

What makes humans special? **Cognitive Achievements**

Humans

-art/science of cooking -competitive games w/ elaborate rules

-attempts to explain why

Other Animals find & recognize food play fighting

navigate world of obstacles

world works the way it does laws and political systems

familial hierarchies & social groups

What makes Humans So Smart? (Spelke 2003)

- 2 possibilities, both of which make reference to core knowledge systems
- These are specialized systems that develop in infancy and provide the core for mature abilities

Possibility #1

- The core cognitive systems of humans are uniquely human
- Similar to Descartes' answer: -Humans are the only animal endowed w/ reason -Reason is the source of all distinctive cognitive achievements of humans -Example: Natural understanding of Euclidean

geometric principles, astronomy, optics, physics

Evidence against Possibility #1

- Many core cognitive systems have been explored, and (so far) none of them seem to be unique to humans
- -Object Mechanics
- -Natural Geometry

...but so do adult rhesus monkeys and 1day old chicks

Object Mechanics: Human infants fill in the surfaces and boundaries of partially occluded objects

- 4-month olds perceive the unity of a moving, center-occluded object
- Movement (common motion of discontiguous parts) is a crucial factor

Natural Geometry

<u>Humans</u>

Both blind and blindfolded children are able to deduce geometric relationships between objects experienced one-at-a-time

Non-humans

Bees compute relationship between hive and food source

Tunisian ants dead reckon their way home after long torturous treks

So...

- Neither core systems of object mechanics and natural geometry are unique to humans
- Possibility #1 can't be right

Possibility #2

- Although the core knowledge systems of humans and non-humans are the same, humans have language and *that* allows humans to combine information from different core systems
- "Neo-Whorfian view": language as toolkit

But can toddlers *really* not do it?

- Maybe wall color just isn't a very salient property for toddlers
- How about trying more salient landmarks? (Hermer & Spelke, 1996)

Experiment #1

- Participants: 16 children between the ages of 3 and 4 years and 16 children between the ages of 5.4 and 6 years
- Participants placed in a rectangular chamber
- Two conditions:
 - Direct Landmark: Use of non-geometric cue as landmark
 - Indirect Landmark:a blend of geometric cue and wall color

How do we determine what makes kids become more flexible?

- Kids get "smarter" in many ways
- Expt 2: children given a battery of tests which measure cognitive development
 - General Processing: digital span, IQ, spatial memory span
 - Development of Spatial Language: comprehension & production
 - Active use of spatial language: production of "left" and "right"
- Test: find the correct location, one room all white walls; one room with one colored wall

Some Thoughts...3

- There is a correlation between spatial language production and the ability to combine non-spatial and spatial information.
- But...rats can be trained to do the same thing after hundreds of trials (Biegler & Morris, 1996)
- So spatial language production isn't absolutely *necessary*....just really helpful?

Limitations of Core Knowledge Systems

- Domain Specific: represent only selection of entities in child's environment
- Task Specific: guide only actions/thoughts relevant to child's life
- **Encapsulated:** processes of each are separate from the other systems
- **Isolated:** representations from each system do not readily combine

But with human language...

- "...system that has none of the limits of the core knowledge systems..."
- "...a unique system for combining flexibly the representations they share with other animals..."
- You can create an expression "left of the blue wall" that allows you to combine representations from both the geometric and object representation systems

Property of Human Language

- <u>Compositional Semantics</u>: ability of a speaker to apply meanings of a set of words and rules for combining them to create and understand new combinations from the meanings of their parts
- "...natural languages can expand the child's conceptual repertoire to include not just the preexisting core knowledge concepts but also any <u>new well-formed combination</u> of those concepts."

But how do we know language is *really* what's responsible?

"Sources of Flexibility in Human Cognition: Dual-Task Studies of Space and Language" Hermer-Vazquez, Spelke & Katnelson (1999)

Experiment 1

- Same set-up as Spelke experiments 2 rectangular rooms, one with blue wall & one without.
- The reorientation task was performed on subjects in both rooms.
- But in the room with the blue wall, subjects were asked to verbally shadow (repeat as fast they could a passage recorded on tape) during the reorientation task.
- Shadowing: Interferes with linguistic combination since they assume you can't do two language tasks at onces

It is was not obvious that it was the verbal shadowing that impaired the use of nonceometric information. Maybe it's not a

- It is was not obvious that impaired the use of nongeometric information. Maybe it's not a language problem, but simply a memory problem since verbal shadowing is a very demanding task...
- If the nongeometric search requires more resources than a geometric search, then it is possible that the shadowing task simply took too much memory space.
- If that was true, it's not language but general cognitive processing ability that helps bridge the gap between core knowledge systems

<u>Group 1</u>: performed a visual search task while engaged in verbal shadowing

- <u>Group 2</u>: performed a visual search task while engaged in rhythm shadowing with non-verbal response – tapping
- <u>Group 3</u>: performed a visual search task while engaged in rhythm shadowing with verbal response – repeating a nonsense syllable"na"
- Visual Search: say whether a screen full of T's contains the letter L

However...

These findings could mean two things:

1: Verbal shadowing may interfere with the combination process of the geometric and nongeometric information but the subjects can remember and detect both types of information.

OR

2: Verbal shadowing prevents the subjects from detecting and remembering the nongeometric landmark.

Experiment #3

- Purpose: to see whether subjects detect and remember nongeometric information during verbal shadowing
- Different from experiment 1 and 2b in that:
 - The object was hidden directly behind the blue wall, not in the corner, so subjects did not have to conjoin geometric and nongeometric information
 - The short blue and white walls were removed and carried out of the room so that the subject did not rely on his/her sense of orientation.

Experiment #4

- Does language allow people to combine geometric and nongeometric information only in situations in which they are disoriented or does it allow for such combinations in any situation?
- Same as experiment 3, but the walls were removed along with the corners so the subjects could not locate the hidden object by forming a direct association between the object and the nongeometric cue (color). They would have to use spatial language: "to the left of the blue wall"
- If verbal shadowing impairs the encoding of geometric and nongeometric information only in reorientation tasks, then experiment 4 results should equal experiment 3 results.

Comparison of the select one of the

So language *does* seem to play a very important role in the ability to combine information from different core knowledge systems. (Perhaps not absolutely necessary, but <u>extraordinarily</u> helpful.)

All v	white rea	ctangula	ar room	
Table 1	(Out of 50) I	During Fyner	iment 1 for t	F O
Number of Trials Subjects as a Fund Rotational, Geome	ction of Their etrically Inap	Search Loco propriate Co	ation (Correc rners)	et,
Number of Trials Subjects as a Fund Rotational, Geome	ction of Their etrically Inap	v Search Loco propriate Co B	ation (Correc rners)	т,
Number of Trials Subjects as a Fund Rotational, Geome Monkey	ction of Their etrically Inap	R	ation (Correc rners)	τ, F
Number of Triats (Subjects as a Fun Rotational, Geome Monkey Orcas	C 21	R 20	ation (Correc rners)	F 5
Number of Trials (Subjects as a Fund Rotational, Geome Monkey Orcas Krill	C C C C C C C C C C C C C C	R 20 24	ation (Correc rners)	F 5 0
Number of Trials Subjects as a Func Rotational, Geome Monkey Orcas Krill Crevet	C C C C C C C C C C	R 20 24 25	ation (Correc rners)	F 5 0 0

Two Possibilities

They cheated. They separately encoded: a) reward is left of a short wall (a geometric rep) b) reward is near the blue wall (a non-geometric rép)

Using both representations, they were able to uniquely determine the correct location

They didn't cheat.

They directly encoded: Reward is left of the blue wall (a combined rep)

(Even though they don't have language to help them form that kind of representation)

Conclusion: They didn't cheat

They directly encoded: reward is opposite the checkered wall (a **combined** rep) and left of the short wall (a **geometric** rep)

Rhesus monkeys can form and use representations that combine geometric and non-geometric information

But Rhesus monkeys don't have language

Therefore, language is not necessary to form such conjoined representations

Just because rhesus monkeys can combine geo & non-geo spatial info without language, this doesn't mean that humans **don't** use language to do this.

They take Hermer-Vazquez's data to have demonstrated that language <u>is</u> necessary <u>for</u> <u>human beings</u> to combine these

Does this mean that rhesus monkeys are the ones that are more flexible?

