Lecture 19

Learning Structure with Parameters

Announcements
Next class: Review session for final
- Review homework and quiz questions, come in with
questions to go over
- If you want, you may email me which questions you
would like to discuss in class. We'll prioritize based
on how many people want to discuss any given
question.
- Remember: review questions are available for the
last 3 lectures ("Structure \& Learning Structure").
These are fair game for the final.
HW6: average 33.2 out of 43

\qquad
\qquad

- Review homework and quiz questions, come in with questions to go over

都 on question.

- Remember: review questions are available for the last 3 lectures ("Structure \& Learning Structure"). These are fair game for the final.
\qquad
\qquad
\qquad

Language Variation: Summary

While languages may differ on many levels, they have many similarities at the level of language structure (syntax). Even languages with no shared history seem to share similar structural patterns.

One way for children to learn the complex structures of their language is to have them already be aware of the ways in which human languages can vary. Then, they listen to their native language data to decide which patterns their native language follows.

Languages can be thought to vary structurally on a number of linguistic parameters. One purpose of parameters is to explain how children learn some hard-to-notice structural properties.

\qquad
\qquad

Learning Complex Systems Like Language

Only humans seem able to learn human languages

Something in our biology must allow us to do this.

Chomsky: this is what Universal Grammar is - innate biases for learning language that are available to humans because of our biological makeup (specifically, the biology of our brains).

Learning Complex Systems Like Language

The big point: need both innate biases \& probabilistic learning abilities

We need to find a way to explicitly integrate them with
 bech or so that we can understand how learning arning language might work. It will likely involve both prior knowledge about language (which may come from the biology of our brains) as well as general-purpose learning strategies like probabilistic/statistical learning.

Combining Language-Specific Biases with Probabilistic Learning

Statistics for word segmentation (remember Gambell \& Yang (2006))
"Modeling shows that the statistical learning (Saffran et al. 1996) does not reliably segment words such as those in childdirected English. Specifically, precision is 41.6%, recall is 23.3%. In other words, about 60% of words postulated by the statistical learner are not English words, and almost 80% of actual English words are not extracted. This is so even under favorable learning conditions".

Unconstrained (simple) statistics: not so good

Combining Language-Specific Biases with Probabilistic Learning
 Statistics for word segmentation (remember Gambell \& Yang (2006))

If statistical learning is constrained
by language-specific knowledge
(Unique Stress Constraint: words have only one main stress),
performance increases dramatically: 73.5\% precision, 71.2\% recall.

Constrained statistics - much better!

Combining Statistical Learning With Language-Specific Biases

A big deal:
"Although infants seem to keep track of statistical information, any conclusion drawn from such findings must presuppose that children know what kind of statistical information to keep track of." language-specific bias

Ex: Transitional Probability
.of rhyming syllables?
.of individual sounds (b, a, p, d, ...)?
.. of stressed syllables?
No...any syllable sequences.

Constraints for Structure-Learning

Parameters = constraints on language variation. Only certain rules/patterns are possible.

Grammar = combination of language rules.
$=$ combination of parameter values.

So, use statistical learning to learn which value (for each parameter) that the native language uses for its grammar. \qquad

Yang (2004): Variational Learning

Idea taken from evolutionary biology:
Individual grammars compete against each other in a child's mind to see which grammar can best analyze the available data. A grammar's "fitness" is determined by how well the grammar fares with native language data.

Intuition: Most successful grammar will be the native language grammar. This grammar will "win", once the child encounters enough native language data.
\qquad

Yang (2004): Variational Learning		
Initially, each grammar is equally likely to be the native language grammar.	3 grammars, $\mathrm{G}=3$ Initial probability for any given grammar $=1 / \mathrm{G}=1 / 3$	
A grammar will have a probability associated with it, which represents that grammar's likelihood of being the native language grammar.	$1 / 3$	
So, initially, all grammars have the same probability.	$1 / 3$	

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Yang (2004): Variational Learning
After the child has encountered
native language data, some
grammars will have been more
successful while other grammars
will have been less successful.
So, the probabilities associated
with these grammars will reflect
that. The more successful
grammars will have a higher
probability associated with them.
Intuition: Most successful grammar will be the native
language grammar. This grammar will have a probability
near 1.0 once the child encounters enough native
language data.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
anguage grammar. This grammar will have a probability language data. \qquad

Grammar Success

\qquad
How can some grammars be successful while other grammars are not?
0.3

Example: Native language data is

0.3	
$0.2 \bigcirc 0 \% \bigcirc \bigcirc$	
$\bigcirc{ }^{*}:{ }^{\text {a }} \bigcirc$	0.5
$\bigcirc: *: 0 \bigcirc$	

One parameter may be whether it's okay to leave off or drop the subject (+/- subject-drop).

Value 1: Must always have a subject (-subject-drop)
Value 2: May optionally drop the subject (+subject-drop)
Grammar Success
How can some grammars be successful while other grammars
are not?
Example: Native language data is
Vamos
1st-pl-come
"We're coming"
Suppose a grammar with the -subject-drop value tried to data point.
It would not be able to since this sentence does not have an
overt subject. So, a -subject-drop grammar is not compatible
with this data point. Its probability will go down.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad overt subject. So, a -subject-drop grammar is not compatible with this data point. Its probability will go down.

Grammar Success

How can some grammars be successful while other grammars are not?

0.3 --> . 29	
$0.2 \bigcirc$	
$\bigcirc: *: \bigcirc \bigcirc$	0.5
$\bigcirc{ }^{\circ}:{ }^{\prime \prime}: \bigcirc \bigcirc \bigcirc$	

Suppose a grammar with the -subject-drop value tried to analyze this data point.

It would not be able to since this sentence does not have an overt subject. So, a -subject-drop grammar is not compatible with this data point. Its probability will go down.

Grammar Success

\qquad
How can some grammars be successful while other grammars are not?
0.3 --> 29

Example: Native language data is

\qquad
\qquad
Vamos
1st-pl-come
$0: \because 000$
\qquad
\qquad
However, suppose a grammar with the +subject-drop value tried to analyze this data point.

It would be able to since it allows sentences to not have an overt
\qquad subject. So, a +subject-drop grammar is compatible with this data point. Its probability will go up.

Grammar Success		
How can some grammars be successful while other grammars are not?		
Example: Native language data is	0.2	$\bigcirc \because$
Vamos	O:	0
1st-pl-come "We're coming"		\bigcirc

However, suppose a grammar with the +subject-drop value tried to analyze this data point.

It would be able to since it allows sentences to not have an overt subject. So, a +subject-drop grammar is compatible with this data point. Its probability will go up.
Grammar Success
How can some grammars be successful while other grammars
are not?
Example: Native language data is
Vamos
1st-pl-come
"We're coming"

Key point: This data is $\underline{\text { unambiguous for the +subject-drop }}$| value. Only grammars with the +subject-drop parameter value |
| :--- |
| will be able to successfully analyze this data point. |

Unambiguous Data

Unambiguous data from the target language can only be \qquad parameter value.

This makes unambiguous data very influential data for the child to encounter, since it is incompatible with the parameter value that is incorrect for the target language.

Ex: the -subject-drop value is not compatible with sentences that drop the subject subject like Vamos

> 1 st-pl-come "We're coming"
Unambiguous Data
Idea (from Yang (2004)): The more unambiguous data there
is, the faster the native language's parameter value will "win"
(reach a probability near 1.0). This means that the child will
learn the associated structural pattern faster.
Example: the more unambiguous +subject-drop data the child
encounters, the faster a child should learn that the native
language allows subjects to be dropped
\qquad
\qquad
\qquad
\qquad encounters, the faster a child should learn that the native language allows subjects to be dropped \qquad
\qquad
\qquad

Unambiguous Data Learning Examples
Wh-fronting for questions
Wh-word moves to the front (like English)
Sarah will see who?

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Unambiguous Data Learning Examples
\qquad

Wh-fronting for questions
Wh-word moves to the front (like English)
Who will Sarah will see who?
Unambiguous Data Learning Examples
Wh-fronting for questions
Wh-word moves to the front (like English)
Who will Sarah will see who?
Wh-word stays "in place" (like Chinese)
Sarah will see who?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\quad Unambiguous Data Learning Examples
Wh-fronting for questions
Parameter: +/- wh-fronting
Native language value (English): +wh-fronting
Unambiguous data: any (normal) wh-question, with wh-word in
front (ex: "Who will Sarah see?")
Frequency of unambiguous data to children: 25% of input
Age of +wh-fronting acquisition: very early (before $1 \mathrm{yr}, 8 \mathrm{mos}$)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Age of +wh-fronting acquisition: very early (before $1 \mathrm{yr}, 8 \mathrm{mos}$)

Unambiguous Data Learning Examples
Verb raising
Verb moves "above" (before) the adverb/negative word (French)
Jeansouvent voit Marie Jean often sees Marie
Jean pas voit Marie Jean not sees Marie

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Unambiguous Data Learning Examples Verb raising Verb moves "above" (before) the adverb/negative word (French) Jean voit souvent voit Marie Jean sees often Marie "Jean often sees Marie." Verb stays "below" (after) the adverb/negative word (English) Jean often sees Marie. Jean does not see Marie.

\qquad
\qquad
\qquad
\qquad
\qquad
erb stays "below" (after) the adverb/negative word (English) Jean often sees Marie. \qquad
\qquad

Unambiguous Data Learning Examples Verb raising

Parameter: +/- verb-raising
Native language value (French): +verb-raising
Unambiguous data: verb adverb/negative word data points ("Jean voit souvent Marie")

Frequency of unambiguous data to children: 7\% of input
Age of +verb-raising acquisition: $1 \mathrm{yr}, 8$ months

Unambiguous Data Learning Examples
Verb Second
Verb moves to second phrasal position, some other phrase
moves to the first position (German)
Sarah das Buch liest
Sarah the book reads

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Unambiguous Data Learning Examples
Verb Second
Verb moves to second phrasal position, some other phrase
moves to the first position (German)
Sarah liest Sarah das Buch liest "Sarah reads the book." Sarah reads the book

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Unambiguous Data Learning Examples
Verb Second
Verb moves to second phrasal position, some other phrase
moves to the first position (German)
Sarah liest Sarah das Buch liest "Sarah reads the book." Sarah reads the book Sarah das Buch liest Sarah the book reads

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Unambiguous Data Learning Examples
Verb Second
Verb moves to second phrasal position, some other phrase
moves to the first position (German)
Sarah liest Sarah das Buch liest "Sarah reads the book." Sarah reads the book Das Buch liest Sarah das Buch liest The book reads Sarah reads the book."Sarah

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Unambiguous Data Learning Examples
Verb Second
Verb moves to second phrasal position, some other phrase
moves to the first position (German)
Sarah liest Sarah das Buch liest "Sarah reads the book."
Sarah reads the book

Das Buch liest Sarah das Buch liest
The book reads Sarah reads the book."
Verb does not move (English)
Sarah reads the book.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

```
Unambiguous Data Learning Examples Verb Second
Parameter: +/- verb-second
Native language value (German): +verb-second
Unambiguous data: Object Verb Subject data points ("Das Buch liest Sarah")
Frequency of unambiguous data to children: \(1.2 \%\) of input
Age of +verb-second acquisition: \(\sim 3 \mathrm{yrs}\)
```

\qquad

Unambiguous Data Learning Examples
Intermediate wh-words in complex questions ("scope marking")
(Hindi, German)... wer Recht hat? …who right has "...who has the right?"

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Unambiguous Data Learning Examples
Intermediate wh-words in complex questions ("scope marking")
(Hindi, German) Wer glaubst Who think-2nd-sg \quad yu wer Recht hat? "ight has "Who do you think has the right?"

\qquad
\qquad
\qquad
Wer glaubst du wer Recht hat?
Who think-2nd-sg you who right has
"Who do you think has the right?" \qquad
\qquad
\qquad
\qquad

Unambiguous Data Learning Examples

Intermediate wh-words in complex questions ("scope marking")
(Hindi, German)
Wer glaubst
du wer Recht hat?
Who think-2nd-sg you who right has
"Who do you think has the right?" \qquad
No intermediate wh-words in complex questions (English)
Who do you think who has the right?

Unambiguous Data Learning Examples

Intermediate wh-words in complex questions ("scope marking")
(Hindi, German)
Wer glaubst
du wer Recht hat?
Who think-2nd-sg you who right has
"Who do you think has the right?"
No intermediate wh-words in complex questions (English)
Who do you think has the right?

Unambiguous Data Learning Examples
Intermediate wh-words in complex questions ("scope marking")
Parameter: +/- intermediate-wh
Native language value (English): - intermediate-wh
Unambiguous data: complex questions of a particular kind ("Who do you think has the right?")

Frequency of unambiguous data to children: 0.2% of input
Age of -intermediate-wh acquisition: > 4 yrs

Unambiguous Data Examples Summary
Unambiguous Data Examples Summary

Parameter value	Frequency of unambiguous data	Age of acquisition
+wh-fronting (English)	25%	Before $1 \mathrm{yr}, 8$ months
+verb-raising (French)	7%	$1 \mathrm{yr}, 8$ months
+verb-second (German)	1.2%	3 yrs
-intermediate-wh (English)	0.2%	>44 yrs

The quantity of unambiguous data available in the child's input seems to be a good indicator of when they will acquire the knowledge. The more there is, the sooner they learn the right parameter value for their native language.
\qquad

Summary:
 Variational Learning for Language Structure

Big idea: The time course of when a parameter is set depends on how frequent the necessary evidence is in childdirected speech. This falls out from the probabilistic learning framework, where unambiguous data for the native language parameter value punishes the non-native language value.

Predictions of variational learning:
Parameters set early: more unambiguous data
Parameters set late: less unambiguous data
These predictions seem to be born out by available data on when children learn certain structural patterns (parameter values) about their native language.

