Psych 156A/ Ling 150: Psychology of Language Learning

Lecture 1
Introduction

Administrivia

Instructor:

http://www.socsci.uci.edu/~|pearl
Office Hours: T, 3:30-5:30pm in SSPB 2243

Teaching Assistant:

Sean Tauber
stauber@uci.edu
Office Hours: TBA, in TBA

Administrivia

Class web page:
http://www.socsci.uci.edu/~|pearl/courses/psych156A_2009win/index.html

Accessible from EEE, as well. Contains overview (including office hours), schedule, readings, course assignments, and grading policies.

Psych 156A/Ling 150: Psychology of Language Learning
Tuesdays \& Thursdays, 2-3:20pm in His 110
Lsa Pearl, Department of Cognitive Sciences, SSPB 2243 Oftice Hours: Tuesdays $3: 30 \mathrm{pm}-5: 30 \mathrm{pm}$ oreach her to schedule an appointment not during these times.

Administrivia

Administrivia

Assignments

Homework:
Three throughout the quarter, usually due just after we finish discussing the relevant topics in class. Collaboration is allowed and encouraged. However...

You may discuss the homework together, but you must write up your answers separately, and you must write the names of your collaborators on your assignment when you turn it in.

If you do not do both these things, it will be considered academic dishonesty and you will receive a 0 for that assignment.

Administrivia

Midterm Exam

There will be a midterm exam on $2 / 5 / 09$. It will cover the material in weeks 1-4. Review questions will be available for each topic covered in class, and there will be a midterm review in class 2/3/09.

The midterm exam will be open-note, but non-collaborative. If you are found collaborating with other classmates during the midterm exam, you will receive a 0 .

Administrivia

Final Exam/Assignment

Final assignment:
If you have an A in the class by week 10, you may choose to either take the final exam or submit a final paper. Details are on the class webpage, under the "assignments" section.

If you do not have an A in the class by week 10, you must take the final exam

The final exam will be held 3/12/09 during class. If you are submitting a final paper, it must be turned in by $3: 20 \mathrm{pm} 3 / 12 / 09$

Administrivia

Final Paper

If you choose to do a final paper in place of a final exam, you will write a short review paper on one of the articles we discuss in class. You must indicate by 3/10/09 that you will be writing a final paper, and which article you will be reviewing. Articles available for review are listed under the "readings" section of the webpage.


```
In addition, if you choose to write a paper for your final assignment, you may choose one of 
``` the articles below (or one of a similar nature, with the instructor's approval)

\section*{Administrivia}

\section*{Final Exam}

The final exam will focus on the material in weeks 6-10, though
there will be some questions from the material in weeks 1-4.
There will be a final review in class 3/10/09.

The final exam will be open-note, but non-collaborative.
If you are found collaborating with other classmates during the final exam, you will receive a 0 .

\section*{Administrivia}

\section*{Grades}

Homework: 50\%

Midterm: 25\%

Final Assignment (Exam or Paper): 25\%
Your grades will be determined by approximately this scale (available on the webpage):
\begin{tabular}{lll}
96-100: \(A+\) & 84-88: \(\mathrm{B}+\) & 72-76: \(\mathrm{C}+\) \\
92-96: A & 80-84: B & \(68-72: \mathrm{C}\) \\
88-92: A- & \(76-80: \mathrm{B}-\) & \(64-68: \mathrm{C}\)
\end{tabular}

88-92: A-
76-80: B- 64-68: C-

\section*{Administrivia}

Schedule
"This is our wonderfully ambitious schedule. We'll attempt to
keep with it, but it is subject to modification."
Topics:
\begin{tabular}{ll}
Introduction & \((1 / 6)\) \\
Sounds \& Sounds of Words & \((1 / 8-1 / 13)\) \\
Words \& Morphology & \((1 / 15-1 / 29)\) \\
MIDTERM & \((2 / 5)\) \\
Phrases & \((2 / 10)\) \\
Poverty of the Stimulus \& Learning Biases & \((2 / 12-2 / 19)\) \\
Sentences \& Language Structure & \((2 / 24-2 / 26)\) \\
FINAL & \((3 / 12)\)
\end{tabular}

\section*{Knowledge of Language}

It's so natural for us to produce and comprehend language that we often don't think about what an accomplishment this is.

Or how we learned language in the first place.

\section*{Jackendoff (1994)}
"For the moment, the main thing is to appreciate how hard a problem this is. The fact that we can talk (and cats can't) seems so obvious that it hardly bears mention. But just because it's obvious doesn't mean it's easy to explain. Think of another perfectly obvious, well-known phenomenon: the fact that metals turn red when you heat them. Why does this happen? It could be otherwise - they might just as well turn green or not change color at all. It's a simple phenomenon, easily observable, but the explanation isn't simple at all. It turns out to involve at the very least the theories of electromagnetic radiation and quantum mechanics, two of the more amazing intellectual advances in the past century. So it is, I want to suggest, with the human ability to use language."

\section*{About Language}

Language is a complex system of knowledge that all children learn by listening to native speakers in their surrounding environment.

It includes sound structure, word structure, word meaning, sentence structure, mapping from sentence

structure to meaning, unspoken
rules of conversation..

\section*{About Language}

Language is a complex system of knowledge that all children learn by listening to native speakers in their surrounding environment.

It includes sound structure, word structure, word meaning, sentence structure, mapping from sentence structure to meaning, unspoken rules of conversation.

\section*{About Language}

Language is a complex system of knowledge that all children learn by listening to native speakers in their surrounding environment.

It includes sound structure, word structure, word meaning, sentence structure, mapping from sentence structure to meaning, unspoken rules of conversation

\section*{About Language}

Language is a complex system of
knowledge that all children learn by listening to native speakers in their surrounding environment.

It includes sound structure, word structure, word meaning, sentence structure, mapping from sentence structure to meaning, unspoken rules of conversation...
 goblins goblin \((\) plural \()=\) goblin \(+s\) gob lins

\section*{About Language}

Language is a complex system of knowledge that all children learn by listening to native speakers in their surrounding environment.

It includes sound structure, word structure, word meaning, sentence structure, mapping from sentence structure to meaning, unspoken rules of conversation.

Don't goblins like children? Goblins like children.
 goblins goblin \((\) plural \()=\) goblin \(+s\)
gob lins
gablinz

\section*{Some Terminology}

Phonology: sounds and sound system of the language
gablinz goblins

Lexicon: Words and associated knowledge (word forms, word meanings, etc.)

Morphology: system for combining units of meaning together (goblin + [plural] = goblins)

\section*{Some Terminology}

Syntax: system for combining words into sentences

\section*{Goblins like children.}

Pragmatics: knowledge of language use

Don't goblins like children?
(expresses prior belief that goblins do like children)
Use this question form if you have this prior belief

\section*{Kids Do Amazing Things}

Much of the linguistic system is already known by age 3 .

when kids can't tie their own shoes
or reliably recognize "4".
at kids are doing: extracting patterns and making generalizations
from the surrounding data mostly without explicit instruction.

> "Rules" of language = grammar

Here are some cards - they have some salient properties
associated with them: number of items, shape of items, color of items, fill of items.

A learning analogy: Set

Task: Find Sets.

Here's one:

What generalizations might you make about Sets?

Task: Find Sets.

Here's one:

\section*{01010}

What generalizations might you make about Sets?
Set = all shapes, fills, and number of items the same?

\section*{A learning analogy: Set}

Task: Find Sets.

Here's another one:

\section*{010000}

Does this fit the generalization?
Set = all shapes, fills, and number of items the same?

\section*{A learning analogy: Set \\ }

Task: Find Sets.

Here's another one:

What about this one?

Set = all shapes and fills the same?

Task: Find Sets

Here are some more examples of sets:

Task: Find Sets.
Here are some more examples of sets:
Set \(=\) all fills the same?

\section*{Back to Kids \& Language}

Children infer rules with this amount of complexity (and more!) from examples of language. And sometimes, even when there's noise (misleading examples in the input).

Noise Analogy: "All these are Sets."
noise
0.88000

not really a set
but presented to
child as if it were

Knowledge of Language \& Hidden Rules
Some examples from language:
You know that..
.strop is a possible word of English, while stvop isn't.

Knowledge of Language \& Hidden Rules Some examples from language:

You know that..
..."Who did you see who did that?" is not a grammatical question in English
(Instead: "Who did you see do that?")

Knowledge of Language \& Hidden Rules
Some examples from language:

You know that. .
...In "She ate the peach while Sarah was reading", she \(\neq\) Sarah
but she can be Sarah in all of these:
Sarah ate the peach while she was reading.
While she was reading, Sarah ate the peach.
While Sarah was reading, she ate the peach

Knowledge of Language \& Hidden Rules
Some examples from language:

You know that.
...the ' \(s\) ' in 'cats' sounds different from the ' \(s\) ' in goblins
cats: 's' = /s/
goblins: 's' = /z/

\section*{Why rules?}
"The expressive variety of language use implies that a language user's brain contains unconscious grammatical principles" Jackendoff (1994)

Example: Most sentences we have never seen or used before, but we can still understand them.

Question: Can speakers simply memorize all the possible sentences of a language the way they learn the vocabulary of their language? Not if there are an infinite number of them.

Linguistic Infinity

Hoggle has two jewels.
Hoggle has three jewels
Hoggle has four jewels.

Hoggle has forty-three million and five jewels.
One (dumb) way to get infinity

\section*{Linguistic Infinity}

An aardvark is not an antelope.

An aardvark is not a zenith.

A penguin is not a goblin.

Another way to get a really large number of sentences...

\section*{Linguistic Infinity}

An aardvark is not an antelope.
An aardvark is not a zenith.

A penguin is not a goblin.
Another way to get a really large number of sentences...

And another..
If an aardvark is not an antelope, then an aardvark is not an ant.
If an aardvark is not a zenith, then a peach is not an idea.
If a penguin is not a goblin, then a fruit is not a fairy.

\section*{Linguistic Creativity}

What lists include this sentence?
Through dangers untold and hardships unnumbered, I have fought my way here to the castle beyond the goblin city to take back the child you have stolen, for my will is as strong as yours and my kingdom is as great.

\section*{Or this one?}

In the purple powder room, there lived a grumpy dollop of cream that slept lazily and yelled silently by turns, often scaring the silverware with its fierce pacific nature.

\section*{The argument for mental grammar}
"In short, in order for us to be able to speak and understand novel sentences, we have to store in our heads not just the words of our language but also the patterns of sentences possible in our language. These patterns, in turn, describe not just patterns of words but also patterns of patterns. Linguists refer to these patterns as the rules of language stored in memory; they refer to the rules as the mental grammar of the language, or grammar for short." - Jackendoff (1994)

\section*{Possible objections to a mental rule set}
"Why should I believe I store a set of rules unconsciously in my mind? I just understand sentences because they make sense."

\section*{Possible objections to}
a mental rule set
"Why should I believe I store a set of rules unconsciously in my mind? I just understand sentences because they make sense."

But why do some sentences make sense and others don't?

Hoggle has two jewels.
*Two Hoggle jewels has.

\section*{Possible objections to a mental grammar}
"What about people who speak ungrammatically, who say things like 'We ain't got no bananas'? They obviously don't have grammars in their heads."

\section*{Possible objections to}
a mental rule set
Why can we recognize patterns even when some of the words are unknown?
'Twas brillig, and the slithy toves did gyre and gimble in the wabe..

\section*{Possible objections to a mental grammar}
"What about people who speak ungrammatically, who say things like 'We ain't got no bananas'? They obviously don't have grammars in their heads."

Prescriptive vs. Descriptive Grammar
Prescriptive: what you have to be taught in school, what is prescribed by some higher "authority"
"Don't end a sentence with a preposition." " 'Ain't' is not a word."

\section*{Possible objections to a mental grammar}
"What about people who speak ungrammatically, who say things like 'We ain't got no bananas'? They obviously don't have grammars in their heads."

Prescriptive vs. Descriptive Grammar

Descriptive: what you pick up from being a native speaker of the language, how people actually speak in their day-to-day interactions

Who does Sarah first talk with?
"You're horrible!" "No, I ain't - I'm Hoggle!"

\section*{Possible objections to \\ an unconscious rule set}
"When I talk, the talk just comes out - I'm not consulting any rule set."

Analogy: wiggling your fingers
When you want to wiggle your fingers, you "just wiggle them".

But your finger-wiggling intention was turned into commands sent by your brain to your muscles, and you're never conscious of the process unless something interferes with it.
Nonetheless, there is a process, even if you're not aware of it.

\section*{Possible objections to an unconscious rule set}
"When I talk, the talk just comes out - I'm not consulting any rule set."

\section*{Learning hard things}

Suppose we have mental grammars in our heads - how did they get there?
"Many people immediately assume that the
 parents taught it. To be sure, parents often engage in teaching words to their kids: "What this, Amy? It's a BIRDIE! Say 'birdie,' Amy!" But language learning can't entirely be the result of teaching words. For one thing, there are lots of words that it is hard to imagine parents teaching, notably those one can't point to: "Say 'from', Amy!" "This is ANY, Amy!" - Jackendoff (1994)

\section*{Learning hard things}

Some other things that are hard to teach: interpretations

Joan

"How do we come to understand these sentences this way? It obviously depends somehow on the difference between ordinary pronouns such as "her" and reflexive pronouns such as "herself," and also on the differences between the verbs "appear" and "appeal." But how?...sure no one is ever taught contrasts like this by parents or teachers..." -
Jackendoff (1994)

\section*{Learning patterns}

Not so clear that children learn grammatical patterns from their parents
(From Martin Braine)
Child: Want other one spoon, Daddy.
Father: You mean, you want the other spoon.
Child: Yes, I want other one spoon, please Daddy.
Father: Can you say "the other spoon"?
Child: Other...one...spoon.
Father: Say "other".
Child: Other.
Father: "Spoon."
Child: Spoon.
Father: "Other spoon."
Child: Other...spoon. Now give me other one spoon?

Children don't just imitate what they've heard

From Edward Klima \& Ursula Bellugi

Stage 1
Use of past tense verbs
walked
played
came
went
(U-shaped curve of performance)
Stage 4
walked
played
came
went
held

Stage 3
walked
played
camed
wented

Children don't just imitate what they've heard
From Edward Klima \& Ursula Bellugi

Levels of Representation Marr (1982)

\section*{Describing vs. Explaining in Vision}
"...it gradually became clear that something important was missing ...neurophysiology and psychophysics have as their business to describe the behavior of cells or of subjects but not to explain such behavior....What are the problems in
doing it that need explaining, and what level of description should such explanations be sought?" - Marr (1982)

\section*{On Explaining (Marr 1982)}
"But the important point is that if the notion of different types of understanding is taken very seriously, it allows the study of the information-processing basis of perception to be made rigorous. It becomes possible, by separating explanations into different levels, to make explicit statements about what is being computed and why..."

\section*{On Explaining (Marr 1982)}
"But the important point is that if the notion of different types of understanding is taken very seriously, it allows the study of the information-processing basis of perceptionto be made rigorous. It becomes possible, by separáting explanations into different levels, to make explicit statements about what is being computed and why..."

Our goal: Substitute "language learning" for "perception"

\section*{The three levels}

\section*{Computational}

What is the goal of the computation? What is the logic of the strategy by which is can be carried out?

Algorithmic
How can this computational theory be implemented?
What is the representation for the input and output, and what is the algorithm for the transformation?

Implementational
How can the representation and algorithm be realized physically?

\section*{The three levels:}

An example with the cash register

\section*{Computational}

What does this device do?
Arithmetic (ex: addition).
Addition: Mapping of a pair of numbers to another number.
\((3,4) \longrightarrow 7 \quad\) (often written \((3+4=7)\))
Properties: \((3+4)=(4+3)\) [commutative], \((3+4)+5\)
\(=3+(4+5)\) [associative], \((3+0)=3\) [identity element], (\(3+-3\)) \(=0\) [inverse element]

True no matter how numbers are represented: this is what is being computed

The three levels:
An example with the cash register

\section*{Computational}

What does this device do?
Arithmetic (ex: addition).
Addition: Mapping of a pair of numbers to another number.

Algorithmic
What is the input, output, and method of transformation?
Input: arabic numerals \((0,1,2,3,4 \ldots)\)
Output: arabic numerals (\(0,1,2,3,4 \ldots\))
Method of transformation: rules of addition, where least significant digits are added first and sums over 9 have their next digit carried over to the next column

The three levels:
An example with the cash register

\section*{Computational}

What does this device do?
Arithmetic (ex: addition).
Addition: Mapping of a pair of numbers to another number.

Algorithmic
What is the input, output, and method of transformation?
Input: arabic numerals \((0,1,2,3,4 \ldots)\)
Output: arabic numerals (\(0,1,2,3,4 \ldots\))
Method of transformation: rules of addition, where least significant digits are added first and sums over 9 have their next digit carried over to the next column
\begin{tabular}{r}
1 \\
99 \\
\(+\quad 5\) \\
\hline 104
\end{tabular}

\section*{Mapping the Framework:}

Algorithmic Theory of Language Learning
Goal: Understanding the "how" of language learning
First, we need a computational-level description of the learning problem.

Computational Problem: Divide spoken speech into words

\section*{Mapping the Framework:}

Algorithmic Theory of Language Learning
Goal: Understanding the "how" of language learning
First, we need a computational-level description of the learning problem.

Computational Problem: Identify the rules of word order for sentences.

Mapping the Framework:
Algorithmic Theory of Language Learning
Goal: Understanding the "how" of language learning
Second, we need to be able to identify the algorithmic-level description:

Input = sounds, syllables, words, phrases,
Output = sound categories, words, words with affixes, grammatical categories, sentences,
Method = statistical learning, algebraic learning, prior knowledge about how human languages work, ..

\section*{Recap: Levels of Representation}

Language acquisition can be viewed as an information-processing task where the child takes the native language input encountered and uses it to construct the adult rule system (grammar) for the language.

Main idea: The point is not just to describe what children know about their native language and when they know it, but also how they learned it.

Three levels:
computational: what is the problem to be solved
algorithmic: what procedure will solve the problem, transforming inpu to desired output form
implementational: how is that procedure implemented/instantiated in the available medium```

