Psych 156A/ Ling 150: Psychology of Language Learning

Lecture 2
Sounds I

Announcements

Review questions for introduction to language acquisition available

Homework 1 available (due 1/15/09)

Sean’s office hours now available: Mondays, 12:30-2:30pm in SSL 491

Learning Sounds

Sounds of Language (Speech Perception)

Learner’s job: parse continuous stream of speech into sentences, clauses, words, syllables, and phonemes (contrastive sounds that signal a change in meaning)

big vs. pig

Phonemes are language-specific - r/l is a phonemic contrast in English but not in Japanese

Lisa = Risa for some of my Japanese friends

Kids of the world require knowledge of phonemes before they can figure out what different words are - and when different meanings are signaled by different words
About Speech Perception

Important: Not all languages use the same contrastive sounds. Languages draw from a common set of sounds (which can be represented by the International Phonetic Alphabet (IPA)), but only use a subset of that common set.

Child’s task: Figure out what sounds their native language uses contrastively.

meaningful sounds in the language: “contrastive sounds” or phonemic contrasts

Speech Perception: Computational Problem

Divide sounds into contrastive categories (phonemes). Here, 23 acoustically-different sounds are clustered into 4 contrastive categories. Sounds within categories are perceived as being identical to each other.

Categorical Perception

Categorical perception occurs when a range of stimuli that differ continuously are perceived as belonging to only a few categories with no degrees of difference within a given category.

Actual stimuli

Categorical Perception of stimuli

Acoustic-Level Information

Includes: timing and frequency
Tones: frequency
Acoustic-Level Information

Includes: timing and frequency
Tones: frequency (close-up)

Vowels combine acoustic energy at a number of different frequencies

Different vowels ([a] "ah", [i] "ee", [u] "oo" etc.) contain acoustic energy at different frequencies

Listeners must perform a ‘frequency analysis’ of vowels in order to identify them (Fourier Analysis)
Acoustic-Level Information

Language sounds
Male Vowels (close up)

Acoustic-Level Information

Language sounds
Female Vowels

Acoustic-Level Information

Language sounds
Female Vowels (close up)

Synthesized Speech

Allows for precise control of sounds
Valuable tool for investigating perception
Acoustic-Level Information

Language sounds
Timing: Voicing

Acoustic-Level Information

Language sounds
Timing: Voice Onset Time (VOT)

60 ms

English VOT production
Not uniform - there are 2 categories (distribution is bimodal)

Perceiving VOT
‘Categorical Perception’: \(d \) vs. \(t \)

More uncertainty/ error at category boundary

Decision between \(d/t \)
Identification task: “Is this sound \(d \) or \(t \)?”

Time to make decision
Longer decision time at category boundary
Discrimination Task

“Are these two sounds the same or different?”

<table>
<thead>
<tr>
<th></th>
<th>Same/Different</th>
<th>0ms</th>
<th>60ms</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Same/Different</td>
<td>0ms</td>
<td>10ms</td>
</tr>
<tr>
<td></td>
<td>Same/Different</td>
<td>40ms</td>
<td>40ms</td>
</tr>
</tbody>
</table>

Discrimination Task

“Are these two sounds the same or different?”

<table>
<thead>
<tr>
<th></th>
<th>Same/Different</th>
<th>0ms</th>
<th>60ms</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Same/Different</td>
<td>0ms</td>
<td>10ms</td>
</tr>
<tr>
<td></td>
<td>Same/Different</td>
<td>40ms</td>
<td>40ms</td>
</tr>
</tbody>
</table>

Why is this pair difficult?

(i) Acoustically similar?
(ii) Same Category?

Across-Category Discrimination is Easy
Within-Category Discrimination is Hard

Cross-language Differences

<table>
<thead>
<tr>
<th>R</th>
<th>L</th>
</tr>
</thead>
</table>
Cross-Language Differences

Identification task:
English speakers can discriminate r and l, and seem to show a similar pattern of categorical perception to what we saw for d vs. t.

Discrimination task:
English speakers have higher performance at the r/l category boundary, where one sound is perceived as r and one sound is perceived as l. Japanese speakers generally perform poorly (at chance), no matter what sounds are compared because r and l are not contrastive for them.

Cross-Language Differences

English vs. Hindi
alveolar [d]
retroflex [D] ?

Perceiving sound contrasts

Kids...
This ability to distinguish sound contrasts extends to phonemic contrasts that are non-native. (Japanese infants can discriminate contrasts used in English but that are not used in Japanese, like r/l.) This goes for both vowels and consonants.

... vs. adults

Adults can’t, especially without training - even if the difference is quite acoustically salient.

So when is this ability lost?
And what changes from childhood to adulthood?
A useful indirect measurement

Head Turn Preference Procedure

Infant sits on caretaker’s lap. The wall in front of the infant has a green light mounted in the center of it. The walls on the sides of the infant have red lights mounted in the center of them, and there are speakers hidden behind the red lights.

Sounds are played from the two speakers mounted at eye-level to the left and right of the infant. The sounds start when the infant looks towards the blinking side light, and end when the infant looks away for more than two seconds.

Thus, the infant essentially controls how long he or she hears the sounds. Differential preference for one type of sound over the other is used as evidence that infants can detect a difference between the types of sounds.

Head Turn Preference Procedure Movie

“How Babies Learn Language”
(first part, up to about the 2 minute mark)

http://www.youtube.com/watch?v=mZAuZ--Ye7o
Speech Perception of Non-Native Sounds
Comparing perceptual ability
Werker et al. 1981: English-learning 6-8 month olds compared against English & Hindi adults on Hindi contrasts

English adults are terrible (below chance), though there is some variation depending on which sounds are being compared.

Hindi adults can easily distinguish sounds that are used contrastively in their language.

English infants between the ages of 6-8 months aren’t quite as good as Hindi adults - but they’re certainly much better than English adults! They haven’t yet learned to ignore these non-native contrasts.
Sound-Learning Movie

Infant Speech Discrimination

http://www.youtube.com/watch?v=GSIwu_Mhl4A

When Change Happens

But when after 6-8 months is the ability to lost? Werker & Tees (1984)

Testing ability to distinguish Salish & Hindi contrasts

Control (make sure experiment is doable by infants): Hindi and Salish infants do perfectly

When Change Happens

But when after 6-8 months is the ability to lost? Werker & Tees (1984)

Testing ability to distinguish Salish & Hindi contrasts

English 6-8 month-olds do well
When Change Happens

But when after 6-8 months is the ability to lost? Werker & Tees (1984)

Testing ability to distinguish Salish & Hindi contrasts

English 8-10 month-olds do less well

Implication: The ability to distinguish non-native contrasts is lost by 10-12 months. Change seems to be happening between 8-10 months.
How Change Happens

Maintenance & Loss Theory
Infants maintain contrasts being used in their language and lose all the others.

Natural boundaries
(acoustically salient)

How Change Happens

Maintenance & Loss Theory
Infants maintain contrasts being used in their language and lose all the others.

Sounds from Language 1

“Perceptual Magnet”

How Change Happens

Maintenance & Loss Theory
Infants maintain contrasts being used in their language and lose all the others.

Category boundaries that are maintained to keep these sound clusters distinct

How Change Happens

Maintenance & Loss Theory
Infants maintain contrasts being used in their language and lose all the others.

Sounds from Language 2

“Perceptual Magnet”
How Change Happens

Maintenance & Loss Theory

Infants maintain contrasts being used in their language and lose all the others.

Category boundaries that are maintained to keep these sound clusters distinct

Patricia Kuhl

“Perceptual Magnet”

Cross-linguistic variation in which contrasts are maintained, depending on language input

Patricia Kuhl

“Perceptual Magnet”

How Change Happens

Prediction for performance on non-native contrasts over time:

Loss of discrimination ability is permanent and absolute

Should never be able to hear this distinction again

How change happens

Problems with the Maintenance & Loss Theory

If it doesn’t sound like speech, adults can tell the difference. Werker & Tees (1984) showed this with truncated portions of syllables of non-native contrasts. They told subjects the sounds were water dropping into a bucket, and to tell them when the bucket changed. Adults who could not perceive the difference when they heard the entire syllable could perceive the difference when they processed the consonant sounds separately as a non-linguistic sound - like water dropping into a bucket.

Non-linguistic perception
Problems with the Maintenance & Loss Theory

Pisoni et al. (1982), Werker & Logan (1985): adults can be trained if given enough trials or tested in sensitive procedures with low memory demands. Maintenance & Loss would predict that this ability should be irrevocably lost - and it shouldn’t matter how much training adults receive, or how the task is manipulated to help them.

Some non-native contrasts are easy for older infants and adults to discriminate, even though these sounds are never heard in their own languages. (Click languages (Zulu) - click sounds like “tsk tsk” nonspeech)

http://hctv.humnet.ucla.edu/departments/linguistics/VowelsandConsonants/course/chapter6/zulu/zulu.html

Another theory: Functional reorganization

Changes attested experimentally reflect operation of postperceptual processes that kick in for language sounds.

Data distributions determine what the category boundaries are in the filter. Importantly, constructing this filter does not affect base-level sound perception.

Explanatory power: the whole story

Very young infants respond to any detectable variation - so they can pick up any salient contrasts in surrounding language. Adults have a bias for phonemic contrasts since those are the ones relevant to language. If in a non-language setting, adults can distinguish non-native contrastive sounds.
One of the things children must do is figure out what the meaningful contrastive sounds (phonemes) in their native language are.

Phonemes vary from one language to another.

Children initially can hear many contrastive sounds, even non-native ones. However, they seem to have lost this ability by 10-12 months and instead only consciously hear the contrastive sounds of their native language.

Evidence suggests that this perceptual change is a specialized unconscious filter that is only active when the brain believes it is processing language sounds.