Psych 156A/ Ling 150: Acquisition of Language II

Lecture 12
Poverty of the Stimulus II

Announcements
Pick up HW2 if you haven’t already
Be working on HW3 (due: 5/25/10)

Poverty of the Stimulus leads to Innate Knowledge about Language:
Summary of Logic
1) Suppose there are some data.
2) Suppose there is an incorrect hypothesis compatible with the data.
3) Suppose children behave as if they never entertain the incorrect hypothesis.

Conclusion: Children possess prior (innate) knowledge ruling out the incorrect hypothesis from the hypotheses they do actually consider.

Hypothesis = Generalization About Items in the Language
1) Suppose there are some data.
2) Suppose there are multiple generalizations compatible with the data.
3) Suppose children behave as if they never make incorrect generalizations.

Conclusion: Children possess prior (innate) knowledge biasing them away from the incorrect generalizations.
Making generalizations that are underdetermined by the data

Children encounter a subset of the language’s data, and have to decide how to generalize from that data.

Poverty of the stimulus: data alone cannot pinpoint the correct generalization.

Here’s a question: is there any way to check what kinds of generalizations children prefer to make?

Example: Suppose they’re given a data set that is compatible with two generalizations: a less-general one and a more-general one.

Choosing generalizations

Do children think this generalization is the right one?

Or do children think this generalization is the right one?

How can we tell?

Generalization = predictions about what data are in the language

Data children encounter
Choosing generalizations: the less general hypothesis

If children think the less-general hypothesis is correct, they will think data covered by that hypothesis are in the language - in addition to the data they encountered.

They will not think that data that are in the more-general hypothesis are in the language.

Choosing generalizations: the more general hypothesis

If children think the more-general hypothesis is correct, they will think data covered by that hypothesis are in the language - in addition to the data they encountered and the data in the less-general hypothesis.

Potential child responses when multiple generalizations are possible

Reality check

What do these correspond to in a real language learning scenario?

Data example: Simple yes/no questions in English

"Is the dwarf laughing?"

"Can the goblin king sing?"

"Will Sarah solve the Labyrinth?"
Reality check
What do these correspond to in a real language learning scenario?

Less-general hypothesis example:
Some complex grammatical yes-no questions

"Can the girl who ate the peach and forgot everything save her brother?"

"Will the dwarf who deserted Sarah help her reach the castle?"

More-general hypothesis example:
Ungrammatical complex yes-no questions

"Did the girl who eat the peach and forgot everything can save her brother?"

"Did the dwarf who desert Sarah will help her reach the castle?"

Experimental Study: Gerken (2006)

How can we tell what generalizations children actually make? Let’s try an artificial language learning study.

Children will be trained on data from an artificial language. This language will consist of words that follow a certain pattern.

The child’s job: determine what the pattern is that allows a word to be part of the artificial language.

Artificial language: AAB/ABA pattern

Marcus et al. (1999) found that very young infants will notice that words made up of 3 syllables follow a pattern that can be represented as AAB or ABA.

Example:

A syllables = ie, wi B syllables = di, je

AAB language words: lele, leleje, wiwi, wiwi

ABA language words: lele, lejele, widi, wijwi
Artificial language: AAB/ABA pattern

Gerken (2006) decided to test what kind of generalization children would make, if they were given particular kinds of data from this same artificial language.

Words in the AAB pattern artificial language.

<table>
<thead>
<tr>
<th>di</th>
<th>je</th>
<th>li</th>
<th>we</th>
</tr>
</thead>
<tbody>
<tr>
<td>le</td>
<td>leledi</td>
<td>leleje</td>
<td>leleli</td>
</tr>
<tr>
<td>wi</td>
<td>wiwidi</td>
<td>wiwije</td>
<td>wiwili</td>
</tr>
<tr>
<td>ji</td>
<td>jijidi</td>
<td>jijije</td>
<td>jijili</td>
</tr>
<tr>
<td>de</td>
<td>dededi</td>
<td>dedeje</td>
<td>dedeli</td>
</tr>
</tbody>
</table>

What if children were only trained on a certain subset of the words in the language?

Question: If children are given this subset of the data that is compatible with both generalizations, which generalization will they make (AAdi or AAB)?

(Experimental Condition) Training on four word types: leledi, wiwidi, jijidi, dededi

This data is consistent with a less-general pattern (AAdi) as well as the more-general pattern of the language (AAB)
Words in the AAB pattern artificial language.

<table>
<thead>
<tr>
<th></th>
<th>di</th>
<th>je</th>
<th>li</th>
<th>we</th>
</tr>
</thead>
<tbody>
<tr>
<td>le</td>
<td>leledi</td>
<td>leleje</td>
<td>leleli</td>
<td>lelew</td>
</tr>
<tr>
<td>wi</td>
<td>wiwidi</td>
<td>wiwije</td>
<td>wiwili</td>
<td>wiwiwe</td>
</tr>
<tr>
<td>ji</td>
<td>jijidi</td>
<td>jijije</td>
<td>jijili</td>
<td>jijiwe</td>
</tr>
<tr>
<td>de</td>
<td>dededi</td>
<td>dedeje</td>
<td>dedeli</td>
<td>dedewe</td>
</tr>
</tbody>
</table>

(Control Condition) Training on four word types: leledi, wiwije, jijili, dedewe

This data is only consistent with the more-general pattern of the language (AAB), and not the less-general pattern (AAdi).

This control condition is used to see what children’s behavior is when the data are only consistent with one of the generalizations (the more general AAB one).

If children fail to make the generalization in the control condition, then the results in the experimental condition will not be informative. (Perhaps the task was too hard for children.)

(Control Condition) Training on four word types: leledi, wiwije, jijili, dedewe

This data is only consistent with the more-general pattern of the language (AAB), and not the less-general pattern (AAdi).

Experiment 1

Task type: Head Turn Preference Procedure

Test: leledi...wiiwi...jiiji...dededi
Control: leledi...wiwije...jijili...dedewe

Children: 9-month-olds

Stimuli: 2 minutes of artificial language words.

Test condition words: AAB pattern words using syllables the children had never encountered before in the language. Ex: kokoba (novel syllables: ko, ba)

Experiment 1 Predictions

Control: leledi...wiwije...jijili...dedewe

If children learn the more-general pattern (AAB), they will prefer to listen to an AAB pattern word - even if it doesn’t end in di, like kokoba, over a word that does not follow the AAB pattern, like kobako.
Experiment 1 Results

Control: leledi...wiwije...jijili...dedewe
Children listened longer on average to test items consistent with the AAB pattern (like kokoba) [13.51 sec], as opposed to items inconsistent with it (like kobako) [10.14].

Implication: They can notice the AAB pattern and make the generalization from this artificial language data.

Experimental: leledi...wiwidi...jijidi...dededi

Children did not listen longer on average to test items consistent with the AAB pattern (like kokoba) [10.74 sec], as opposed to items inconsistent with it (like kobako) [10.18].

Implication: They do not make the more-general generalization (AAB).

Experiment 1 Predictions

Experimental: leledi...wiwidi...jijidi...dededi

If children learn the more-general pattern (AAB), they will prefer to listen to an AAB pattern word - even if it doesn’t end in di, like kokoba, over a word that does not follow the AAB pattern, like kobako.

If children do not learn the more-general pattern (AAB), they will not prefer to listen to an AAB pattern word that does not end in di, like kokoba, over a word that does not follow the AAB pattern, like kobako.

Children listened longer on average to test items consistent with the AAB pattern (like kokoba) [10.74 sec], as opposed to items inconsistent with it (like kobako) [10.18].

Implication: They do not make the more-general generalization (AAB).

Question: Do they make the less-general generalization (AADi), or do they just fail completely to make a generalization?
Experiment 2
Task type: Head Turn Preference Procedure
Stimuli: 2 minutes of artificial language words.
Test condition words: novel AAdi pattern words using syllables the children had never encountered before in the language. Ex: kokodi (novel syllable: ko)

Children: 9-month-olds

Experiment 2 Predictions
Experimental: leledi...wiwidi...jijidi...dededi

If children learn the less-general pattern (AAdi), they will prefer to listen to an AAdi pattern word, like kokodi, over a word that does not follow the AAdi pattern, like kodiko.

If children don’t learn any pattern, they will not prefer to listen to an AAdi pattern word, like kokodi, over a word that does not follow the AAdi pattern, like kodiko.

Experiment 2 Results
Experimental: leledi...wiwidi...jijidi...dededi

Children prefer to listen to novel words that follow the less-general AAdi pattern, like kokodi [9.33 sec], over novel words that do not follow the AAdi pattern, like kodiko [6.25 sec].

Implication: They make the less-general generalization (AAdi) from this data. It is not the case that they fail to make any generalization at all.

Gerken (2006) Results Summary
Expt 1: Control (leledi...wiiwe...jijili...dedewe)
Children notice the AAB pattern and make the generalization from artificial language data.

Expt 1: Experimental (leledi...wiwidi...jijidi...dededi)
Children do not make the more-general generalization (AAB) from this data.

Expt 2: Experimental (leledi...wiwidi...jijidi...dededi)
Children make the less-general generalization (AAdi) from this data. It is not the case that they fail to make any generalization at all.
Gerken (2006) Results

When children are given data that are compatible with a less-general and a more-general generalization, they prefer to be conservative and make the less-general generalization.

Specifically for the artificial language study conducted, children prefer not to make unnecessary abstractions about the data. They prefer the AA_i pattern over a more abstract AAB pattern when the AA_i pattern fits the data they have encountered.

Why would a preference for the less-general generalization be a sensible preference to have?

What if children preferred this one...

...but the language really was this one?

Problem: There are no data children could receive that would clue them in that the less-general generalization is right. All data compatible with the less-general one are compatible with the more-general one.

This is known as the Subset Problem for language learning.
Let’s take a closer look at the Subset Problem.

A is the superset
B is the subset

x_1 and x_2 are examples of data points.

What data are compatible with A? x_1, x_2

What data are compatible with B? x_2

Suppose B is the correct generalization, and the child’s hypothesis is that B is correct. (No fixing necessary.)

What data will the child see? x_2

What data will the child expect to see? x_2

Suppose A is the correct generalization, and the child’s hypothesis is that A is correct. (Fixing required.)

What data will the child see? x_1, x_2

What data will the child expect to see? x_2

Data like x_1 let the child realize that B is incorrect.
Let's take a closer look at the Subset Problem.

A is the superset and B is the subset.

\(x_1 \) and \(x_2 \) are examples of data points.

Suppose B is the correct generalization, and the child's hypothesis is that A is correct. (Fixing required.)

What data will the child see? \(x_2 \)

What data will the child expect to see? \(x_1, x_2 \)

There are no data the child will see that indicate A is incorrect. This is the Subset Problem - when the subset is correct but the superset is chosen.

Solutions to the Subset Problem

Subset Principle (Wexler & Manzini 1987): In order to learn correctly in this scenario where one generalization covers a subset of the data another generalization covers, children should prefer the less-general generalization.

This is a learning strategy that can result very naturally from a type of probabilistic learner known as a Bayesian learner, which uses the Size Principle (Tenenbaum & Griffiths 2001).

Size Principle Logic

Has to do with children’s expectation of the data points that they should encounter in the input.

If the more-general generalization (AAB) is correct, the child should encounter some data that can only be accounted for by the more-general generalization (like memewe or nanaje). These data would be incompatible with the less-general generalization (AAdi).

If the child keeps not encountering data compatible only with the more-general generalization, the less-general generalization becomes more and more likely to be the generalization responsible for the language data encountered.
Summary
Children will often be faced with multiple generalizations that are compatible with the language data they encounter. In order to learn their native language, they must choose the correct generalizations.

Experimental research on artificial languages suggests that children prefer the more conservative generalization compatible with the data they encounter.

This learning strategy is one that a probabilistic learner may be able to take advantage of quite naturally. So, if children are probabilistic learners of this kind, they may automatically follow this conservative generalization strategy.

Questions?
Be working on HW3 and poverty of the stimulus review questions