Announcements

Homework 3 will be returned on Tuesday

Homework 4 will be assigned today, and due next Thursday (5/8/08)

Quiz 4 will be on Tuesday (5/6/08)

Grammatical Categorization

Computational Problem: Identify grammatical categories
These will tell you how words are used in the language.

“This is a DAX.”
“He is sibbing.”

DAX = noun
SIB = verb
How might children initially learn what categories words belong to?

Deriving Categories from Semantic Information
Semantic Bootstrapping Hypothesis (Pinker 1984)

Children can initially determine a word’s category by observing what kind of entity in the world it refers to.

- objects, substance = noun
 - (goblins, glitter)
- action = verb
 - (steal, sing)

Word’s semantic category (meaning) is then linked to innate grammatical category knowledge (noun, verb)

Slight problem: hard to identify the referent in the world for words sometimes (like verbs)

“Look! He’s frepping!”

frep = climb, perch, glower, grab, yell, …?

Another problem: mapping rules are not perfect
Ex: not all action-like words are verbs

“active”, “action” action-like meaning, but they’re not verbs
Categorization: How?

How might children initially learn what categories words belong to?

Distributional Learning

Children can initially determine a word’s category by observing the linguistic environments in which words appear:

- Relative location of words in an utterance: “He likes to SIP.”
- Phonological regularities within classes of words: *the, a, an* = short (monosyllabic) words, simple syllables
- Co-occurrence relations between grammatical categories:
 - Determiner Noun (the goblin)
 - Determiners (*a, the, an, …*) precede Nouns (goblin)

Categorization: How?

How might children initially learn what categories words belong to?

Distributional Learning (Evidence)

Children are sensitive to the distributional properties of their native language when they’re born (Shi, Werker, & Morgan 1999).

- 7 month olds can recognize and track specific *functor* words (*a, the, to, will…) in fluent speech (Höhle & Weissenborn 2003)
- 15-16 month German infants can determine novel words are nouns, based on the distributional information around the novel words (Höhle et al. 2004)
- 18 month English infants can track distributional information like “is…-ing” to signal that a word is a verb (Santelmann & Jusczyk 1998)

Categorization: How?

How might children initially learn what categories words belong to?

Idea (Gómez & Lakusta 2004)

1. Sound properties of certain words can be tracked distributionally (monosyllabic, simple syllables = noticeable to infants).
2. Infants can group words together into categories based on these properties.
About Categorization

Data Observed

<table>
<thead>
<tr>
<th>X1</th>
<th>X2</th>
<th>X3</th>
<th>X4</th>
<th>X5</th>
</tr>
</thead>
<tbody>
<tr>
<td>the</td>
<td>king</td>
<td>girl</td>
<td>baby</td>
<td>goblin</td>
</tr>
</tbody>
</table>

A1 = the

<table>
<thead>
<tr>
<th>Y1</th>
<th>Y2</th>
<th>Y3</th>
<th>Y4</th>
<th>Y5</th>
</tr>
</thead>
<tbody>
<tr>
<td>will</td>
<td>sing</td>
<td>laugh</td>
<td>steal</td>
<td>run</td>
</tr>
</tbody>
</table>

B1 = will

Y1

B2 = can

<table>
<thead>
<tr>
<th>Y1</th>
<th>Y2</th>
<th>Y3</th>
<th>Y4</th>
<th>Y5</th>
</tr>
</thead>
<tbody>
<tr>
<td>sing</td>
<td>laugh</td>
<td>steal</td>
<td>run</td>
<td>sneeze</td>
</tr>
</tbody>
</table>

A2 = a

<table>
<thead>
<tr>
<th>Y1</th>
<th>Y2</th>
<th>Y3</th>
<th>Y4</th>
<th>Y5</th>
</tr>
</thead>
<tbody>
<tr>
<td>king</td>
<td>girl</td>
<td>baby</td>
<td>goblin</td>
<td></td>
</tr>
</tbody>
</table>

B2 = can

<table>
<thead>
<tr>
<th>Y1</th>
<th>Y2</th>
<th>Y3</th>
<th>Y4</th>
<th>Y5</th>
</tr>
</thead>
<tbody>
<tr>
<td>sing</td>
<td>laugh</td>
<td>steal</td>
<td>run</td>
<td></td>
</tr>
</tbody>
</table>

- "the" goes with these words
- "the" behavior = precedes "sing", "girl", "baby", etc.
- Data missing
About Categorization

Data Observed

<table>
<thead>
<tr>
<th>X1</th>
<th>X2</th>
<th>X3</th>
<th>X4</th>
<th>X5</th>
</tr>
</thead>
<tbody>
<tr>
<td>the king</td>
<td>girl</td>
<td>baby</td>
<td>goblin</td>
<td>dwarf</td>
</tr>
</tbody>
</table>

A2 = a

<table>
<thead>
<tr>
<th>Y1</th>
<th>Y2</th>
<th>Y3</th>
<th>Y4</th>
<th>Y5</th>
</tr>
</thead>
<tbody>
<tr>
<td>sing</td>
<td>laugh</td>
<td>steal</td>
<td>run</td>
<td>sneeze</td>
</tr>
</tbody>
</table>

Inference: "a" goes with almost all the same words

Prediction: "a" acts like "the", "a" goes with "dwarf"

Conclusion: "a dwarf" is in language

About Categorization

Data Observed

<table>
<thead>
<tr>
<th>X1</th>
<th>X2</th>
<th>X3</th>
<th>X4</th>
<th>X5</th>
</tr>
</thead>
<tbody>
<tr>
<td>the king</td>
<td>girl</td>
<td>baby</td>
<td>goblin</td>
<td>dwarf</td>
</tr>
</tbody>
</table>

A2 = a

<table>
<thead>
<tr>
<th>Y1</th>
<th>Y2</th>
<th>Y3</th>
<th>Y4</th>
<th>Y5</th>
</tr>
</thead>
<tbody>
<tr>
<td>sing</td>
<td>laugh</td>
<td>steal</td>
<td>run</td>
<td>sneeze</td>
</tr>
</tbody>
</table>

Prediction: "will" goes with these words

"will" behavior = precedes "sing", "laugh", "steal", etc.
About Categorization

Data Observed

<table>
<thead>
<tr>
<th>A1 = the</th>
<th>X1</th>
<th>X2</th>
<th>X3</th>
<th>X4</th>
<th>X5</th>
</tr>
</thead>
<tbody>
<tr>
<td>king</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>girl</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>baby</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>goblin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dwarf</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A2 = a</th>
<th>Y1</th>
<th>Y2</th>
<th>Y3</th>
<th>Y4</th>
<th>Y5</th>
</tr>
</thead>
<tbody>
<tr>
<td>king</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>girl</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>baby</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B1 = will</th>
<th>Y1</th>
<th>Y2</th>
<th>Y3</th>
<th>Y4</th>
<th>Y5</th>
</tr>
</thead>
<tbody>
<tr>
<td>sing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>laugh</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>steal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>run</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sneeze</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B2 = can</th>
<th>sing</th>
<th>laugh</th>
<th>steal</th>
<th>run</th>
</tr>
</thead>
</table>

"can" goes with almost all the same words

Inference: "can" has almost the same distribution as "will", so "can" is the same category as "will"

Prediction:
"can" acts like "will" so "can" goes with "sneeze"

Conclusion: "can sneeze" is in language

Gómez & Lakusta 2004: Categorization Experiment

Testing 12 month olds, using artificial language paradigm (so children couldn’t have any experience with the categories beforehand)

General procedure:
Infants exposed to one of two training languages (L1 or L2).
Used same set of vocabulary (all novel words).

L1 generalization: a goes with X, b goes with Y (aX, bY language)
L2 generalization: a goes with Y, b goes with X (aY, bX language)
<table>
<thead>
<tr>
<th>L1</th>
<th>A1 = alt</th>
<th>X1</th>
<th>X2</th>
<th>X3</th>
<th>X4</th>
<th>X5</th>
<th>X6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>coomo</td>
<td>fengle</td>
<td>kicey</td>
<td>loga</td>
<td>paylig</td>
<td>wazil</td>
<td></td>
</tr>
<tr>
<td>A2 = ush</td>
<td>coomo</td>
<td>fengle</td>
<td>kicey</td>
<td>loga</td>
<td>paylig</td>
<td>wazil</td>
<td></td>
</tr>
<tr>
<td>Y1</td>
<td>Y2</td>
<td>Y3</td>
<td>Y4</td>
<td>Y5</td>
<td>Y6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B1 = ong</td>
<td>deech</td>
<td>ghope</td>
<td>jic</td>
<td>skige</td>
<td>vabe</td>
<td>tam</td>
<td></td>
</tr>
<tr>
<td>B2 = erd</td>
<td>deech</td>
<td>ghope</td>
<td>jic</td>
<td>skige</td>
<td>vabe</td>
<td>tam</td>
<td></td>
</tr>
</tbody>
</table>

Association: alt/ush (A1,A2) go with these words (X1-X6)

Abstraction: alt/ush (A1,A2) go with disyllabic words

Categorization: alt/ush are a category whose behavior is to go with disyllabic words
Gómez & Lakusta 2004: Categorization Experiment

L1
A1 = alt
coomo fengle kicey loga paylig wazil
A2 = ush
coomo fengle kicey loga paylig wazil
Y1 Y2 Y3 Y4 Y5 Y6
B1 = ong
deech ghope jc skige vabe tam
B2 = erd
deech ghope jc skige vabe tam

Association: ong/erd (b1,b2) go with these words (Y1-Y6)
Abstraction: ong/erd (b1,b2) go with monosyllabic words
Categorization: ong/erd are a category whose behavior is to go with monosyllabic words

Gómez & Lakusta 2004: Categorization Experiment

L2
A1 = alt
deech ghope jc skige vabe tam
A2 = ush
deech ghope jc skige vabe tam
Y1 Y2 Y3 Y4 Y5 Y6
B1 = coomo fengle kicey loga paylig wazil
B2 = erd
coomo fengle kicey loga paylig wazil

Disyllabic words
Monosyllabic words

Gómez & Lakusta 2004: Categorization Experiment

General procedure:
Infants exposed to one of two training languages (L1 or L2).
Used same set of vocabulary (all novel words).

L1 generalization: a goes with X, b goes with Y (aX, bY language)
L2 generalization: a goes with Y, b goes with X (aY, bX language)

Test phase:
Infants exposed to new phrases from their training language
L1 children: new aX, bY examples
L2 children: new aY, bX examples
The point: Children needed to complete association, abstraction, and categorization in order to realize that these new instances of \(aX\) and \(bY\) were part of the artificial language L1.
Gómez & Lakusta 2004: Categorization Experiment

L1 process

A1 = alt
go como fengle wazil
A2 = ush
go como fengle wazil
B1 = ong
deech gope tam
B2 = erd
deech gope tam

Abstraction: disyllabic words
Abstraction: disyllabic words
Abstraction: monosyllabic words
Abstraction: monosyllabic words

Gómez & Lakusta 2004: Categorization Experiment

L1 process

A1 = alt
go como fengle wazil
A2 = ush
go como fengle wazil
B1 = ong
deech gope tam
B2 = erd
deech gope tam

Categorization based on similar distribution: disyllabic words
Categorization based on similar distribution: monosyllabic words

Gómez & Lakusta 2004: Categorization Experiment

L1 process

A1 = alt
go como fengle wazil
A2 = ush
go como fengle wazil
B1 = ong
deech gope tam
B2 = erd
deech gope tam

Extension to new examples: alt beevit
Extension to new examples: ong pel
Gómez & Lakusta 2004: Categorization Experiment

Results:
12 month olds listened longer to the test items that obeyed the categorizations of the language they were trained on, even though the words in the test items were ones they had never heard before.

This suggests that 12 month olds were able to complete association, abstraction, and categorization for this artificial language - based only on the distributional information available.

Specifically, the distributional information was the occurrence of one item next to another one in the training phase (L1: aX, bY).

Mintz 2003: Digital Children & Categorization

Idea: Children may be attending to other kinds of distributional information available in the linguistic environment

There is evidence that children can track information that is non-adjacent in the speech stream (Santelmann & Jusczyk 1998, Gómez 2002)

he is running

Mintz 2003: Digital Children & Categorization

Idea: What categorization information is available if children track frequent frames?

Frequent frame: X___Y
where X and Y are words that frame another word and appear frequently in the child’s linguistic environment

Examples:
the___is
the king is...
can___him
can trick him...
the goblin is...
can help him...
the girl is...
can hug him...
Data representing child’s linguistic environment:
6 corpora of child-directed speech from the CHILDES database

Definition of “frequent” for frequent frames:
Frames appearing a certain number of times in a give corpus (ex: 45 times).
Meant to represent the idea that the child will encounter these frames often enough to recognize them and use them for categorization.

Trying out frequent frames on a corpus of child-directed speech.
Frame: the ___ is
“the radio is in the way… but the doll is… and the teddy is…”
radio, doll, teddy = Category1 (similar to Noun)
Frame: you ___ it
“you draw it so that he can see it… you dropped it on purpose!… so he hit you with it…”
draw, dropped, with = Category 2 (similar-ish to Verb)

Determining success with frequent frames:
Precision = # of words identified correctly as Category within frame
of words identified as Category within frame
Recall = # of words identified correctly as Category within frame
of words that should have been identified as Category
Determining success with frequent frames:

Precision = \# of words identified correctly as Category within frame
\# of words identified as Category within frame

Recall = \# of words identified correctly as Category within frame
\# of words that should have been identified as Category

Frame: you ___ it
draw, dropped, with = Category 2 (similar-ish to Verb)
\# of words correctly identified as Verb = 2
\# of words identified as Verb = 3
Precision = 2/3

Frame: you ___ it
draw, dropped, with = Category 2 (similar-ish to Verb)
\# of words correctly identified as Verb = 2
\# of words should be identified as Verb = many (all verbs in corpus)
Recall = 2/many = small number

Some actual results of frequent frames

Frame: you ___ it
put, want, do, see, take, turn, taking, said, sure, lost, like, leave, got, find, throw, threw, think, sing, reach, picked, get, dropped, seen, lose, know, knocked, hold, help, had, gave, found, fit, enjoy, eat, chose, catch, with, wind, wear, use, took, told, throwing, stick, share, sang, roll, ride, recognize, reading, ran, pulsed, pull, press, pouring, pick, on, need, move, manage, make, load, liked, lift, licking, let, left, hit, hear, give, flapped, fix, finished, drop, driving, done, did, cut, crashed, change, calling, bring, break, because, banged
Some actual results of frequent frames

Frame: the ___ is
- moon, sun, truck, smoke, kitty, fish, dog, baby, tray, radio,
- powder, paper, man, look, lipstick, lamb, kangaroo, juice, ice,
- flower, elbow, egg, door, donkey, doggie, crumb, cord, clip,
- chicken, bug, brush, book, blanket, Mommy

Precision & Recall of frequent frames across corpora

Precision: Above 90% for all corpora (high)
Interpretation: When a frequent frame clustered words together into category, they often did belong together. (Nouns together, verbs together, etc.)

Recall: Around 10% for all corpora (very low)
Interpretation: A frequent frame made lots of little clusters, rather than being able to cluster all the verbs together and all the nouns together.

Getting better recall (forming one category of Verb, Noun, etc.)

Many frames overlap in the words they identify.

the ___ the ___ was a ___ is that ___ is ...
- dog - cat - king - girl
dog - cat - king - teddy
goblin - king - girl - teddy

What about putting clusters together that have a certain number of words in common?
Mintz 2003:
Digital Children & Categorization

Getting better recall (forming one category of Verb, Noun, etc.)
Many frames overlap in the words they identify.

Recall goes up to 91% (very high). Precision stays above 90% (very high)

Summary
Frequent frames are non-adjacent co-occurring words with one word in between them.
They are likely to be information young children are able to track, based on experimental evidence.

When tested on realistic child-directed speech, frequent frames do very well at grouping words into clusters which are very similar to actual grammatical categories like Noun and Verb.
Frequent frames could be a very good strategy for children to use.

Questions?