Psych 156A/ Ling 150: Psychology of Language Learning

Lecture 13
Introduction to Language Structure

Announcements

HW3 due today

Please pick up previous assignments if you haven't done so already

Review questions for structure posted
Start thinking about the final assignment (see webpage for details on writing a paper instead of taking the exam)

Computational Problem:
Figure out the order of words (syntax)

$$
\begin{array}{lll}
\text { Jareth juggles } & \text { crystals } \\
\text { Subject } & \text { Verb } & \text { Object } \\
\text { Noun } & \text { Verb } & \text { Noun } \\
\text { NP } & & \text { NP }
\end{array}
$$

Depends on grammatical categories like Nouns and Verbs (and their associated phrases (NP)), but also on more precise distinctions like Subjects and Objects.

Some Noun Phrase distinctions:
Subject = usually the agent/actor of the action, "doer": Jareth
Object = usually the recipient of the action, "done to": crystals

Computational Problem:

Figure out the order of words (syntax)

$$
\begin{aligned}
& \text { Jareth juggles crystals } \\
& \text { Subject Verb Object }
\end{aligned}
$$

Important idea: The observable word order speakers produce (like Subject Object Verb) is the result of a system of word order rules that speakers unconsciously use when they speak. This system of word order rules is called syntax.

Computational Problem:

Figure out the order of words (syntax)

Jareth juggles crystals
Subject Verb Object

One way to generate Subject Verb Object order:
The linguistic system specifies that order as the general pattern of the language. An example of this kind of system is English.

English Subject Verb Object

Computational Problem:

Figure out the order of words (syntax)

Jareth juggles crystals
Subject Verb Object

Another way to generate Subject Verb Object order:
The linguistic system specifies Subject Object Verb as the general
pattern, but the Verb in main clauses moves to the second position and
some other phrase (like the Subject) moves to the first position. An
example language like this is German.

Computational Problem:

Figure out the order of words (syntax)

> Jareth juggles crystals

Subject Verb Object

Another way to generate Subject Verb Object order:
The linguistic system specifies Subject Object Verb as the general
pattern, but the Verb in main clauses moves to the second position and
some other phrase (like the Subject) moves to the first position. An example language like this is German.

German
movement rules

> Jareth juggles crystals

Subject Verb Object

Another way to generate Subject Verb Object order:
The linguistic system specifies Subject Object Verb as the genera
pattern, but the Verb in main clauses moves to the second position and
some other phrase (like the Subject) moves to the first position. An
example language like this is German.

German

Computational Problem:

Figure out the order of words (syntax)

Jareth juggles crystals
Subject Verb Object

A third way to generate Subject Verb Object order:
The linguistic system specifies Subject Object Verb as the general
pattern, but the Object moves after the Verb in certain contexts (the
Object is unexpected information). Kannada is a language like this.

Kannada Subject Object Verb

Computational Problem:
Figure out the order of words (syntax)

English
Subject Verb Object
Jareth juggles crystals
Subject Verb Object
German
Subject Verb subject Object Verb

Kannada
Subject object Verb Object
The learning problem: How do children know which system their language uses?

Computational Problem:

Figure out the order of words (syntax)

English
Subject Verb Object

Jareth juggles crystals
Subject Verb Object

German
Subject Verb Subject Object Verb

This is a hard question!
Children only see the output of the system (the observable word order of Subject Verb Object).

Translation is not so easy: more than just word-by-word
http://www.worldlingo.com/en/products_services/worldlingo _translator.html

Humans are good at language - how good are computers?

Translation is not so easy: more than just word-by-word
http://www.worldlingo.com/en/products_services/worldlingo _translator.html

Word-by-word translation to Japanese is poor. Japanese structure is very different from English structure at this level.
Through dangers untold and hardships
unnumbered, I have fought my way here to the
castie beyond the goblin oty to take Dack the
child you have stolen. -

Translation is not so easy: more than just word-by-word
http://www.worldlingo.com/en/products_services/worldlingo _translator.html

Trassution (Rusuan):
Yepes untold x hardships onsoroctes
незанумерованние, $\boldsymbol{\text { восевал моюо дорогу здесо }}$ κ замоку за городон gоblin принять наза
ревескка, когор пы крали. ребенка, котор оы крали.

Original (tholich):
Through dangers untold and hardships
unnumbered, I have fought my way here to the
castle berond the poblin city to take back the
child you hove tolen.
child you have stolen.

Translation is not so easy:

 more than just word-by-wordhttp://www.worldlingo.com/en/products_services/worldlingo _translator.html

Translation is not so easy: more than just word-by-word
http://www.worldlingo.com/en/products_services/worldlingo _translator.html

Solving the Language Problem

(Artificial Intelligence)
HAL 9000 from 2001: A Space Odyssey (1968)

Perfect production and comprehension of English.

1960s: Language not considered one of the "hard" problems of artificial intelligence.

Reality in 2008: Still not close to human-like performance.
Contrast: Chess-playing. In 1997, a program named Deep Blue beat the reigning world champion in chess. It did this by having enough computational resources to investigate every move option before it actually made the chess move. This shows that computers' poor performance on language is not about insufficient computational power, since there is enough computational power to solve the chess-playing problem.

About Human Knowledge:
 Language \& Variation

Navajo Code Talker Paradox (Baker 2001)

English must be very different from Navajo
Japanese could decode
English, but couldn't decode Navajo when they didn't know it was Navajo.

English must be similar to Navajo
English can be translated into Navajo and back with no loss of meaning. (Languages are not just a product of the culture pastoral Arizona lifestyle couldn't have prepared the codetalkers for Pacific Island high tech warfare. Yet, translation was still possible.)

Types of Variation

Vocabulary
English "think" verbs: think, know, wonder, suppose, assume,

Multiple types of the action verb "think". Each has certain uses that are appropriate.
"I wonder whether the girl saved her little brother from the goblins." [grammatical]

* "I suppose whether the girl saved her little brother from the goblins." [ungrammatical]

Types of Variation

Vocabulary
English "think" verbs: think, know, wonder, suppose, assume,
Navajo "carry" verbs: depends on object being carried aah (carry a solid round-ish object)

kaah (carry an open container with contents)

lé (carry a flexible object)

Types of Variation

Sounds: Each language uses a particular subset of the sounds in the International Phonetic Alphabet, which represents all the sounds used in all human languages. There's often overlap (ex: "m", "p" are used in many languages), but languages also may make use of the less common sounds.
less common English sounds: "th" [θ], "th" [$\check{\text { T }}$]
less common Navajo sounds: "whispered I", "nasalized a",

	Pum	Lemer	and		tome	Nom	\cdots	0um	nomed	asa
nom	p b			$t \mathrm{~d}$	t d	c f	k g	q G		?
Nout	m	m		n	η	ת)	N		
тa	B			r				R		
Tepanip				r	t					
nomen	$\phi \beta$	f v	$\theta \delta$	 8 5	\$ 7	¢ ${ }^{\text {j }}$	x Y	χ ¢	h ¢	h fi
辰				1 3						
Nomine		v		1	t	j	따			
temer				1	1	κ	L			

Types of Variation

Word order (syntax)

English: Subject Verb Object (invariant word order)
"The boy saw the girl"

Navajo: Subject Object Verb, Object Subject Verb (varying word orders, meaning depends only on verb's form)
Types of Variation
Word order (syntax)
English: Subject Verb Object (invariant word order)
"The boy saw the girl"
Navajo: Subject Object Verb, Object Subject Verb
(varying word orders, meaning depends only on verb's form)
Ashkii at'ééd yiviltsá
boy girl saw
"The boy saw the girl"
Ashkii at'ééd biilstá
boy saw
"The girl saw the boy"

"The girl saw the boy"

Types of Variation

Morphology (word forms)
English: invariant word forms
"the girl is crying", "I am crying"
Navajo: no invariant forms (there may be 100-200 prefixes for verb stems)

At'ééd yicha. "Girl crying"
Yishcha. "I am crying"
(yi + sh + cha)
Ninááhwiishdlaad. "I am again plowing"
(ni + náá + ho + hi + sh + l + dlaad)

Types of Variation

Word order (syntax)
English: Subject Verb Object (invariant word order)
"The boy saw the girl"

Navajo: Subject Object Verb, Object Subject Verb
(varying word orders, meaning depends only on verb's form)

This one prefix changes the entire meaning of the sentence

Thinking About Syntactic Variation

Similarities \& Differences: Parameters

Chomsky: Different combinations of different basic elements (parameters) would yield the observable languages (similar to the way different combinations of different basic elements in
chemistry yield many different-seeming substances).

Big Idea: A relatively small number of syntax parameters yields a large number of different languages' syntactic systems.

Similarities \& Differences: Parameters

Chomsky: Different combinations of different basic elements (parameters) would yield the
observable languages (similar to the way different combinations of different basic elements in chemistry yield many different-seeming substances).

Big Idea: A relatively small number of syntax parameters yields a large number of different languages' syntactic systems.

Similarities \& Differences: Parameters

Chomsky: Different combinations of different basic elements (parameters) would yield the observable languages (similar to the way different combinations of different basic elements in

chemistry yield many different-seeming
substances).
Big Idea: A relatively small number of syntax parameters yields a large number of different languages' syntactic systems.

2 different parameter values of one parameter

Similarities \& Differences: Parameters

Chomsky: Different combinations of different basic elements (parameters) would yield the observable languages (similar to the way different combinations of different basic elements in

Similarities \& Differences: Parameters

Big Idea: A relatively small number of syntax parameters yields a large number of different languages' syntactic systems.

chemistry yield many different-seeming substances).

Big Idea: A relatively small number of syntax parameters yields a large number of different languages' syntactic systems.

Total languages that can be represented = $2^{5}=32$

Learning Language Structure

Chomsky: Children are born knowing the parameters of variation. This is part of Universal Grammar. Input from the native linguistic environment determines what values these
 parameters should have.

Learning Language Structure

Chomsky: Children are born knowing the parameters of variation. This is part of Universal
Grammar. Input from the native linguistic
environment determines what values these parameters should have.

Learning Language Structure

Chomsky: Children are born knowing the parameters of variation. This is part of Universal Grammar. Input from the native linguistic environment determines what values these parameters should have.

Greenberg's Word Order Generalizations
Navajo Japanese

Generalizations About Language Structure

Greenberg's Word Order Generalizations

Navajo
Basic word order:
Subject Object Verb
Ashkii at'ééd yiyiiltsá
boy girl saw
"The boy saw the girl"

Japanese
Basic word order:
Subject Object Verb
Jareth-ga Hoggle-o butta
Jareth Hoggle hit
"Jareth hit Hoggle"

Greenberg's Word Order Generalizations

Navajo

Postpositions:
Noun Phrase Postposition
'éé’ biih náásdzá
clothing into l-got-back "I got back into (my) clothes."

Japanese
Postpositions:
Noun Phrase Postposition
Jareth-ga Sarah to kuruma da Jareth Sarah with car by

London ni itta
London to went
"Jareth went to London with Sarah by car."

Greenberg's Word Order Generalizations

Navajo
Possessor before Possessed
Possessor Possession
$\begin{array}{ll}\text { Chidí bi-jáád } \\ \text { Car } & \text { its-leg }\end{array}$
"the car's wheel"

Japanese
Possessor before Possessed
Possessor Possession
Toby-no imooto-ga
Toby's sister
"Toby's sister"

Greenberg's Word Order Generalizations

Navajo
Basic word order:
Subject Object Verb
Postpositions:
Noun Phrase Postposition
Possessor before Possessed
Possessor Possession

Japanese
Basic word order:
Subject Object Verb
Postpositions:
Noun Phrase Postposition
Possessor before Possessed Possessor Possession

Despite the differences in the languages (and their cultural histories), both Japanese and Navajo are very similar when viewed through these three structural descriptions.

Greenberg's Word Order Generalizations

English
Edo (Nigeria)

Greenberg's Word Order Generalizations

English
Basic word order:
Subject Verb Object
Sarah found Toby

Edo (Nigeria)

Basic word order: Subject Verb Object

Òzó mién Adésuwá Ozo found Adesuwa

Greenberg's Word Order Generalizations
English
Edo (Nigeria)

Prepositions:
Preposition Noun Phrase
Jareth gave the crystal to
Sarah

Prepositions:
Preposition Noun Phrase
Òzó rhié néné ebé né Adésuwá Ozo gave the book to Adesuwa

Greenberg's Word Order Generalizations

English
Possessed before Possessor
Possession Possessor
quest of Sarah
(alternative: Sarah's quest)

Edo (Nigeria)
Possessed before Possessor
Possession Possessor

Omo Ozó
child Ozo
child of Ozo

Greenberg's Word Order Generalizations

English

Basic word order:
Subject Verb Object
Prepositions:
Preposition Noun Phrase
Possessed before Possessor
Possession Possessor

Edo (Nigeria)
Basic word order: Subject Verb Object
Prepositions:
Preposition Noun Phrase
Possessed before Possessor Possession Possessor

Again, despite the differences in the languages (and their cultural histories), both English and Edo are very similar when viewed through these three structural descriptions.

Greenberg's Word Order Generalizations

Greenberg found forty-five "universals" of languages - patterns overwhelmingly followed by languages with unshared history (Navajo \& Japanese, English \& Edo)

Not all combinations are possible - some patterns rarely appear Ex: Subject Verb Object language (English/Edo-like) + postpositions (Navajo/Japanese-like)

Moral: Languages may be more similar than they first appear "on the surface", especially if we consider their structural properties.

More Language Comparisons

French	Italian
Subject Verb	Subject Verb
Jareth arrivera	Jareth verrá
Jareth will-come	Jareth will-come
"Jareth will come."	"Jareth will come."
grammatical	grammatical

More Language Comparisons

French	Italian
*Verb Subject	Verb Subject
"Arrivera Jareth	Verrá Jareth
"Will-arrive Jareth	Will-arrive Jareth
"Jareth will arrive"	"Jareth will arrive"
ungrammatical	grammatical

More Language Comparisons

French	Italian
*Verb	Verb
*Arrivera	Verrá
He-will-come	He-will-come
"He will come"	"He will come"
ungrammatical	grammatical

More Language Comparisons

French
Subject Verb
*Verb Subject
*Verb

These word order patterns might be fairly easy to notice.
They involve the combinations of Subject and Verb that are grammatical in the language. A child might be able to notice the prevalence of some patterns and the absence of others.

More Language Comparisons

Expletive subjects: words without content (may be more difficult to notice)
French Italian
*Pleut Piove.
It-rains.
"It's raining"
It-rains.
"It's raining."

II pleut.

It rains.
"It's raining."
Okay to leave out expletive subject "it"

More Language Comparisons

Embedded Subject-Question Formation (easy to miss)
French
Italian
Tu veux que Marie épouse Jay.
You want that Marie marries Jay.
"You want Marie to marry Jay."
*Qui veux-tu que ___ épouse Jay?
Que veux-tu qui __épouse Jay?
Who want-you that marries Jay?
"Who do you want to marry Jay?"

Requires a special "that" form: qui.

Not okay to leave out
expletive subject "it".

More Language Comparisons

Embedded Subject-Question Formation (easy to miss)
French
Italian
Credi che Jareth verrá.
You think that Jareth will-come.
"You think that Jareth will come."
Che credi che __ verrá?
Who think-you that will-come?
"Who do you think will come?"
Does not require a special "that" form: use the same one as normally is used - che.

More Language Comparisons

| French |
| :--- | :--- |
| Subject Verb |
| *Verb Subject |
| *Verb |
| Not okay to leave out
 expletive subject "it".
 Requires special action for
 embedded subject
 questions.
 Subject Verb
 Verb Subject
 Verb
 Okay to leave out "it".
 expletive subject
 Does not require special
 action for embedded subject
 questions. |

All these involve the subject in some way - coincidence? Idea: No! There's a language parameter involving the subject.

The Value of Parameters: Learning the Hard Stuff by Noticing the Easy Patterns

French vs. Italian: Subject Parameter \qquad

French	r^{\prime}	Italian	Easier to
Subject Verb		Subject Verb	, notice
*Verb Subject		Verb Subject	Hard to notice
*Verb		Verb	
$\begin{aligned} & \text { *Pleut } \\ & \text { It-rains. } \\ & \text { II pleut. } \end{aligned}$	Expletives	Piove. It-rains.	

Universal Grammar: Principles \& Parameters

Parameters: Constrained variation across languages. Children must learn which option their native language uses.

Japanese/Navajo

Basic word order:
Subject Object Verb
Postpositions:
Noun Phrase Postposition
Possessor before Possessed
Possessor Possession

Universal Grammar: Principles \& Parameters

Parameters: Constrained variation across languages. Children must learn which option their native language uses.

Edo/English

Basic word order:
Subject Verb Object
Prepositions:
Preposition Noun Phrase
Possessed before Possessor
Possession Possessor

Universal Grammar: Principles \& Parameters

At this level of structural analysis (parameters), languages differ vary minimally from each other. This makes language structure much easier for children to learn. All they need to do is set the right parameters for their language, based on the data that are easy to observe.

Language Variation: Summary

While languages may differ on many levels, they have many similarities at the level of language structure (syntax). Even languages with no shared history seem to share similar structural patterns.

One way for children to learn the complex structures of their language is to have them already be aware of the ways in which human languages can vary. Nativists believe this is knowledge contained in Universal Grammar. Then, children listen to their native language data to decide which patterns their native language follows.

Languages can be thought to vary structurally on a number of linguistic parameters. One purpose of parameters is to explain how children learn some hard-to-notice structural properties.

Questions?

