Psych 156A/ Ling 150:
Psychology of Language Learning

Lecture 9
Words in Fluent Speech II
Announcements
Homework 3 due today
Homework 2 returned (Avg: 21.6 out of 27)
Quiz 3 returned (Avg: 8.6 out of 10)
Comments about how to do well in this class
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Computational Problem
Divide spoken speech into words
húwzəfréjdəvðəbÍgbæ'dwə'lf

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Saffran, Aslin, \& Newport (1996) \qquad
\qquad
Experimental evidence suggests that 8 month old infants can track statistical information such as the transitional probability between syllables. This can help them solve the task of word segmentation.

Evidence comes from testing children in an artificial language paradigm, with very short exposure time. \qquad

\qquad
\qquad

\qquad
Gambell \& Yang (2006): Computational model goal
Real data, Psychologically plausible learning algorithm

Realistic data is important to use since the experimental study of Saffran, Aslin, \& Newport (1996) used artificial language data

A psychologically plausible learning algorithm is important since we want to make sure whatever strategy the model uses is something a child could use, too. (Transitional probability would probably work, since Saffran, Aslin, \& Newport (1996) showed that infants can track this kind of information in the artificial language.)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

How do we measure
word segmentation performance?
Perfect word segmentation: identify all the words in the speech stream (recall) only identify syllables groups that are actually words (precision)
ðəbÍgbæ'dwə'lf
ðә bíg bæ'd wə'lf
the big bad wolf

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

How do we measure

 word segmentation performance?Perfect word segmentation:
identify all the words in the speech stream (recall) only identify syllables groups that are actually words (precision)
ðəbligbæ‘dwa'lf
ðə bíg bæ‘d wa'lf
the big bad wolf \qquad
\qquad
\qquad

Recall calculation:

Should have identified 4 words: the, big, bad, wolf
Identified 4 real words: the, big, bad, wolf
Recall Score: 4/4 = 1.0 \qquad

How do we measure
word segmentation performance?
Perfect word segmentation:
identify all the words in the speech stream (recall)
only identify syllables groups that are actually words (precision)
ðəbÍgbæ'dwə'lf
ðə bÍg bæ'd wə'lf
the big bad wolf

\qquad

Perfect word segmentation:
identify all the words in the speech stream (recall) only identify syllables groups that are actually words (precision)
ðəbígbæ‘dwa'lf
ðə bíg bæ'd wa'lf
the big bad wolf \qquad
\qquad
\qquad
\qquad

How do we measure word segmentation performance?
Perfect word segmentation: identify all the words in the speech stream (recall) only identify syllables groups that are actually words (precision)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

How do we measure

 word segmentation performance?Perfect word segmentation:
identify all the words in the speech stream (recall) only identify syllables groups that are actually words (precision)

	ðəbÍgbæ'dwə'lf
Error	$\begin{array}{l}\text { ¢} \mathrm{l} \text { I'g } \\ \text { thebig }\end{array}$ bad wa'lf

Recall calculation:

Should have identified 4 words: the, big, bad, wolf Identified 2 real words: big, bad
Recall Score: $2 / 4=0.5$

\qquad

Perfect word segmentation:
identify all the words in the speech stream (recall) only identify syllables groups that are actually words (precision)
ðəbígbæ'dwə'lf
ðəbÍg bæ"d wa'lf
calculation
Identified 2 real words: big, bad
Precision Score: $2 / 3=0.666$.

How do we measure
word segmentation performance?
Perfect word segmentation: identify all the words in the speech stream (recall) only identify syllables groups that are actually words (precision)
Want good scores on both of these measures

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Where does the realistic data come from? \qquad

CHILDES

Child Language Data Exchange System
http://childes.psy.cmu.edu/
Large collection of child-directed speech data transcribed by researchers. Used to see what children's input is
\qquad
\qquad actually like.
\qquad

CHILDES Child Language Data Exchange System

Where does the realistic data come from?

Gambell \& Yang (2006)

Looked at Brown corpus files in CHILDES (226,178 words made up of 263,660 syllables).

Converted the transcriptions to pronunciations using a pronunciation dictionary called the CMU Pronouncing Dictionary.
http://www.speech.cs.cmu.edu/cgi-bin/cmudict
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
The CMU Pronouncing Dictionary
\qquad

Where does the realistic data come from? \qquad

Converting transcriptions to pronunciations \qquad

- Look up words or a sentence (v. $\mathbf{0 . 7 a}$)

- the big bad wolf
- DH AHO. B IHI G.BAEI D.WUHI LF.
\qquad
\qquad
Gambell and Yang (2006) tried to see if a model learning from transitional probabilities between syllables could correctly segment words from realistic data.
ðə bĺg bæ'd wa'lf

DH AH0. BIH1 G. BAE1 D. WUH1 LF.

Segmenting Realistic Data

Gambell and Yang (2006) tried to see if a model learning from transitional probabilities between syllables could correctly segment words from realistic data.
ðә bĺg bæ‘d wə'lf
DH AH0. BIH1 G. B AE1 D. WUH1 LF.

Segmenting Realistic Data

Gambell and Yang (2006) tried to see if a model learning from transitional probabilities between syllables could correctly segment words from realistic data.

Modeling Results for Transitional Probability

Precision: 41.6\%
Recall: 23.3\%

A learner relying only on transitional probability does not reliably segment words such as those in child-directed English.

About 60\% of the words posited by the transitional probability learner are not actually words (41.6% precision) and almost 80% of the actual words are not extracted (23.3% recall).

Why such poor performance?

"We were surprised by the low level of performance. Upon close examination of the learning data, however, it is not difficult to understand the reason....a sequence of monosyllabic words requires a word boundary after each syllable; a [transitional probability] learner, on the other hand, will only place a word boundary between two sequences of syllables for which the [transitional probabilities] within [those sequences] are higher than [those surrounding the sequences]..." - Gambell \& Yang (2006)
\qquad

Why such poor performance?

"We were surprised by the low level of performance. Upon close examination of the learning data, however, it is not difficult to understand the reason....a sequence of monosyllabic words requires a word boundary after each syllable; a [transitional probability] learner, on the other hand, will only place a word boundary between two sequences of syllables for which the [transitional probabilities] within [those sequences] are higher than [those surrounding the sequences]..." - Gambell \& Yang (2006)

Why such poor performance?

"We were surprised by the low level of performance. Upon close examination of the learning data, however, it is not difficult to
\qquad understand the reason....a sequence of monosyllabic words requires a word boundary after each syllable; a [transitional probability] learner, on the other hand, will only place a word boundary between two sequences of syllables for which the [transitional probabilities] within [those sequences] are higher than [those surrounding the sequences]..." - Gambell \& Yang (2006)

Why such poor performance?

\qquad

We were surprised by the low level of performance. Upon close examination of the learning data, however, it is not difficult to understand the reason.... a sequence of monosyllabic words requires a word boundary after each syllable; a [transitional probability] learner, on the other hand, will only place a word boundary between two sequences of syllables for which the [transitional probabilities] within [those sequences] are higher than [those surrounding the sequences]..." - Gambell \& Yang (2006)

Why such poor performance?

"We were surprised by the low level of performance. Upon close examination of the learning data, however, it is not difficult to understand the reason.... a sequence of monosyllabic words requires a word boundary after each syllable; a [transitional probability] learner, on the other hand, will only place a word boundary between two sequences of syllables for which the [transitional probabilities] within [those sequences] are higher than [those surrounding the sequences]..." - Gambell \& Yang (2006
learner posits one word boundary at minimum TrProb

Why such poor performance?

"We were surprised by the low level of performance. Upon close examination of the learning data, however, it is not difficult to \qquad understand the reason....a sequence of monosyllabic words requires a word boundary after each syllable; a [transitional probability] learner, on the other hand, will only place a word boundary between two sequences of syllables for which the [transitional probabilities] within [those sequences] are higher than [those surrounding the sequences]..." - Gambell \& Yang (2006)
\qquad
\qquad

$0.6>0.3,0.3<0.7$

Why such poor performance?

\qquad

We were surprised by the low level of performance. Upon close examination of the learning data, however, it is not difficult to understand the reason.... a sequence of monosyllabic words requires a word boundary after each syllable; a [transitional probability] learner, on the other hand, will only place a word boundary between two sequences of syllables for which the [transitional probabilities] within [those sequences] are higher than [those surrounding the sequences]..." - Gambell \& Yang (2006)
\qquad

бә blig bæ'd wo'lf \qquad
\qquad
\qquad

Why such poor performance?
"We were surprised by the low level of performance. Upon close examination of the learning data, however, it is not difficult to understand the reason.....a sequence of monosyllabic words requires a word boundary after each syllable; a [transitional probability] learner, on the other hand, will only place a word boundary between two sequences of syllables for which the [transitional probabilities] within [those sequences] are higher than [those surrounding the sequences]..." - Gambell \& Yang (2006)

Precision for this sequence: 0 words correct out of 2 posited Recall: 0 words correct out of 4 that should have been posited

Why such poor performance?

\qquad
"More specifically, a monosyllabic word is followed by another monosyllabic word 85% of the time. As long as this is the case, [a transitional probability learner] cannot work." - Gambell \& Yang \qquad (2006)

Additional Learning Bias
Gambell \& Yang (2006) idea
Children are sensitive to the properties of their native language
like stress patterns very early on. Maybe they can use those
sensitivities to help them solve the word segmentation problem.
Unique Stress Constraint (USC)
A word can bear at most one primary stress.
no stress stress
дə stress

Additional Learning Bias
Gambell \& Yang (2006) idea
Children are sensitive to the properties of their native language
like stress patterns very early on. Maybe they can use those
sensitivities to help them solve the word segmentation problem.
Unique Stress Constraint (USC)
A word can bear at most one primary stress.
Learner gains knowledge: These must be separate words

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Additional Learning Bias

Gambell \& Yang (2006) idea
Children are sensitive to the properties of their native language like stress patterns very early on. Maybe they can use those sensitivities to help them solve the word segmentation problem.

Unique Stress Constraint (USC)
A word can bear at most one primary stress.
húw) zә fréjd әу фә bíg bæ'd wo'lf
Get these boundaries because stressed (strong) syllables are next to each other.
Additional Learning Bias
Gambell \& Yang (2006) idea
Children are sensitive to the properties of their native language
like stress patterns very early on. Maybe they can use those
sensitivities to help them solve the word segmentation problem.
Unique Stress Constraint (USC)
A word can bear at most one primary stress.
Chúw) zə(fréjd) əv дә bigg) bæ'd wo'lf)
Care weak (unstressed) syllables between stressed syllables.
Additional Learning Bias
Gambell \& Yang (2006) idea
Children are sensitive to the properties of their native language
like stress patterns very early on. Maybe they can use those
sensitivities to help them solve the word segmentation problem.
Unique Stress Constraint (USC)
A word can bear at most one primary stress.
There's a word boundary
at one of these two.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

USC + Transitional Probabilities

\qquad
Precision: 73.5\%

A learner relying only on transitional probability but who also has knowledge of the Unique Stress Constraint does a much better job at segmenting words such as those in child-directed English.

Only about 25% of the words posited by the transitional probability learner are not actually words (73.5% precision) and about 30% of the actual words are not extracted (71.2% recall).

Evidence of Algebraic Learning in Children
"Behave yourself!"
"I was have!"
(be-have = be + have)
"Was there an adult there?"
"No, there were two dults."
(a-dult = a + dult)
"Did she have the hiccups?"
"Yeah, she was hiccing-up."
(hicc-up = hicc + up)

\qquad
\qquad
I was have!"

Was there an adult there? "No, there were two dults."
"Did she have the hiccups?"
"Yeah, she was hiccing-up."
(hicc-up = hicc + up)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Using Algebraic Learning + USC

Familiar word: "many"

"Many can come..."
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Familiar word: "come"

| StrongSyl WeakSyl1
 ma ny | WeakSyl2
 can |
| :---: | :---: | | StrongSyl |
| :---: |
| come |

"Many can come..."
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
This must be a word:
add it to memory
StrongSyl WeakSylt WeakSyl2 StrongSyl
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Algebraic Learning + USC
Precision: 95.9%
Recall: 93.4%
A learner relying on algebraic learning and who also has
knowledge of the Unique Stress Constraint does a really great job
at segmenting words such as those in child-directed English.
Only about 5% of the words posited by the transitional probability
learner are not actually words (95.9\% precision) and about 7% of
the actual words are not extracted (93.4% recall).

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Gambell \& Yang (2006) Summary

\qquad

Learning from transitional probabilities alone doesn't work so well on realistic data.

Models of children who have additional knowledge about the stress patterns of words in their language have a much better chance of succeeding at word segmentation if they learn via transitional probabilities.

However, models of children who use algebraic learning as well as have additional knowledge about language-specific stress patterns perform even better at word segmentation.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

