
Deep Belief Networks
Presented by Joseph Nunn

Psych 149/239 Computational Models of Cognition

University of California, Irvine

Winter 2015

1

Talk Structure
• Connectionist Background Material

• To Recognize Shapes, First Learn to Generate Images [Hinton
2006]

• Learning Hierarchical Category Structure in Deep Neural
Networks [Saxe et al 2013]

• Letting Structure Emerge: Connectionist and Dynamical
Approaches to Cognition [McClelland et al 2010]

• Intriguing Neural Network Properties [Szegedy et al 2013]

• Future of Connectionism

2

Connectionist Background
• Neural Plausibility

• Pandemonium - [Selfridge 1958]

• Perceptrons - [Minsky & Papert 1969]

• Backpropagation - Hinton and many others

• AI Winter(s) - 1974-80 and 1987-93

• MINST and other types of Test Data
3

Neural Plausibility
• Connectionist models are only

vaguely related to actual
neurons and brains.

• Many simplifications or
patently unreal properties
exist in Connectionist models
and algorithms.

• Although at Marr’s
Algorithmic level of analysis,
Connectionist model details
are ‘inspired’ by neuroscience
not rooted in it.

4

Pandemonium Model
• Each layer comprises many

independent agents, or
demons, running concurrently.

• Demons become more or less
vocal depending on input they
see in previous layer.

• Most active top level demons
get represented in active
conscious mind.

• An early model of Parallel
Distributed Processing (PDP)
[Selfridge 1958]

5

Perceptrons
• Early type of Neural Network

consisting of an input layer and
output layer.

• Easily trainable.

• Shown to be incapable of
learning functions not linearly
separable in Perceptrons book
[Minsky & Papert 1969].

• Perceptrons book contributed to
the ‘death’ of connectionist
research vs symbolist and the
first AI Winter 1974-1980.

6

Backpropagation
• Neural Networks with 1 or more hidden

layers are capable of learning linearly
separable functions, but no algorithm was
known that could train them.

• Back propagation is an algorithm that can
train multilayer networks ‘rediscovered’
and popularized in the mid 80’s by several
people including Hinton.

• Algorithm works by computing the error
between the expected output and the
actual output and distributing that error
over the previous connections, correcting
the connection weights by a small amount.

• Works by gradient descent over a number
of training epochs on labeled data.

7

AI Winter(s)
• Twice in the history of Artificial Intelligence has research progress and funding dried

up, these are referred to as the ‘AI Winters’, 1974-1980 and 1987-1993.

• Precipitated by overpromises of early researchers and infighting between
Connectionist and Symbolicist approaches to AI, each of which at times has been
ascendant.

• Much promising research was delayed or had funding cut.

• Each time algorithmic discoveries from either approach has brought AI back in
vogue.

• Lesson: Both Connectionist and Structured Probabilistic modeling approaches
should be encouraged in Cognitive Science in order to avoid a similar fate. Both
approaches have much to contribute.

• Now entering another boom in AI research instigated by the successes with Deep
Learning.

8

Figure 2: Some examples of real handwritten digits that are hard to recognize. A neural
network described at the end of this chapter gets all of these examples right, even though
it has never seen them before. However, it is not confident about its classification for
any of these examples. The true classes are arranged in standard scan order.

detectors and no direct interactions between the pixels, there is a simple and efficient
way to learn a good set of feature detectors from a set of training images (Hinton, 2002).
We start with zero weights on the symmetric connections between each pixel i and each
feature detector j. Then we repeatedly update each weight, wij, using the difference
between two measured, pairwise correlations

∆wij = ϵ(<sisj>data − <sisj>recon) (4)

where ϵ is a learning rate, < sisj >data is the frequency with which pixel i and feature
detector j are on together when the feature detectors are being driven by images from the
training set and <sisj>recon is the corresponding frequency when the feature detectors
are being driven by reconstructed images. A similar learning rule can be use dfor the
biases.

Given a training image, we set the binary state, sj, of each feature detector to be 1
with probability

p(sj = 1) =
1

1 + exp(−bj −
∑

i∈pixels siwij)
(5)

where bj is the bias of j and si is the binary state of pixel i. Once binary states have
been chosen for the hidden units we produce a “reconstruction” of the training image by
setting the state of each pixel to be 1 with probability

p(si = 1) =
1

1 + exp(−bi −
∑

j∈features sjwij)
(6)

On 28 × 28 pixel images of handwritten digits like those shown in figure 2, good
features can be found by using 100 passes through a training set of 50,000 images, with

7

Test Data
• Several standard data sets are used

in AI in order to compare the
performance of various algorithms.

• Contests are also held, both
academic and commercial
(Kaggle).

• MNIST - Mixed National Institute of
Standards and Technology -
handwriting database used in the
papers reviewed.

• Best performance today with Deep
Learning is within a few percent of
what humans can do.

9

Talk Structure
• Connectionist Background Material

• To Recognize Shapes, First Learn to Generate Images
[Hinton 2006]

• Learning Hierarchical Category Structure in Deep Neural
Networks [Saxe et al 2013]

• Letting Structure Emerge: Connectionist and Dynamical
Approaches to Cognition [McClelland et al 2010]

• Intriguing Neural Network Properties [Szegedy et al 2013]

• Future of Connectionism

10

5 Strategies for Learning
Multilayer Networks

• Support Vector Machines - Perceptrons

• Evolutionary exploration of weight space

• Multilayer Feature Detectors

• Backpropagation

• Generative Feedback - ‘Wake-Sleep’

11

Evolutionary exploration of
weight space

• Starting from initial
configuration, perturb a
random weight and evaluate.

• In a fully connected network,
any single weight changed
could affect the output for any
input in the test data.

• Computationally impractical, I
know of no model of any size
that uses should an algorithm.

12

Multilayer Feature Detectors
• Attempts to learn ‘interesting correlations’ between input elements as

features detectors in hidden layers.

• Can be composed hierarchically of many layers, each learning
‘interesting correlations’ between the elements in the previous layer.

• Without guidance by desired output any ‘interesting correlation’ in
input could be learned as a feature. At the top level feature detectors
learned are hoped to be useful for categorizing the input.

• Vaguely defined, what counts as an ‘interesting correlation’ and why?

• Computationally intractable, equivalent to searching through a vector
space for a random basis explaining the input using heuristic
methods. May not converge.

13

Wake-Sleep Algorithm
• Hinton’s very successful Deep

Learning Network.

• Can consist of multiple layers.
Latest research shows the more
the merrier, some networks 9-10
hidden layers.

• Each layer consists of a
Randomized Boltzmann
Machine (RBM), top layer with
symmetric connections.

• Trains very fast and performs
better than Backprop.

14

Wake-Sleep Cont.
• Top layer forms an associative

memory that settles into stable
state.

• Paper discusses augmenting
Wake-Sleep with Backprop for
fine tuning. AKA ‘Bag of
Tricks’.

• Hinton’s Google Presentation
https://www.youtube.com/
watch?v=AyzOUbkUf3M

15

https://www.youtube.com/watch?v=AyzOUbkUf3M

Talk Structure
• Connectionist Background Material

• To Recognize Shapes, First Learn to Generate Images [Hinton
2006]

• Learning Hierarchical Category Structure in Deep Neural
Networks [Saxe et al 2013]

• Letting Structure Emerge: Connectionist and Dynamical
Approaches to Cognition [McClelland et al 2010]

• Intriguing Neural Network Properties [Szegedy et al 2013]

• Future of Connectionism

16

Learning Hierarchical Category Structure

• Uses Singular Value Decomposition (SVD) to
investigate efficiency and learning dynamics
of backpropagation.

• Singular values show importance relation
between matrix dimensions.

• Exhibits non linear learning dynamics
including rapid stage like transitions.

• Used a probabilistic generative system to
develop arbitrary hierarchical structured data.

• Singular values and their magnitudes reflect
hierarchal organized data and the degrees of
separation.

• Learning dynamics are strongly correlated
with magnitudes of singular values. Stronger
input/output correlations described by singular
values take less time to learn.

17

diffused down to the two second level nodes, maybe in this in-
stance changing sign to �1 for the parent node of the plants,
but not changing for the parent node of the animals. Then
these values diffused down to the leaf nodes representing the
individual items, perhaps not flipping sign for any of them.
Hence the ultimate feature assignment would be +1 on the
Canary and Salmon and �1 on the Flower and Tree. This
is just one possible sample from the generative model, but
serves to illustrate how hierarchical structure arises from the
feature generation process. To generate more features, the
process is repeated independently N times.

For simplicity, we consider trees with a regular branching
structure. The tree has D levels indexed by l = 0, . . . ,D�
1, with Ml total nodes at level l. Every node at level l has
exactly Bl descendants. Thus Ml = M0Pl�1

k=0Bl . The tree has
a single root node at the top (M0 = 1), and again P leaves at
the bottom, one per example in the dataset (MD�1 = P).

We have thus far described the output feature vectors yµ. To
complete the specification of the training set, we assume that
the input vectors xµ are simply chosen to be highly distinct
(i.e., orthogonal). One such choice is a localist coding scheme
in which a different element is active to represent the presence
of each item.

Input-output modes of hierarchical data How will our
neural network learn about training sets generated as just de-
scribed? To understand this, we calculate the SVD of such
training sets. We will see that the input-output modes identi-
fied by the SVD exactly mirror the tree structure used to gen-
erate the dataset. The feature generation process described
in the previous section generates a training set with N fea-
tures. In the limit of large numbers of features, we obtain the
following (the full derivation to be presented elsewhere):

The object analyzer vectors exactly mirror the tree struc-
ture, as shown in Fig. 4. One mode will correspond to a
broad, high level distinction (e.g., animal-plant) near the root
of the tree, while another will correspond to a more detailed
distinction (e.g., bird-fish). For binary trees, each object an-
alyzer vector will have positive weights on all items on one
side of a binary distinction, and negative weights on all items
on the other side. The rest of the entries will be zero. Hence
this object analyzer vector will only be able to tell items apart
with respect to this one distinction. It contains no information
about higher or lower level distinctions in the tree. For trees
with other branching factors, the situation is the same: ad-
ditional object analyzer vectors are introduced to permit dis-
tinctions between more than two options, but these vectors
contain no information about distinctions at other levels in
the tree.

The association strength or singular value sl associated
with level l of the binary tree is

sl =

vuutNP

D�1

Â
k=l

Dl

Ml

!
, (13)

where qk = (1�4e(1�e))D�1�k and Dl ⌘ ql �ql�1, with the
caveat that q�1 ⌘ 0.

+1 +1 +1 +1 +1 +1 +1 +1

+1 +1 +1 +1 -1 -1 -1 -1

+1 +1 -1 -1 0 0 0 0

0 0 0 0 +1 +1 -1 -1

+1 -1 0 0 0 0 0 0

0 0 +1 -1 0 0 0 0

0 0 0 0 +1 -1 0 0

0 0 0 0 0 0 +1 -1

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

M
od

es

Items

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

Ite
m

s

Items

(a)

(b)

(c)

0.3$

1$

1$

&1$

Figure 4: Statistical structure of hierarchical data. (a) Ex-
ample hierarchical diffusion process with D = 4 levels and
branching factor B = 2. (b) Analytically derived input singu-
lar vectors, or modes, (up to a scaling) of the resulting data,
ordered top-to-bottom by singular value. Besides mode 0,
each mode, or object analyzer, can discriminate objects, or
leaves of the tree, whose first common ancestor arises at a
given level of the tree. This level is 0 for mode 2, 1 for modes
3 and 4, and 3 for modes 5 through 8. Singular modes cor-
responding to broad distinctions (higher levels) have larger
singular values, and hence will be learned earlier. (c) The co-
variance matrix between pairs of objects in the output feature
space consists of hierarchically organized blocks.

While this equation gives the correct quantitative value for
the association strength in terms of the parameters of the
generative process, its most important property is its qual-
itative behavior: it is a decreasing function of the hierar-
chy level l (see, e.g., Fig. 5). Crucially, this means that the
input-output modes corresponding to broader distinctions like
animal-plant have a stronger association strength than those
corresponding to finer distinctions like bird-fish. Since we
have previously shown that modes with stronger association
strengths are learned more quickly, this immediately implies
that broader distinctions among examples will be learned
faster than fine-grained distinctions among examples.

0 100 200 300 400 500 600

0

50

100

150

t (Epochs)

In
p
u
t−

o
u
tp

u
t
m

o
d
e
 s

tr
e
n
g
th

Simulation

Theory

Figure 3: Close agreement between theoretically predicted
time course and numerical simulations. Simulations were
performed with a dataset sampled from the hierarchical diffu-
sion process described in detail in a later section, with D = 3
hierarchical levels, binary branching, flip probability e = 0.1,
and N = 10,000 sampled features. This data set had 3 unique
singular values. Red traces show ten simulations of the singu-
lar value dynamics of W 32(t)W 21(t) in Eqns. (7)-(8) starting
from different random initializations, and blue traces show
theoretical curves obtained from (10).

training set. Further, they reveal important properties of these
learning dynamics.

First, each input-output mode is learned on a different time
scale, governed by its singular value sa. To calculate this
time scale, we can assume a small initial condition a0 = e
and ask when a(t) in (10) rises to within e of the final value
sa, i.e. a(t) = sa � e; then the timescale of learning in the
limit e ! 0 is

t(s,e) = t
sa

ln
sa
e
. (11)

Hence up to a logarithmic factor, the time required to learn
an input-output mode is inversely related to its association
strength, quantified through its singular value.

Second, these dynamics reveal stage-like transitions in
learning performance. Intuitively, this property arises from
the sigmoidal transition in (10) from a state in which the net-
work does not represent a particular input-output relation at
all, to a state in which the network fully incorporates that rela-
tion. Because of the sigmoidal shape, the solution can remain
very small for a long period of time before rapidly transition-
ing to mastery. To formalize this, we note that the time it
takes to reach half mastery (i.e. a(thalf) = s/2) is

thalf =
t
2s

log
✓

s
a0

�1
◆
. (12)

In contrast, the duration of the transition period in which the
weights change rapidly is ttrans = 2t

s (using a linear approx-
imation). Thus, by starting with a very small initial condition
for the weights (i.e. a0 ⇡ 0), it is clear that one can make
the ratio ttrans/thalf arbitrarily small, i.e., the transition pe-
riod can be very brief relative to the long initial period of
dormancy. Hence the learning dynamics of (7)-(8) exhibit

sharp stage-like transitions. Importantly, we can prove that
networks with only direct input-output connections and no
hidden layer are not capable of such stage-like transitions.
Their existence is an emergent property of nonlinear learning
dynamics in deep networks with at least one hidden layer.

The result in (9) is the solution to (7)-(8) for a special class
of initial conditions on the weights W 21 and W 32. However
this analytic solution is a good approximation to the time evo-
lution the network’s input-output map for random small ini-
tial conditions, as confirmed in Fig. 3.

Summary of learning dynamics The preceding analyses
have established a number of crucial features of gradient de-
scent learning in a simple linear network, making explicit the
relationship between the statistical structure of training exam-
ples and the dynamics of learning. In particular, the learning
dynamics depend crucially on the singular values of the input-
output correlation matrix. Each input-output mode is learned
in time inversely proportional to its associated singular value,
yielding the intuitive result that stronger input-output associ-
ations are learned before weaker ones.

The singular values and vectors of
hierarchically generated data

In this section we introduce a hierarchical probabilistic gen-
erative model of items and their attributes that, when sam-
pled, produces a dataset that can be supplied to our neural
network. By analytically calculating the SVD of this data, we
will be able to explicitly link hierarchical taxonomies of cat-
egories to the dynamics of network learning. A key result in
the following is that our network must exhibit progressive dif-
ferentiation with respect to any of the underlying hierarchical
taxonomies allowed by our generative model.

Hierarchical feature vectors from a branching diffusion
process We propose a simple generative model of hierar-
chical data {xµ,yµ}, and compute for this model the input-
output modes (sa,ua,va) which drive learning. The hierar-
chical structure in the generative model is represented by a
tree (see e.g. Fig. 4). Each leaf node of this tree corresponds
to an item in the dataset. Our generative process assigns fea-
tures to these items such that items with more recent common
ancestors are more likely to share features. For instance, our
example dataset might have been generated by a three level
binary tree with four leaf nodes. The top level would separate
the animals from the plants, while the next level would sepa-
rate the birds from the fish and the flowers from the plants.

In detail, to sample one feature’s value across items, the
root node is randomly set to ±1 with equal probability 1

2 ;
next this value diffuses to children nodes, where its sign is
flipped with a small probability e. This process continues
until the leaf nodes have been assigned values. These assign-
ments yield the value of this feature on each item.

Under this process, the can Move feature, for example,
might have arisen as follows: randomly the root node of the
three level binary tree was assigned a value of 1. This value

Talk Structure
• Connectionist Background Material

• To Recognize Shapes, First Learn to Generate Images [Hinton
2006]

• Learning Hierarchical Category Structure in Deep Neural
Networks [Saxe et al 2013]

• Letting Structure Emerge: Connectionist and Dynamical
Approaches to Cognition [McClelland et al 2010]

• Intriguing Neural Network Properties [Szegedy et al 2013]

• Future of Connectionism

18

Letting Structure Emerge
• McClelland et al argues that Connectionism is a better way forward for cognitive science

than structured probabilistic approaches.

• Structured probabilistic approaches require too much specified knowledge such as the form
of the hypothesis space, space of concepts and related structures, priors etc, that may not
be present in the real world, e.g. taxonomy hierarchies and prey/predator similarities.

• Stresses the relevance of the Algorithmic level in modeling cognition. Places importance on
‘integrated accounts’ across multiple levels of analysis for cognitive modeling.

• Takes the view that cognitive behavior is ‘Emergent’ from simpler, lower level processes.
AKA patterns of neuronal activations.

• Takes issue with hypothesis testing as primary cognitive task as people appear to vary their
algorithm depending on constraints while underlying probabilistic problem remains the
same.

• Cannot separate cognition as an emergent phenomena from the underlying mechanism
without missing critical aspects.

19

Talk Structure
• Connectionist Background Material

• To Recognize Shapes, First Learn to Generate Images [Hinton
2006]

• Learning Hierarchical Category Structure in Deep Neural
Networks [Saxe et al 2013]

• Letting Structure Emerge: Connectionist and Dynamical
Approaches to Cognition [McClelland et al 2010]

• Intriguing Neural Network Properties [Szegedy et al 2013]

• Future of Connectionism

20

Semantic Meaning of
Individual Units

• Neural Networks classically viewed as
hierarchical feature detectors. A classification
decision is made based on the features
identified in the input.

• Individual neurons or ‘units’ each learn to
recognize one distinguishing feature in the
input.

• Features detectors learned form a basis
vector set for interpreting data. Researchers
like to think these feature units have semantic
interpretations.

• Turns out any random transformation of basis
still has semantic interpretation.

• Implication - Neural Networks are not semantic
feature detectors, but instead encode data
regularities across whole activation surface.

21

(a) Unit sensitive to lower round stroke. (b) Unit sensitive to upper round stroke, or
lower straight stroke.

(c) Unit senstive to left, upper round
stroke.

(d) Unit senstive to diagonal straight
stroke.

Figure 1: An MNIST experiment. The figure shows images that maximize the activation of various units
(maximum stimulation in the natural basis direction). Images within each row share semantic properties.

(a) Direction sensitive to upper straight
stroke, or lower round stroke.

(b) Direction sensitive to lower left loop.

(c) Direction senstive to round top stroke. (d) Direction sensitive to right, upper
round stroke.

Figure 2: An MNIST experiment. The figure shows images that maximize the activations in a random direction
(maximum stimulation in a random basis). Images within each row share semantic properties.

where I is a held-out set of images from the data distribution that the network was not trained on
and e

i

is the natural basis vector associated with the i-th hidden unit.

Our experiments show that any random direction v 2 Rn gives rise to similarly interpretable se-
mantic properties. More formally, we find that images x0 are semantically related to each other, for
many x

0 such that

x

0
= argmax

x2I
h�(x), vi

This suggests that the natural basis is not better than a random basis for inspecting the properties
of �(x). This puts into question the notion that neural networks disentangle variation factors across
coordinates.

First, we evaluated the above claim using a convolutional neural network trained on MNIST. We
used the MNIST test set for I. Figure 1 shows images that maximize the activations in the natural
basis, and Figure 2 shows images that maximize the activation in random directions. In both cases
the resulting images share many high-level similarities.

Next, we repeated our experiment on an AlexNet, where we used the validation set as I. Figures 3
and 4 compare the natural basis to the random basis on the trained network. The rows appear to be
semantically meaningful for both the single unit and the combination of units.

Although such analysis gives insight on the capacity of � to generate invariance on a particular
subset of the input distribution, it does not explain the behavior on the rest of its domain. We shall
see in the next section that � has counterintuitive properties in the neighbourhood of almost every
point form data distribution.

4 Blind Spots in Neural Networks

So far, unit-level inspection methods had relatively little utility beyond confirming certain intuitions
regarding the complexity of the representations learned by a deep neural network [6, 13, 7, 4].
Global, network level inspection methods can be useful in the context of explaining classification
decisions made by a model [1] and can be used to, for instance, identify the parts of the input which
led to a correct classification of a given visual input instance (in other words, one can use a trained

3

(a) Unit sensitive to lower round stroke. (b) Unit sensitive to upper round stroke, or
lower straight stroke.

(c) Unit senstive to left, upper round
stroke.

(d) Unit senstive to diagonal straight
stroke.

Figure 1: An MNIST experiment. The figure shows images that maximize the activation of various units
(maximum stimulation in the natural basis direction). Images within each row share semantic properties.

(a) Direction sensitive to upper straight
stroke, or lower round stroke.

(b) Direction sensitive to lower left loop.

(c) Direction senstive to round top stroke. (d) Direction sensitive to right, upper
round stroke.

Figure 2: An MNIST experiment. The figure shows images that maximize the activations in a random direction
(maximum stimulation in a random basis). Images within each row share semantic properties.

where I is a held-out set of images from the data distribution that the network was not trained on
and e

i

is the natural basis vector associated with the i-th hidden unit.

Our experiments show that any random direction v 2 Rn gives rise to similarly interpretable se-
mantic properties. More formally, we find that images x0 are semantically related to each other, for
many x

0 such that

x

0
= argmax

x2I
h�(x), vi

This suggests that the natural basis is not better than a random basis for inspecting the properties
of �(x). This puts into question the notion that neural networks disentangle variation factors across
coordinates.

First, we evaluated the above claim using a convolutional neural network trained on MNIST. We
used the MNIST test set for I. Figure 1 shows images that maximize the activations in the natural
basis, and Figure 2 shows images that maximize the activation in random directions. In both cases
the resulting images share many high-level similarities.

Next, we repeated our experiment on an AlexNet, where we used the validation set as I. Figures 3
and 4 compare the natural basis to the random basis on the trained network. The rows appear to be
semantically meaningful for both the single unit and the combination of units.

Although such analysis gives insight on the capacity of � to generate invariance on a particular
subset of the input distribution, it does not explain the behavior on the rest of its domain. We shall
see in the next section that � has counterintuitive properties in the neighbourhood of almost every
point form data distribution.

4 Blind Spots in Neural Networks

So far, unit-level inspection methods had relatively little utility beyond confirming certain intuitions
regarding the complexity of the representations learned by a deep neural network [6, 13, 7, 4].
Global, network level inspection methods can be useful in the context of explaining classification
decisions made by a model [1] and can be used to, for instance, identify the parts of the input which
led to a correct classification of a given visual input instance (in other words, one can use a trained

3

Random Basis

Natural Basis

(a) (b)

Figure 5: Adversarial examples generated for AlexNet [9].(Left) is a correctly predicted sample, (center) dif-
ference between correct image, and image predicted incorrectly magnified by 10x (values shifted by 128 and
clamped), (right) adversarial example. All images in the right column are predicted to be an “ostrich, Struthio

camelus”. Average distortion based on 64 examples is 0.006508. Plase refer to http://goo.gl/huaGPb
for full resolution images. The examples are strictly randomly chosen. There is not any postselection involved.

(a) (b)

Figure 6: Adversarial examples for QuocNet [10]. A binary car classifier was trained on top of the last layer
features without fine-tuning. The randomly chosen examples on the left are recognized correctly as cars, while
the images in the middle are not recognized. The rightmost column is the magnified absolute value of the
difference between the two images.

the original training set all the time. We used weight decay, but no dropout for this network. For
comparison, a network of this size gets to 1.6% errors when regularized by weight decay alone and
can be improved to around 1.3% by using carefully applied dropout. A subtle, but essential detail
is that we only got improvements by generating adversarial examples for each layer outputs which
were used to train all the layers above. The network was trained in an alternating fashion, maintain-
ing and updating a pool of adversarial examples for each layer separately in addition to the original
training set. According to our initial observations, adversarial examples for the higher layers seemed
to be significantly more useful than those on the input or lower layers. In our future work, we plan
to compare these effects in a systematic manner.

For space considerations, we just present results for a representative subset (see Table 1) of the
MNIST experiments we performed. The results presented here are consistent with those on a larger
variety of non-convolutional models. For MNIST, we do not have results for convolutional mod-
els yet, but our first qualitative experiments with AlexNet gives us reason to believe that convolu-
tional networks may behave similarly as well. Each of our models were trained with L-BFGS until
convergence. The first three models are linear classifiers that work on the pixel level with various
weight decay parameters �. All our examples use quadratic weight decay on the connection weights:
loss

decay

= �

P
w

2
i

/k added to the total loss, where k is the number of units in the layer. Three
of our models are simple linear (softmax) classifier without hidden units (FC10(�)). One of them,
FC10(1), is trained with extremely high � = 1 in order to test whether it is still possible to generate
adversarial examples in this extreme setting as well.Two other models are a simple sigmoidal neural
network with two hidden layers and a classifier. The last model, AE400-10, consists of a single layer
sparse autoencoder with sigmoid activations and 400 nodes with a Softmax classifier. This network
has been trained until it got very high quality first layer filters and this layer was not fine-tuned. The
last column measures the minimum average pixel level distortion necessary to reach 0% accuracy

on the training set. The distortion is measure by
qP

(x0
i�xi)2

n

between the original x and distorted

6

Adversarial Examples
• Minor perturbations to input cause wild

misclassifications.

• Effect appears independent of any
particular Connectionist model or
set of hyperparameters.

• Seems to be ‘In the data’.

• Implications

• Connectionist models and
algorithms are not cognitively
plausible.

• If issues are ‘In the data’ perhaps
analysis at Marr’s Computational
level is best.

22

(a) (b)

Figure 5: Adversarial examples generated for AlexNet [9].(Left) is a correctly predicted sample, (center) dif-
ference between correct image, and image predicted incorrectly magnified by 10x (values shifted by 128 and
clamped), (right) adversarial example. All images in the right column are predicted to be an “ostrich, Struthio

camelus”. Average distortion based on 64 examples is 0.006508. Plase refer to http://goo.gl/huaGPb
for full resolution images. The examples are strictly randomly chosen. There is not any postselection involved.

(a) (b)

Figure 6: Adversarial examples for QuocNet [10]. A binary car classifier was trained on top of the last layer
features without fine-tuning. The randomly chosen examples on the left are recognized correctly as cars, while
the images in the middle are not recognized. The rightmost column is the magnified absolute value of the
difference between the two images.

the original training set all the time. We used weight decay, but no dropout for this network. For
comparison, a network of this size gets to 1.6% errors when regularized by weight decay alone and
can be improved to around 1.3% by using carefully applied dropout. A subtle, but essential detail
is that we only got improvements by generating adversarial examples for each layer outputs which
were used to train all the layers above. The network was trained in an alternating fashion, maintain-
ing and updating a pool of adversarial examples for each layer separately in addition to the original
training set. According to our initial observations, adversarial examples for the higher layers seemed
to be significantly more useful than those on the input or lower layers. In our future work, we plan
to compare these effects in a systematic manner.

For space considerations, we just present results for a representative subset (see Table 1) of the
MNIST experiments we performed. The results presented here are consistent with those on a larger
variety of non-convolutional models. For MNIST, we do not have results for convolutional mod-
els yet, but our first qualitative experiments with AlexNet gives us reason to believe that convolu-
tional networks may behave similarly as well. Each of our models were trained with L-BFGS until
convergence. The first three models are linear classifiers that work on the pixel level with various
weight decay parameters �. All our examples use quadratic weight decay on the connection weights:
loss

decay

= �

P
w

2
i

/k added to the total loss, where k is the number of units in the layer. Three
of our models are simple linear (softmax) classifier without hidden units (FC10(�)). One of them,
FC10(1), is trained with extremely high � = 1 in order to test whether it is still possible to generate
adversarial examples in this extreme setting as well.Two other models are a simple sigmoidal neural
network with two hidden layers and a classifier. The last model, AE400-10, consists of a single layer
sparse autoencoder with sigmoid activations and 400 nodes with a Softmax classifier. This network
has been trained until it got very high quality first layer filters and this layer was not fine-tuned. The
last column measures the minimum average pixel level distortion necessary to reach 0% accuracy

on the training set. The distortion is measure by
qP

(x0
i�xi)2

n

between the original x and distorted

6

(a) (b)

Figure 5: Adversarial examples generated for AlexNet [9].(Left) is a correctly predicted sample, (center) dif-
ference between correct image, and image predicted incorrectly magnified by 10x (values shifted by 128 and
clamped), (right) adversarial example. All images in the right column are predicted to be an “ostrich, Struthio

camelus”. Average distortion based on 64 examples is 0.006508. Plase refer to http://goo.gl/huaGPb
for full resolution images. The examples are strictly randomly chosen. There is not any postselection involved.

(a) (b)

Figure 6: Adversarial examples for QuocNet [10]. A binary car classifier was trained on top of the last layer
features without fine-tuning. The randomly chosen examples on the left are recognized correctly as cars, while
the images in the middle are not recognized. The rightmost column is the magnified absolute value of the
difference between the two images.

the original training set all the time. We used weight decay, but no dropout for this network. For
comparison, a network of this size gets to 1.6% errors when regularized by weight decay alone and
can be improved to around 1.3% by using carefully applied dropout. A subtle, but essential detail
is that we only got improvements by generating adversarial examples for each layer outputs which
were used to train all the layers above. The network was trained in an alternating fashion, maintain-
ing and updating a pool of adversarial examples for each layer separately in addition to the original
training set. According to our initial observations, adversarial examples for the higher layers seemed
to be significantly more useful than those on the input or lower layers. In our future work, we plan
to compare these effects in a systematic manner.

For space considerations, we just present results for a representative subset (see Table 1) of the
MNIST experiments we performed. The results presented here are consistent with those on a larger
variety of non-convolutional models. For MNIST, we do not have results for convolutional mod-
els yet, but our first qualitative experiments with AlexNet gives us reason to believe that convolu-
tional networks may behave similarly as well. Each of our models were trained with L-BFGS until
convergence. The first three models are linear classifiers that work on the pixel level with various
weight decay parameters �. All our examples use quadratic weight decay on the connection weights:
loss

decay

= �

P
w

2
i

/k added to the total loss, where k is the number of units in the layer. Three
of our models are simple linear (softmax) classifier without hidden units (FC10(�)). One of them,
FC10(1), is trained with extremely high � = 1 in order to test whether it is still possible to generate
adversarial examples in this extreme setting as well.Two other models are a simple sigmoidal neural
network with two hidden layers and a classifier. The last model, AE400-10, consists of a single layer
sparse autoencoder with sigmoid activations and 400 nodes with a Softmax classifier. This network
has been trained until it got very high quality first layer filters and this layer was not fine-tuned. The
last column measures the minimum average pixel level distortion necessary to reach 0% accuracy

on the training set. The distortion is measure by
qP

(x0
i�xi)2

n

between the original x and distorted

6

Talk Structure
• Connectionist Background Material

• To Recognize Shapes, First Learn to Generate Images [Hinton
2006]

• Learning Hierarchical Category Structure in Deep Neural
Networks [Saxe et al 2013]

• Letting Structure Emerge: Connectionist and Dynamical
Approaches to Cognition [McClelland et al 2010]

• Intriguing Neural Network Properties [Szegedy et al 2013]

• Future of Connectionism

23

Future of Connectionism
• Deep Learning networks currently

dominate AI competitions and
performance on tasks such at MINST data.

• Success is being driven by hardware
advances in programmable GPUs due to
parallel nature of Connectionist algorithms.
Progress now ‘plugged in’ to Moore’s Law.

• Software tools growing in sophistication.

• Google Voice Recognition on Android
phones.

• Convolutional Networks.

• Prediction: Performance increases will
continue to dominate other forms of AI not
amplifiable by parallelization on GPUs.

24

Thoughts?

25

