children make the less-general generalization (AAdi) from this data. It is not the case that they fail to make any generalization at all.
Gerken (2006) Results

When children are given data that is compatible with a less-general and a more-general generalization, they prefer to be conservative and make the less-general generalization.

Specifically for the artificial language study conducted, children prefer not to make unnecessary abstractions about the data. They prefer the AAdi pattern over a more abstract AAB pattern when the AAdi pattern fits the data they have encountered.

Why would a preference for the less-general generalization be a sensible preference to have? What if children preferred this one…

…but the language really was this one?

Problem: There are no data the child could receive that would clue them in that the less-general generalization is right. All data compatible with the less-general one are compatible with the more-general one.

This is known as the Subset Problem for language learning.
Let's take a closer look at the Subset Problem

A is the superset
B is the subset

What data are compatible with A? \(x_1, x_2 \)
What data are compatible with B? \(x_2 \)

Suppose A is the correct generalization, and the child's hypothesis is that A is correct. (No fixing necessary.)

What data will the child see? \(x_2 \)
What data will the child expect to see? \(x_2 \)

Suppose B is the correct generalization, and the child's hypothesis is that B is correct. (Fixing required.)

What data will the child see? \(x_1, x_2 \)
What data will the child expect to see? \(x_2 \)

Data like \(x_1 \) let the child realize that B is incorrect.
Let's take a closer look at the Subset Problem

A is the superset
B is the subset

Suppose B is the correct generalization, and the child’s hypothesis is that A is correct. (Fixing required.)
What data will the child see? \(x_2 \)
What data will the child expect to see? \(x_1, x_2 \)

There are no data the child will see that indicate A is incorrect. This is the Subset Problem - when the subset is correct but the superset is chosen.

Solutions to the Subset Problem

Subset Principle (Wexler & Manzini 1987): In order to learn correctly in this scenario where one generalization covers a subset of the data another generalization covers, children should prefer the less-general generalization.

This is a learning strategy that can result very naturally from a Bayesian learner which uses the Size Principle (Tenenbaum & Griffiths 2001).

The Size Principle & Suspicious Coincidences

A Bayesian learner can assign a probability to any hypothesis under consideration by balancing two things:
The prior probability of that hypothesis being correct
The likelihood of that hypothesis producing the observed data

\[P(\text{hypothesis} \mid \text{data}) \propto P(\text{hypothesis}) \times P(\text{data} \mid \text{hypothesis}) \]

The likelihood calculation allows a Bayesian learner to follow the Size Principle (Tenenbaum & Griffiths 2001), and automatically prefer less-general hypotheses (which correspond to sets of smaller size) to more-general hypotheses (which correspond to sets of larger size). This is sometimes referred to as a sensitivity to “suspicious coincidences” (Xu & Tenenbaum 2007).

Formal instantiation of “suspicious coincidence”

Suppose there are only 5 words in the language that we know about, as shown in this diagram.

Hypothesis 1 (H1): The less-general hypothesis is true, and AAdi is the pattern.

Hypothesis 2 (H2): The more-general hypothesis is true, and AAB is the pattern.
What's the likelihood of selecting this word for each hypothesis?

\[p(\text{memedi} \mid H_1) = \frac{1}{3} \] (since only three words are possible)

\[p(\text{memedi} \mid H_2) = \frac{1}{5} \] (since all five words are possible)

Formal instantiation of “suspicious coincidence”

This means the likelihood for the less-general hypothesis is always going to be larger than the likelihood of the more-general hypothesis for data points that both hypotheses can account for.

If the prior is equal (ex: before any data, both hypotheses are equally likely), then the posterior probability will be greater for the less-general hypothesis.

\[p(H_1 \mid \text{memedi}) = p(\text{memedi} \mid H_1) \times p(H_1) \]
\[= \frac{1}{3} \times p(H_1) \]

\[p(H_2 \mid \text{memedi}) = p(\text{memedi} \mid H_2) \times p(H_2) \]
\[= \frac{1}{5} \times p(H_2) \]

Another way to think about it

Has to do with children’s expectation of the data points that they should encounter in the input.

If more-general generalization (AAB) is correct, the child should encounter some data that can only be accounted for by the more-general generalization (like memewe or nanaje). These data would be incompatible with the less-general generalization (AAdi).
Another way to think about it

Has to do with children’s expectation of the data points that they should encounter in the input.

If the child keeps not encountering data compatible only with the more-general generalization, the less-general generalization becomes more and more likely to be the generalization responsible for the language data encountered.

Children as rational learners

Gerken (2006) suggests that children behave like rational (Bayesian) learners. If so, this means that if children do receive counterexamples to the less-general hypothesis, they should update their beliefs about its probability. In particular, they should believe it is less probable than the more-general hypothesis. Is this true?

Gerken (2010)

Experimental: leledi…wiwidi…jjidi…dededi + 3 AAB

Children: 9-month-olds

Stimuli: 2 minutes of artificial language words following the AAdi pattern, with three of the last stimuli heard being examples of the AAB pattern (like memewe)

Test condition words: novel AAB pattern words using syllables the children had never encountered before in the language. Ex: kokoba (novel syllable: ko)

Implication: They update their beliefs about which hypothesis is more probable, given a few data that implicate the more-general AAB hypothesis.
Summary

Children will often be faced with multiple generalizations that are compatible with the language data they encounter. In order to learn their native language, they must choose the correct generalizations.

Experimental research on artificial languages suggests that children prefer the more conservative generalization compatible with the data they encounter, but will update their beliefs based on the data available.

This learning strategy is one that a Bayesian learner may be able to take advantage of quite naturally. So, if children are probabilistic learners of this kind (and experiments by Gerken suggest they may be), they may automatically follow this conservative generalization strategy.

Questions?

You should be able to do up through question 16 on the review questions and up through question 4 on HW3. Please use the remaining class time to work on these and ask us questions.