Psych 156A/ Ling 150:
Psychology of Language Learning
Lecture 14
Learning Language Structure

Announcements

HW3 returned

Pick up all previous assignments

Start thinking about the final project (paper or exam) if you have an 88 or higher in the class

No class next week - review for the final!

Language Variation: Recap from last time
While languages may differ on many levels, they have many similarities at the level of language structure (syntax). Even languages with no shared history seem to share similar structural patterns.

One way for children to learn the complex structures of their language is to have them already be aware of the ways in which human languages can vary. Nativists believe this is knowledge contained in Universal Grammar. Then, children listen to their native language data to decide which patterns their native language follows.

Languages can be thought to vary structurally on a number of linguistic parameters. One purpose of parameters is to explain how children learn some hard-to-notice structural properties.

Learning Structure with Statistical Learning:
The Relation Between Linguistic Parameters and Probability

Learning Complex Systems Like Language

But obviously language is learned, so children can't know everything beforehand. How does this fit with the idea of innate biases/knowledge?

Observation: we see constrained variation across languages in their sounds, words, and structure. The knowledge of the ways in which languages vary is children's innate knowledge.

Combining Language-Specific Biases with

 Statistical LearningHowever... remember Gambell \& Yang (2006) for statistical learning and word segmentation
"Modeling shows that the statistical learning (Saffran et al. 1996) does not reliably segment words such as those in childdirected English."

Simply using statistics (such as transitional probability between syllables): not so good.

Combining Language-Specific Biases with Probabilistic Learning

But...what happens if statistics are used in conjunction with additional linguistic knowledge?

Gambell \& Yang 2006: If statistical learning is constrained by languagespecific knowledge (Unique Stress Constraint: words have only one main stress), word segmentation performance increases dramatically.

Statistics + linguistic knowledge: much better!

Combining Statistical Learning With Language-Specific Biases

A big deal (Yang 2004):
"Although infants seem to keep track of statistical information, any conclusion drawn from such findings must presuppose that children know what kind of statistical information to keep track of."
language-specific information
Ex: Transitional Probability for word segmentation
...of rhyming syllables?
...of individual sounds (b, a, p, d, ...)?
...of stressed syllables?
Answer: Track the transitional probability of any syllable sequences.

Yang (2004): Variational Learning

Idea taken from evolutionary biology:
In a population, individuals compete against each other. The fittest individuals survive while the others die out.

How do we translate this to learning language structure?
Yang（2004）：Variational Learning
Idea taken from evolutionary biology：
In a population，individuals compete against each other．The
fittest individuals survive while the others die out．
How do we translate this to learning language structure？
Individual＝grammar（combination of parameter values that
represents the structural properties of a language）
（こ）こっこ）
Fitness＝how well a grammar can analyze the data the child
encounters

Yang（2004）：Variational Learning

Intuition：The most successful（fittest）grammar will be the native language grammar because it can analyze all the data the child encounters．This grammar will＂win＂，once the child encounters enough native language data because none of the other competing grammars can analyze all the data．

This grammar can analyze the data point while the other two can＇t．

Yang（2004）：Variational Learning

Idea taken from evolutionary biology：
A child＇s mind consists of a population of grammars that are competing to analyze the data in the child＇s native language．

Population of Grammars

Variational Learning Details

As the child encounters data from the native language, some of the grammars will be more fit because they are better able to account for the structural properties in the data.
Other grammars will be less
fit because they cannot account for some of the data encountered.
Grammars that are more compatible with the native language data will have their probabilities increased
 while grammars that are less compatible will have their probabilities decreased over time.

Variational Learning Details	
How do we know if a grammar can successfully analyze a data point or not?	
Example: Suppose () is the subject-drop parameter.	
is +subject-drop, which Prob = 1/3	
means the language may	$\operatorname{Prob}=1 / 3$ ($) \bigcirc \bigcirc \bigcirc$
optionally choose to leave out the subject of the	Prob = 1/3
sentence, like in Spanish.	()ご5)
() is -subject-drop, which means the language must Here, one grammar is +subject-drop while always have a subject in a two grammars are -subject-drop.	

Variational Learning Details	
How do we know if a grammar can successfully analyze a data point or not?	
Example data: Vamos = coming-1st-pl = "We're coming"	
	Prob $=1 / 3$
grammar is able to analyze this data point as the	Prob=1/3 OOOO2
speaker optionally dropping the subject.	$\begin{gathered} \text { Prob }=1 / 3 \\ (5(5)(5) 0 \end{gathered}$
() The -subject-drop grammars cannot analyze this data point since they require sentences to have a subject.	

Variational Learning Details

Important idea: From the perspective of the subject-drop parameter, certain data will only be compatible with +subjectdrop grammars. These data will always reward grammars with +subject-drop and always punish grammars with -subject-drop.

These are called unambiguous data for the +subject-drop parameter value because they unambiguously indicate which parameter value is correct (here: +subject-drop) for the native language.

Variational Learning Details

How do we know if a grammar can successfully analyze a data point or not?

Example data: Vamos = coming-1st-pl = "We're coming"

| The +subject-drop
 grammar would have its
 probability increased if it tried
 to analyze the data point. | $1 / 3-1 / 3$--> $1 / 4$ |
| :--- | :---: | :---: | :---: |

() The -subject-drop grammars would have their probabilities
decreased if either of them tried to
analyze the data point.

The Power of Unambiguous Data

Unambiguous data from the native language can only be analyzed by grammars that use the native language's parameter value.

This makes unambiguous data very influential data for the child to encounter, since it is incompatible with the parameter value that is incorrect for the native language.

Ex: the -subject-drop parameter value is not compatible with sentences that drop the subject. So, these sentences are unambiguous data for the +subject-drop parameter value.

Important to remember: To use the information in these data, the child must know the subject-drop parameter exists.

Unambiguous Data

Idea from Yang (2004): The more unambiguous data there is, the faster the native language's parameter value will "win" (reach a probability near 1.0). This means that the child will learn the associated structural pattern faster.

Example: the more unambiguous +subject-drop data the child encounters, the faster a child should learn that the native language allows subjects to be dropped

Question: Is it true that the amount of unambiguous data the child encounters for a particular parameter determines when the child learns that structural property of the language?

Yang 2004:
Unambiguous Data Learning Examples
Wh-fronting for questions
Wh-word moves to the front (like English)
Sarah will see who?
Underlying form of the question
\qquad

Yang 2004:
Unambiguous Data Learning Examples
Wh-fronting for questions

Yang 2004:
Unambiguous Data Learning Examples
Wh-fronting for questions
Wh-word moves to the front (like English)
Who will Sarah will see who?

Wh-word stays "in place" (like Chinese)
Sarah will see who?
Observable (spoken) form of the question

Yang 2004:

Unambiguous Data Learning Examples
Wh-fronting for questions
Parameter: $+/-$ wh-fronting
Native language value (English): +wh-fronting
Unambiguous data: any (normal) wh-question, with wh-word in front (ex: "Who will Sarah see?")

Frequency of unambiguous data to children: 25% of input
Age of + wh-fronting acquisition: very early (before $1 \mathrm{yr}, 8$ months)

Yang 2004:
Unambiguous Data Learning Examples Verb raising

Verb moves "above" (before) the adverb/negative word (French) Jean vóit souvent voit Marie Jean sees often voit Marie "Jean often sees Marie."

Jean sees not Marie "Jean doesn't see Marie."

Observable (spoken) form of the sentence

Yang 2004:
Unambiguous Data Learning Examples Verb raising

Verb moves "above" (before) the adverb/negative word (French) Jean souvent voit Marie
Jean often sees Marie
Jean pas voit Marie
Jean not sees Marie
Underlying form of the sentence

Yang 2004:

Unambiguous Data Learning Examples Verb raising

Parameter: +/- verb-raising
Native language value (French): +verb-raising
Unambiguous data: data points that have both a verb and an adverb/negative word in them, where the positions of each can be seen ("Jean voit souvent Marie")

Frequency of unambiguous data to children: 7\% of input
Age of +verb-raising acquisition: $1 \mathrm{yr}, 8$ months

Yang 2004:
Unambiguous Data Learning Examples
Verb Second
Verb moves to second phrasal position, some other phrase moves to the first position (German)
Sarah lieśt Sarah das Buch liest
Sarah reads the book "Sarah reads the book."
Observable (spoken) form of the sentence

Yang 2004:
Unambiguous Data Learning Examples
Verb Second
Verb moves to second phrasal position, some other phrase moves to the first position (German)

Sarah das Buch liest
Sarah the book reads
Underlying form of the sentence

Yang 2004:
Unambiguous Data Learning Examples Verb Second

Verb moves to second phrasal position, some other phrase moves to the first position (German)
Sarah liest Sarah das Buch liest
Sarah reads the book "Sarah reads the book."
Sarah das Buch liest Sarah the book reads

Underlying form of the sentence

Yang 2004:
Unambiguous Data Learning Examples Verb Second

Verb moves to second phrasal position, some other phrase moves to the first position (German)
Sarah liest sarah das Buch liest
Sarah reads the book "Sarah reads the book."
Das Buch liest Sarah das Buch liest
The book reads Sarah "Sarah reads the book."
Observable (spoken) form of the sentence

Yang 2004:

Unambiguous Data Learning Examples
Verb Second
Verb moves to second phrasal position, some other phrase moves to the first position (German)
Sarah liest sarah das Buch liest
Sarah reads the book "Sarah reads the book."
Das Buch liest Sarah das Buch liest
The book reads Sarah "Sarah reads the book."

Verb does not move (English)
Sarah reads the book.
Observable (spoken) form of the sentence

Yang 2004:
Unambiguous Data Learning Examples
Verb Second
Parameter: +/- verb-second
Native language value (German): +verb-second
Unambiguous data: Object Verb Subject data points in German ("Das Buch liest Sarah"), since they show the Object and the Verb in front of the Subject

Frequency of unambiguous data to children: 1.2\% of input

Age of +verb-second acquisition: ~3 yrs

Yang 2004:

Unambiguous Data Learning Examples

Intermediate wh-words in complex questions
(Hindi, German) Observable (spoken) form of the question Wer glaubst du wer Recht hat? Who think-2nd-sg you who right has "Who do you think has the right?"

Yang 2004:

Unambiguous Data Learning Examples

Intermediate wh-words in complex questions
(Hindi, German)
Wer glaubst du wer Recht hat?
Who think-2nd-sg you who right has "Who do you think has the right?"

No intermediate wh-words in complex questions (English) Who do you think has the right?

Observable (spoken) form of the question

Yang 2004:
Unambiguous Data Learning Examples

Parameter value	Frequency of unambiguous data	Age of acquisition
+wh-fronting (English)	25%	Before $1 \mathrm{yr}, 8$ months
+verb-raising (French)	7%	1 yr, 8 months
+verb-second (German)	1.2%	3 yrs
-intermediate-wh (English)	0.2%	>4 yrs

The quantity of unambiguous data available in the child's input seems to be a good indicator of when they will acquire the knowledge. The more there is, the sooner they learn the right parameter value for their native language.

Yang 2004:

Unambiguous Data Learning Examples
Intermediate wh-words in complex questions
Parameter: +/- intermediate-wh
Native language value (English): -intermediate-wh
Unambiguous data: complex questions of a particular kind that show the absence of a wh-word at the beginning of the embedded clause
("Who do you think has the right?")
Frequency of unambiguous data to children: 0.2\% of input
Age of -intermediate-wh acquisition: > 4 yrs

Summary:

Variational Learning for Language Structure

Big idea: When a parameter is set depends on how frequent the unambiguous data are in the data the child encounters. This can be captured easily with the variational learning idea, since unambiguous data are very influential: they always reward the native language grammar and always punish grammars with the non-native parameter value.

Predictions of variational learning:
Parameters set early: more unambiguous data available
Parameters set late: less unambiguous data available
These predictions seem to be born out by available data on when children learn certain structural patterns (parameter values) about their native language.

Questions?

