

Announcements

HW1 returned

Review question for words now posted

Reminder: be working on HW2

Recap: Saffran, Aslin, \& Newport (1996)

Experimental evidence suggests that 8-month-old infants can track statistical information such as the transitional probability between syllables. This can help them solve the task of word segmentation.

Evidence comes from testing children in an artificial language paradigm, with very short exposure time.

Computational Modeling Data
 (Digital Children)

Computational model: a program that simulates the mental processes occurring in a child. This requires knowing what the input and output are, and then testing the algorithms that can take the given input and transform it into the desired output.

For word segmentation, the input is a sequence of syllables and the desired output is words (groups of syllables).

How good is transitional probability on real data?
Gambell \& Yang (2006): Computational model goal
Real data, Psychologically plausible learning algorithm

Realistic data is important to use since the experimental study of Saffran, Aslin, \& Newport (1996) used artificial language data

A psychologically plausible learning algorithm is important since we want to make sure whatever strategy the model uses is something a child could use, too. (Transitional probability would probably work, since Saffran, Aslin, \& Newport (1996) showed that infants can track this kind of information in the artificial language.)

How do we measure word segmentation performance?

Perfect word segmentation:
identify all the words in the speech stream (recall) only identify syllables groups that are actually words (precision)
ðəbígbǽdwólf
\downarrow
ðə bíg bǽd wólf
the big bad wolf

How do we measure word segmentation performance?

Perfect word segmentation:
identify all the words in the speech stream (recall) only identify syllables groups that are actually words (precision)
ðəbígbǽdwálf
\downarrow
ðə bíg bǽd wálf
the big bad wolf

Recall calculation
Identified 4 real words: the, big, bad, wolf
Should have identified 4 words: the, big, bad, wolf
Recall Score: 4 words found $/ 4$ should have found $=1.0$

How do we measure
word segmentation performance?
Perfect word segmentation:
identify all the words in the speech stream (recall)
only identify syllables groups that are actually words (precision)
ðəbígbǽdwólf
\downarrow
ðə bíg bǽd wólf
the big bad wolf
Precision calculation:
Identified 4 real words: the, big, bad, wolf
Identified 4 words total: the, big, bad, wolf
Precision Score: 4 real words found/4 words found= $=1.0$

How do we measure word segmentation performance?

Perfect word segmentation:
identify all the words in the speech stream (recall)
only identify syllables groups that are actually words (precision)

Error $\quad \begin{gathered}\text { ðəbígbǽdwólf } \\ \begin{array}{c}\text { ðəbíg } \\ \text { thebig }\end{array} \\ \text { bǽd } \\ \text { bad }\end{gathered} \begin{gathered}\text { wólf } \\ \text { bolf }\end{gathered}$
\square
\square

How do we measure

 word segmentation performance?Perfect word segmentation:
identify all the words in the speech stream (recall) only identify syllables groups that are actually words (precision)

Recall calculation:
Identified 2 real words: bad, wolf
Should have identified 4 words: the, big, bad, wolf
Recall Score: 2 real words found $/ 4$ should have found $=0.5$

How do we measure word segmentation performance?

Perfect word segmentation:
identify all the words in the speech stream (recall)
only identify syllables groups that are actually words (precision)
ðəbígbǽdwólf

Error

Precision calculation:
Identified 2 real words: bad, wolf
Identified 3 words total: thebig, bad, wolf
Precision Score: 2 real words $/ 3$ words identified $=0.666 \ldots$

How do we measure
word segmentation performance?
:---
only identify syllables groups that are actually words (precision)
Want good scores on both of these measures in
order to be sure that word segmentation is really
successful

Where does the realistic data come from?

CHILDES
Child Language Data Exchange System http://childes.psy.cmu.edu/

Large collection of child-directed speech data (usually parents interacting with their children) transcribed by researchers. Used to see what children's input is actually like.

```
CHILDES Child Language Data Exchange System
```


Where does the realistic data come from?

Gambell \& Yang (2006)

Looked at Brown corpus files in CHILDES $(226,178$ words made up of 263,660 syllables).

Converted the transcriptions to pronunciations using a pronunciation dictionary called the CMU Pronouncing Dictionary.
http://www.speech.cs.cmu.edu/cgi-bin/cmudict

The CMU Pronouncing Dictionary

Where does the realistic data come from?

Converting transcriptions to pronunciations

- Look up words or a sentence (v. 0.7a)

- the big bad wolf
- DH AH0 B IHI G.BAE1 D. W UHI LF.

Gambell and Yang (2006) tried to see if a model learning from transitional probabilities between syllables could correctly segment words from realistic data.

the	big	bad	wolf
DH AHO.	B IH1 G	B AE1 D	W UH1 LF .
ð ə	b í g	b ǽ d	w á 1 f

Segmenting Realistic Data

Gambell and Yang (2006) tried to see if a model learning from transitional probabilities between syllables could correctly segment words from realistic data.
ð ə b í g b ǽ d w á lf
DH AH0 BIH1G BAE1 D W UH1 LF
"There is a word boundary AB and CD if $\operatorname{TrProb}(A-->B)>\operatorname{TrProb}(B-->C)<\operatorname{TrProb}(C-->D)$.

Transitional probability minimum

Segmenting Realistic Data

Gambell and Yang (2006) tried to see if a model learning from transitional probabilities between syllables could correctly segment words from realistic data.

Desired word segmentation

ð ə b í g b ǽ d w á lf

the big bad wolf

Modeling Results for Transitional Probability

Precision: 41.6\%
Recall: 23.3\%

A learner relying only on transitional probability does not reliably segment words such as those in child-directed English.

About 60% of the words posited by the transitional probability learner are not actually words (41.6\% precision) and almost 80\% of the actual words are not extracted (23.3% recall).

Why such poor performance?
"We were surprised by the low level of performance. Upon close examination of the learning data, however, it is not difficult to understand the reason....a sequence of monosyllabic words requires a word boundary after each syllable; a [transitional probability] learner, on the other hand, will only place a word boundary between two sequences of syllables for which the [transitional probabilities] within [those sequences] are higher than [those surrounding the sequences]..." - Gambell \& Yang (2006)

Why such poor performance?

"We were surprised by the low level of performance. Upon close examination of the learning data, however, it is not difficult to understand the reason....a sequence of monosyllabic words requires a word boundary after each syllable; a [transitional probability] learner, on the other hand, will only place a word boundary between two sequences of syllables for which the [transitional probabilities] within [those sequences] are higher than [those surrounding the sequences]..." - Gambell \& Yang (2006)

Why such poor performance?
"We were surprised by the low level of performance. Upon close examination of the learning data, however, it is not difficult to understand the reason....a sequence of monosyllabic words requires a word boundary after each syllable; a [transitional probability] learner, on the other hand, will only place a word boundary between two sequences of syllables for which the [transitional probabilities] within [those sequences] are higher than [those surrounding the sequences]..." - Gambell \& Yang (2006)

Why such poor performance?
"We were surprised by the low level of performance. Upon close examination of the learning data, however, it is not difficult to understand the reason....a sequence of monosyllabic words requires a word boundary after each syllable; a [transitional probability] learner, on the other hand, will only place a word boundary between two sequences of syllables for which the [transitional probabilities] within [those sequences] are higher than [those surrounding the sequences]..." - Gambell \& Yang (2006)
learner posits one word boundary at minimum TrProb

Why such poor performance?
"We were surprised by the low level of performance. Upon close examination of the learning data, however, it is not difficult to understand the reason....a sequence of monosyllabic words requires a word boundary after each syllable; a [transitional probability] learner, on the other hand, will only place a word boundary between two sequences of syllables for which the [transitional probabilities] within [those sequences] are higher than [those surrounding the sequences]..." - Gambell \& Yang (2006)

Why such poor performance?
"More specifically, a monosyllabic word is followed by another monosyllabic word 85% of the time. As long as this is the case, [a transitional probability learner] cannot work." - Gambell \& Yang (2006)

Additional Learning Bias

Gambell \& Yang (2006) idea
Children are sensitive to the properties of their native language like stress patterns very early on. Maybe they can use those sensitivities to help them solve the word segmentation problem.

Unique Stress Constraint (USC)
A word can bear at most one primary stress.

Get these boundaries because stressed (strong) syllables are next to each other.
Additional Learning Bias
Gambell \& Yang (2006) idea
Children are sensitive to the properties of their native language
like stress patterns very early on. Maybe they can use those
sensitivities to help them solve the word segmentation problem.
Unique Stress Constraint (USC)
A word can bear at most one primary stress.
Get these boundaries because stressed (strong) syllables are next
to each other.

Additional Learning Bias

Gambell \& Yang (2006) idea
Children are sensitive to the properties of their native language like stress patterns very early on. Maybe they can use those sensitivities to help them solve the word segmentation problem.

Unique Stress Constraint (USC)
A word can bear at most one primary stress.

Learner gains knowledge: These must be separate words

Additional Learning Bias

Gambell \& Yang (2006) idea
Children are sensitive to the properties of their native language like stress patterns very early on. Maybe they can use those sensitivities to help them solve the word segmentation problem.

Unique Stress Constraint (USC)
A word can bear at most one primary stress.

Can use this in tandem with transitional probabilities when there are weak (unstressed) syllables between stressed syllables.

USC + Transitional Probabilities

Precision: 73.5\%

Evidence of Algebraic Learning in Children
"Behave yourself!"
"I was have!"
(be-have = be + have)
"Was there an adult there?"
"No, there were two dults."
(a-dult $=\mathrm{a}+$ dult)
"Did she have the hiccups?"
"Yeah, she was hiccing-up."
(hicc-up $=$ hicc + up)

Using Algebraic Learning + USC		
StrongSy go gá	$\begin{array}{cc}\text { WeakSyl1 } & \text { WeakSyl2 } \\ \text { blins } & \text { will } \\ \text { blinz } & \text { wil } \\ \text { "Goblins will see..." }\end{array}$	StrongSyl see sí

Algebraic Learning + USC
Precision: 95.9%
Recall: 93.4%
A learner relying on algebraic learning and who also has
knowledge of the Unique Stress Constraint does a really great job
at segmenting words such as those in child-directed English - even
better than one relying on the transitional probability between
syllables.
Only about 5% of the words posited by the transitional probability
learner are not actually words (95.9\% precision) and about 7% of
the actual words are not extracted (93.4\% recall).

A learner relying on algebraic learning and who also has knowledge of the Unique Stress Constraint does a really great job俍 syllables.

Only about 5% of the words posited by the transitional probability learner are not actually words (95.9% precision) and about 7% of the actual words are not extracted (93.4% recall).

Gambell \& Yang (2006) Summary
Learning from transitional probabilities alone doesn't work so well on realistic data, even though experimental research suggests infants are capable of tracking and learning from this information.

Models of children that have additional knowledge about the stress patterns of words seem to have a much better chance of succeeding at word segmentation if they learn via transitional probabilities.

However, models of children that use algebraic learning and have additional knowledge about the stress patterns of words perform even better at word segmentation than any of the models learning from the transitional probability between syllables.

