Psych 156A/ Ling 150: Acquisition of Language II
6/7/2012
Final Exam Review

Final Exam
Final Exam: 6/14/2012
1:30 – 3:30pm
HH178 (this room) OR SBSG G241
We will be holding office hours next week at our normal times

Part of Speech Learning
Two ideas:
Semantic Bootstrapping Hypothesis
PoS matches (roughly) real world semantics
nouns → objects, states
verbs → actions
adjectives → properties
But only roughly...
a kick (verb-like, but a noun)
function words (a, the, of, but…)

Part of Speech Learning
Another idea:
Frequent Frames
the ____ is you ____ it
a ____ is they ____ her
that ____ was can ____ him
Language Structure

- Phrases
- Grammaticality judgments
- Ambiguous/Unambiguous data
- Principles & Parameters

Testing Hypotheses

Bayesian Learning

\[P(A|D) = \frac{P(D|A) \cdot P(A)}{P(D)} \]

\[D = 1, 3, 2, 6, 4, 3 \]

Bayesian Learning

\[P(D|A) = P(1|A) \cdot P(3|A) \cdot P(2|A) \cdot P(6|A) \cdot P(4|A) \cdot P(3|A) \]

\[= \frac{1}{4} \cdot \frac{1}{4} \cdot 1 \cdot 0 \cdot \frac{1}{4} \cdot \frac{1}{4} \]

\[= 0 \]
Bayesian Learning

D = 1, 3, 2, 6, 4, 3

P(D|B) = P(1|B) \times P(3|B) \times P(2|B) \times P(6|B) \times P(4|B) \times P(3|B)
= \frac{1}{6} \times \frac{1}{6} \times \frac{1}{6} \times \frac{1}{6} \times \frac{1}{6} \times \frac{1}{6}
= \frac{1}{6^5} = \frac{1}{7776} = .0001286

Bayesian Learning

D = 1, 3, 2, 6, 4, 3

P(D|C) = P(1|C) \times P(3|C) \times P(2|C) \times P(6|C) \times P(4|C) \times P(3|C)
= \frac{1}{10} \times \frac{1}{10} \times \frac{1}{10} \times \frac{1}{10} \times \frac{1}{10} \times \frac{1}{10}
= \frac{1}{10^5} = \frac{1}{100000} = .00001

Bayesian Learning

P(D|A) = 0 \quad P(D|B) = .0001286 \quad P(D|C) = .00001
P(A) = \frac{1}{3} \quad P(B) = \frac{1}{3} \quad P(C) = \frac{1}{3}
P(D) = .0000462

Bayesian Learning

P(D|A) = 0 \quad P(D|B) = .0001286 \quad P(D|C) = .00001
P(A) = \frac{1}{3} \quad P(B) = \frac{1}{3} \quad P(C) = \frac{1}{3}
P(D) = .0000462
P(A|D) = 0 \times \frac{1}{3} / .0000462 = 0
Bayesian Learning

D = 1, 3, 2, 6, 4, 3

A
B
C
D = 1, 3, 2, 6, 4, 3

\[P(D|A) = 0 \quad P(D|B) = 0.0001286 \quad P(D|C) = 0.00001 \]

\[P(A) = \frac{1}{3} \quad P(B) = \frac{1}{3} \quad P(C) = \frac{1}{3} \]

\[P(D) = 0.0000462 \]

\[P(B|D) = \frac{0.0001286 \times \frac{1}{3}}{0.0000462} = 0.9278 \]

But… you already saw 2

Calculate \(P(H|2) \) for each hypothesis

\[P(A|2) = \frac{15}{31} \quad P(B|2) = \frac{10}{31} \quad P(C|2) = \frac{6}{31} \]

Use these posteriors as the new prior for the new datapoint

\[P(D) = \frac{1}{4} \times \frac{1}{3} + \frac{1}{6} \times \frac{1}{3} + \frac{1}{10} \times \frac{1}{3} = \frac{31}{180} \]
Bayesian Learning

\[P(A|2) = \frac{15}{31} \]
\[P(B|2) = \frac{10}{31} \]
\[P(C|2) = \frac{6}{31} \]

\[P(A|7,2) = P(7|A) \times P(A|2) / P(D) \]
\[= 0 \times \frac{15}{31} / P(D) \]
\[= 0 \]

\[P(B|7,2) = P(7|B) \times P(B|2) / P(D) \]
\[= 0 \times \frac{10}{31} / P(D) \]
\[= 0 \]

\[P(C|7,2) = P(7|C) \times P(C|2) / P(D) \]
\[= \frac{1}{10} \times \frac{6}{31} / P(D) \]
\[= \frac{1}{10} \times \frac{6}{31} / \left(\frac{1}{10} \times \frac{6}{31} + 0 + 0 \right) \]
\[= 1 \]

Parameters

Review Questions: Structure
Question #10:
Suppose we have a parameter Q, we don’t know what structures match that parameter though. We think maybe A, B, C & D connect to Q, but aren’t sure. Q can only take two values, x1 and x2

a) A, B, and C tend to show x1 while D shows z1, which structures are connected to parameter Q?
Parameters

Review Questions: Structure
Question #10:
Suppose we have a parameter Q, we don’t know what structures match that parameter though. We think maybe A, B, C & D connect to Q, but aren’t sure. Q can only take two values, x1 and x2.

b) If Q really does have value x1 which structures (A,B,C,D) are likely to also have value x1?

c) Children rarely see structure C, but often see A, B and D. If A & B show x1, and D shows z1, given your answer to (b) what value should the infant suppose for structure C?

Experiments

Dewar & Xu (2010)
Examine overhypotheses (abstract generalizations based on limited data with apparent regularities)

Gerken (2006)
How do children generalize?
Children don't generalize from AAdi stimuli to AAB

Pearl & Mis (2011)
Baker (1978) assumes only unambiguous data is informative
Can learn anaphoric one using all ambiguous data if we include data from other pronouns too!

Thompson & Newport (2007)
Adults can learn phrases using transitional probability (TP)

Hudson, Kam & Newport (2005)
Adults match inconsistent input with inconsistent output
Children generalize to the most frequent input type

Hudsom, Kam & Newport (2009)
Adults will generalize if one input is dominant
But children in this case generalize one determiner and use it almost always
Marr’s 3 Levels

Any problem can be decomposed into 3 levels:

Computational level
- What’s the problem to be solved?

Algorithmic level
- What (abstract) set of rules solves the problem?

Implementational level
- How are those rules physically implemented?

Computational Level

Abstract Problem:
- How do we regulate traffic at an intersection?

Goal:
- Direct lanes of traffic to avoid congestion/accidents

Algorithmic Level

What kind of rules can we use?
- Let Lane go whenever X cars are waiting?
- Let Lane go every X minutes?
- Let 1 car at a time go through the intersection?
- Make one direction always yield to the other?
Implementational Level

How do we physically implement the rule?
- Set up a stop light
- Set up a blinking stop light
- Put up a stop sign
- Have someone direct traffic
- Put up nothing and have drivers implement the rules themselves!

Transitional Probability

TP(AB) = P(AB|A) = # of times you saw AB / # of times you saw A

\[TP(ko/si) = \frac{\text{# of times ko/si}}{\text{# of times ko}} \]

\[TP(ja/vo) = \frac{\text{# of times ja/vo}}{\text{# of times ja}} \]

TP Minima

TP can be thought of like a tide

Every time the TP is at “low tide” we put a boundary

Precision & Recall

I wonder how well I can segment this sentence today

I wonder how well I can segment this sentence today
Precision & Recall

I wonder how well I can segment this sentence today

Precision:
of correct / # guessed
3 correct / 9 guessed

Recall:
of correct / # true words
3 correct / 10 true

Stress-based Segmentation

how WELL can a STRESS based LEARNER SEGment THIS?

If we assume Stress-INITIAL syllables:

How WELL can a STRESS based LEARNER SEGment THIS?

Precision = 3/6 Recall = 3/9

If we assume Stress-FINAL syllables:

How WELL can a STRESS based LEARNER SEGment THIS?

Precision = 0/5 Recall = 0/9
Bayesian Learning

All (statistical) learning is a form of **INFERENCE**

We have data...
But which hypothesis is true?

\[P(H|D) ? \]

\[P(H | D) = \frac{P(D | H) \cdot P(H)}{P(D)} \]

posterior likelihood prior prob. of data

Cross-Situational Learning

Use information across trials to identify a word/meaning mapping

Scene 1: "dugme" "lutka" "prozor"
Object 1 Object 2 Object 3

Scene 2: "lutka" "zid" "prozor"
Object 1 Object 3 Object 4

Cross-Situational Learning

Scene 1: "dugme" "lutka" "prozor"
Object 1 Object 2 Object 3

Scene 2: "lutka" "zid" "prozor"
Object 1 Object 3 Object 4

P(H|D) = P(D|H) * P(H) / P(D)

Posterior = likelihood * prior / prob. of data

P(lutka == 1) = Prior (let’s call this H1)
P(D | H1) = 1 Likelihood
P(D) = P(H1)*P(D|H1) + P(H2)*P(D|H2) + P(H3)*P(D|H3)…

P(H1 | D) = P(D | H1) * P(H1) / P(D)

Suspicious Coincidence

Three hypotheses:
Superordinate: “mammal”
Basic: “dog”
Subordinate: “beagle”

Given a picture of a beagle:
P(data|H3) = 1/# of beagles
> P(data|H2) = 1/# of dogs
> P(data|H1) = 1/# of mammals
Contrastive Sounds

A pair of sounds are contrastive if:
Switching the sounds changes the **MEANING**

In English:
- “food”: [f u d] \(\rightarrow\) Contrastive
- “rude”: [r u d]

In German:
- “street”: [s t R a s e] \(\rightarrow\) Not contrastive
- “street”: [s t r a s e]

Learning Sounds

Maintenance & Loss Theory:
If you use a distinction in your language
- Keep it
If you don’t use it
- Ignore the distinction

Functional Reorganization:
Create a filter between acoustics and phonemes
If you hear a language sound
- Impose filter to ignore non-native distinctions
If you hear a non-language sound
- Don’t impose the filter

Sound Identification

Sound Discrimination

![Figure 11.1](image-url)