Psych 156A/ Ling 150: Psychology of Language Learning

Lecture 10 Grammatical Categories

Announcements

Homework 3 will be returned on Tuesday

Homework 4 will be assigned today, and due next Thursday (5/8/08)

Quiz 4 will be on Tuesday (5/6/08)

Grammatical Categorization

Computational Problem: Identify grammatical categories These will tell you how words are used in the language.

"He is sibbing."

AX = noun

SIB = ver

Categorization: How?

How might children initially learn what categories words belong to?

Deriving Categories from Semantic Information Semantic Bootstrapping Hypothesis (Pinker 1984)

Children can initially determine a word's category by observing what kind of entity in the world it refers to.

objects, substance = noun (goblins, glitter)

Word's semantic category (meaning) is then linked to innate grammatical category knowledge (noun, verb)

Categorization: How?

How might children initially learn what categories words belong to?

Deriving Categories from Semantic Information Semantic Bootstrapping Hypothesis (Pinker 1984)

Children can initially determine a word's category by observing what kind of entity in the world it refers to.

Slight problem: hard to identify the referent in the world for words sometimes (like verbs)

"Look! He's frepping!"

Categorization: How?

How might children initially learn what categories words belong to?

Deriving Categories from Semantic Information Semantic Bootstrapping Hypothesis (Pinker 1984)

Children can initially determine a word's category by observing what kind of entity in the world it refers to.

Another problem: mapping rules are not perfect Ex: not all action-like words are verbs

"active", "action" action-like meaning, but they're not verbs

Categorization: How?

How might children initially learn what categories words belong to?

Distributional Learning

Children can initially determine a word's category by observing the linguistic environments in which words appear:

relative location of words in an utterance: "He likes to SIB."

- phonological regularities within classes of words: *the, a, an* = short (monosyllabic) words, simple syllables
- co-occurrence relations between grammatical categories: *Determiner Noun* (the goblin) = Determiners (a, the, an, ...) precede Nouns (goblin)

Categorization: How?

How might children initially learn what categories words belong to?

Distributional Learning (Evidence)

Children are sensitive to the distributional properties of their native language when they're born (Shi, Werker, & Morgan 1999).

7 month olds can recognize and track specific *functor* words (*a, the, to, will...*) in fluent speech (Höhle & Weissenborn 2003)

15-16 month German infants can determine novel words are nouns, based on the distributional information around the novel words (Höhle et al. 2004)

18 month English infants can track distributional information like "is...ing" to signal that a word is a verb (Santelmann & Jusczyk 1998)

Categorization: How?

How might children initially learn what categories words belong to?

Idea (Gómez & Lakusta 2004)

(1) Sound properties of certain words can be tracked distributionally (monosyllabic, simple syllables = noticeable to infants).

(2) Infants can group words together into categories based on these properties.

	About Categorization									
Data Obse	Data Observed									
A1 = the	X1 king	X2 girl	X3 baby	X4 goblin	X5 dwarf					
A2 = a	king	girl	baby	goblin						
B1 = will	Y1 sing	Y2 Iaugh	Y3 steal	Y4 run	Y5 sneeze					
B2 = can	sing	laugh	steal	run						

About Categorization									
Data Observed									
	X1	X2	X3	X4	X5				
A1 = the	king	girl	baby	goblin	dwarf				
A2 = a	king	girl	baby	goblin	"the" goes with these				
	Y1	Y2	Y3	Y4	Y5 words				
B1 = will	sing	laugh	steal	run	sneeze				
B2 = can	sing	laugh	steal	run	"the" behavior = precedes "king", "girl", "baby", etc.				

About Categorization										
Data Obse	Data Observed									
A1 = the	X1 king	X2 girl	X3 baby	X4 X goblin d	(5 Iwarf					
A2 = a	king	girl	baby	goblin	"a" goes with almost all					
B1 = will	Y1 sing	Y2 laugh	Y3 steal	Y4 Y run s	75 the same words neeze					
B2 = can	sing	laugh	steal	run	Inference: "a" has almost the same distribution as "the", so "a" is the same category as "the"					

About Categorization									
Data Observed									
A1 = the	X1 king	X2 X3 girl baby	X4 X5 y goblin dwarf						
A2 = a	king	girl baby	y goblin						
B1 = will	Y1 sing	Y2 Y3 laugh stea	Y4 Y5 I run sneeze						
B2 = can	sing	laugh stea	I run Prediction: "a" acts like "the", "a" goes with "dwarf"						
			Conclusion: "a dwarf" is in language						

	A	\bout	Cate	goriza	ition
Data Obs	erved				
A1 = the	X1 king	X2 girl	X3 baby	X4 goblin	X5 dwarf
A2 = a	king	girl	baby	goblin	
B1 = will	Y1 sing	Y2 Iaugh	Y3 steal	Y4 run	Y5 sneeze
B2 = can	sing	laugh	steal	run	"can" goes with almos all the same words
					Inference: "can" has almost the same distribution as "will", s "can" is the same cateoory as "will"

About Categorization									
Data Observed									
A1 = the	X1 king	X2 girl	X3 baby	X4 goblin	X5 dwarf				
A2 = a	king	girl	baby	goblin					
B1 = will	Y1 sing	Y2 laugh	Y3 steal	Y4 run	Y5 sneeze				
B2 = can	sing	laugh	steal	run					
Prediction: "can" acts like "will" so "can" goes with "sneeze"									
Conclusi	on: "can s	neeze"	is in lar	nguage					

Gómez & Lakusta 2004: Categorization Experiment

Testing 12 month olds, using artificial language paradigm (so children couldn't have any experience with the categories beforehand)

General procedure: Infants exposed to one of two training languages (L1 or L2). Used same set of vocabulary (all novel words).

L1 generalization: a goes with X, b goes with Y (aX, bY language) L2 generalization: a goes with Y, b goes with X (aY, bX language)

L1	Gómez & Lakusta 2004: Categorization Experiment								
A1 = alt	X1 coomo	X2 fengle	X3 kicey	X4 loga	X5 paylig	X6 wazil			
A2 = ush	coomo	fengle	kicey	loga	paylig	wazil			
	Y1	Y2	Y3	Y4	Y5	Y6			
B1 = ong	deech	ghope	e jic	skige	vabe	tam			
B2 = erd	deech	ghope	e jic	skige	vabe	tam			

	0						
L1	X1	X2	X3	Χ4	X5	X6	E
A1 = alt	coomo	fengle	kicey	loga	paylig	wazil	Disyllabic
A2 = ush	coomo	fengle	kicey	loga	paylig	wazil	words
	Y1	Y2	Y3	Y4	Y5	Y6	
B1 = ong	deech	ghope	e jic	skige	vabe	tam	Monosyllabic words
B2 = erd	deech	ghope	jic	skige	vabe	tam	

L1							25		
A1 = alt	X1 coomo	X2 fengle	X3 kicey	X4 loga	X5 paylig	X6 wazil	Disvllabic		
A2 = ush	coomo	fengle	kicey	loga	paylig	wazil	words		
	Y1	Y2	Y3	Y4	Y5	Y6			
B1 = ong	deech	ghop	e jic	skige	vabe	tam	Monosyllabic		
B2 = erd	deech	ghope	e jic	skige	vabe	tam	Words		
Associa Abstrac Categor disyllabi	B2 = erd deecn gnope jic skige vabe tam Association: all/ush (a1,a2) go with these words (X1-X6) Abstraction: all/ush (a1,a2) go with disyllabic words Categorization: all/ush are a category whose behavior is to go with disyllabic words								

L1							
A1 = alt	X1 coomo	Disyllabic					
A2 = ush	coomo	fengle	kicey	loga	paylig	wazil	words
	Y1	Y2	Y3	Y4	Y5	Y6	
B1 = ong	deech	ghop	e jic	skige	vabe	tam	Monosyllabic
B2 = erd	deech	ghope	e jic	skige	vabe	tam	words
Associa Abstrac Categor monosy	tion: ong/ei tion: ong/er ization: ong llabic word:	rd (b1,b2) rd (b1,b2) g/erd are a s	go with ti go with n a categor	hese word nonosyllat y whose b	ls (Y1-Y6 bic words behavior is) s to go w	vith

Gómez & Lakusta 2004: Categorization Experiment								
A1 = alt	X1 deech	X2 ghope	X3 jic	X4 skige	X5 vabe	X6 tam	Monosyllabic	
A2 = ush	deech	ghope	e jic	skige	vabe	tam	words	
	Y1	Y2	Y3	Y4	Y5	Y6		
B1 = ong	coomo	fengle	kicey	loga	paylig	wazil	Disyllabic	
B2 = erd	coomo	fengle	kicey	loga	paylig	wazil	words	

Gómez & Lakusta 2004: Categorization Experiment

General procedure: Infants exposed to one of two training languages (L1 or L2). Used same set of vocabulary (all novel words).

L1 generalization: a goes with X, b goes with Y (aX, bY language) L2 generalization: a goes with Y, b goes with X (aY, bX language)

Test phase: Infants exposed to *new* phrases from their training language L1 children: new aX, bY examples L2 children: new aY, bX examples

	Gómez & Lakusta 2004: Categorization Experiment								
L1 test		•				23			
A1 = alt	X1 beevit	X2 meeper	X3 gackle	X4 roosa	X5 nawlup	X6 binnow			
A2 = ush	beevit	meeper	gackle	roosa	nawlup	binnow Disyllabic			
	Y1	Y2	Y3	Y4	Y5	Y6			
B1 = ong	vot	pel	tood	rud	biff	foge Monosyllabic			
B2 = erd	vot	pel	tood	rud	biff	foge			

The point: Children needed to complete association, abstraction, and categorization in order to realize that these new instances of aX and bY were part of the artificial language L1.

Gómez & Lakusta 2004: Categorization Experiment				
L1 proces	s	C FA		
A1 = alt	X1 X2 X6 coomo fengle wazil			
A2 = ush	coomo fengle wazil			
	Y1 Y2Y6			
B1 = ong	deech ghopetam			
B2 = erd	deech ghopetam			

	G Ca	ómez tegor	: & Lak ization	usta 2004: Experiment	
L1 proces	L1 process				
A1 = alt	X1 coomo	X2 fengle	X6 wazil	Association	
A2 = ush	coomo	fengle	wazil	Association	
	Y1	Y2	Y6		
B1 = ong	deech	ghope	tam	Association	
B2 = erd	deech	ghope	tam	Association	

Gómez & Lakusta 2004: Categorization Experiment				
A1 = alt	X1 coomo	X2 X6 fengle wazi	Abstraction: disyllabic words	
A2 = ush	coomo	fengle waz	Abstraction: disyllabic words	
	Y1	Y2Y6		
B1 = ong	deech	ghopetam	Abstraction: monosyllabic words	
B2 = erd	deech	ghopetam	Abstraction: monosyllabic words	

L1 process				
A1 = alt	X1 coomo	X2 fengle	X6 wazil	Ca
A2 = ush	coomo	fengle	wazil	dis
	Y1	Y2	Y6	
B1 = ong	deech	ghope	tam	Ca
B2 = erd	deech	ghope	tam	uit

Categorization based on similar listribution: monosyllabic words

Gómez & Lakusta 2004: Categorization Experiment						
L1 proces	L1 process					
A1 = alt	X1 coomo	X2 fengle	X6 wazil	Extension to new examples:		
A2 = ush	coomo	fengle	wazil	alt beevit		
	Y1	Y2	Y6			
B1 = ong	deech	ghope	tam	Extension to new examples:		
B2 = erd	deech	ghope	tam	ong per		

Gómez & Lakusta 2004: Categorization Experiment

Results:

12 month olds listened longer to the test items that obeyed the categorizations of the language they were trained on, even though the words in the test items were ones they had never heard before.

This suggests that 12 month olds were able to complete association, abstraction, and categorization for this artificial language - based only on the distributional information available.

Specifically, the distributional information was the occurrence of one item next to another one in the training phase (L1: aX, bY).

Mintz 2003:

Digital Children & Categorization

Idea: Children may be attending to other kinds of distributional information available in the linguistic environment

There is evidence that children can track information that is nonadjacent in the speech stream (Santelmann & Jusczyk 1998, Gómez 2002)

he *is* run*ning*

Mintz 2003: Digital Children & Categorization

Idea: What categorization information is available if children track frequent frames?

Frequent frame: X___Y where X and Y are words that frame another word

and appear frequently in the child's linguistic environment

Examples: the_is the king is... the goblin is... the girl is...

can__him can trick him... can help him... can hug him...

11

Data representing child's linguistic environment: 6 corpora of child-directed speech from the CHILDES database

CHILDES Child Language Data Exchange System

Definition of "frequent" for frequent frames:

Frames appearing a certain number of times in a give corpus (ex: 45 times).

Meant to represent the idea that the child will encounter these frames often enough to recognize them and use them for categorization.

Trying out frequent frames on a corpus of child-directed speech.

Frame: the ____ is

"the radio is in the way...but the doll is...and the teddy is..."

radio, doll, teddy = Category1 (similar to Noun)

Frame: you ____ it "you draw it so that he can see it... you dropped it on purpose!...so he hit you with it..."

draw, dropped, with = Category 2 (similar-ish to Verb)

Mintz 2003: Digital Children & Categorization

Determining success with frequent frames:

Precision = <u># of words identified correctly as Category within frame</u> # of words identified as Category within frame

Recall = <u># of words identified correctly as Category within frame</u> # of words that should have been identified as Category

Determining success with frequent frames:

Precision = # of words identified correctly as Category within frame # of words identified as Category within frame

Recall = # of words identified correctly as Category within frame # of words that should have been identified as Category

Frame: you ____ it draw, dropped, with = Category 2 (similar-ish to Verb)

of words correctly identified as Verb = 2 # of words identified as Verb = 3

Precision = 2/3

Mintz 2003:

Digital Children & Categorization

Determining success with frequent frames:

Precision = # of words identified correctly as Category within frame # of words identified as Category within frame

Recall = # of words identified correctly as Category within frame # of words that should have been identified as Category

Frame: you _____ it draw, dropped, with = Category 2 (similar-ish to Verb)

of words correctly identified as Verb = 2

of words should be identified as Verb = many (all verbs in corpus) Recall = 2/many = small number

Mintz 2003: **Digital Children & Categorization**

Some actual results of frequent frames

Frame: you ____ it put, want, do, see, take, turn, taking, said, sure, lost, like, leave, got, find, throw, threw, think, sing, reach, picked, get, dropped, seen, lose, know, knocked, hold, help, had, gave, found, fit, enjoy, eat, chose, catch, with, wind, wear, use, took, told, throwing, stick, share, sang, roll, ride, recognize, reading, ran, pulled, null, press, pouring, pick, on, need, move, manage, make, load, liked, lift, licking, let, left, hit, hear, give, flapped, fix, finished, drop, driving, done, did, cut, crashed, change, calling, bring, break, because, homeod banged

Some actual results of frequent frames

Frame: the _____ is moon, sun, truck, smoke, kitty, fish, dog, baby, tray, radio, powder, paper, man, lock, lipstick, lamb, kangaroo, juice, ice, flower, elbow, egg, door, donkey, doggie, crumb, cord, clip, chicken, bug, brush, book, blanket, Mommy

Mintz 2003: **Digital Children & Categorization**

Precision & Recall of frequent frames across corpora

Precision: Above 90% for all corpora (high)

Interpretation: When a frequent frame clustered words together into category, they often did belong together. (Nouns together, verbs together, etc.)

Recall: Around 10% for all corpora (very low)

Interpretation: A frequent frame made lots of little clusters, rather than being able to cluster all the verbs together and all the nouns together.

Mintz 2003: **Digital Children & Categorization**

Getting better recall (forming one category of Verb, Noun, etc.)

Many frames overlap in the words they identify.

theis	thewas	ais	thatis
dog	dog	dog	cat
cat	cat	goblin	goblin
king	king	king	king
girl	teddy	girl	teddy

What about putting clusters together that have a certain number of words in common?

Getting better recall (forming one category of Verb, Noun, etc.)

Many frames overlap in the words they identify.

the/a/that_is/was dog teddy cat goblin

cat goblin king girl

Recall goes up to 91% (very high). Precision stays above 90% (very high)

Summary

Frequent frames are non-adjacent co-occurring words with one word in between them.

They are likely to be information young children are able to track, based on experimental evidence.

When tested on realistic child-directed speech, frequent frames do very well at grouping words into clusters which are very similar to actual grammatical categories like Noun and Verb.

Frequent frames could be a very good strategy for children to use.

