Language \& the Mind LING240
 Summer Session II 2005

Lecture 5
Sounds

Sound
Production

How you look to a phonetician

Forget Spelling!
Sounds \neq Spelling

One Sound - Many Characters

he	e	seas	ea
believe	ie	amoeba	oe
Caesar	ae	key	ey
see	ee	machine	i
people	eo	seize	ei

Interantioanl Phonetic Alphabet: [i]

One Sound - Many Characters

too	oo	threw	ew
to	o	lieu	ieu
clue	ue	shoe	oe
through	ough		

IPA: [u]

One Character - Many Sounds

dame	e
dád	\mathfrak{x}
fáther	a
call	0
village	I, ə
many	e

One Letter - 0, 1, 2 Sounds
mnemonic
psychology
resign
ghost
island
whole debt
cute [kjuwt]

One Sound - Multiple Letters

shoot	S
either	ð
character	k
deal	i
Thomas	t
physics	f
rough	f

Differences across Languages

- English: judge, juvenile, Jesus [d3]
- Spanish: jugar, Jesus [h]
- German: Jugend, jubeln, Jesus [j]
- French: Jean, j'accuse, jambon [3]

Describing Speech Sounds

- Where/how is the air flowing? nasal/oral, stop, fricative, liquid etc.
- Where is the air-flow blocked? labial, alveolar, palatal, velar etc.
- What are the vocal folds doing? voiced vs. voiceless

Major division: consonants vs vowels

- Consonantal sounds: narrow or complete closure somewhere in the vocal tract.
- Vowels: very little obstruction in the vocal tract. Can form the basis of syllables (also possible for some consonants).

Fricatives \& Affricates

- Palatal sounds [3] [S] [d3] [ts]
- Palatal Fricatives - [3] [S]
[note: according to IPA chart these are strictly 'post-alveolar']
- Affricates - combination of stop + fricative - [d3] [t5], as in judge, church

Manner - How the Air is Flowing

- Stops
[p] [t] [k] [b] [d] [g]...
- Fricatives
[f] [v] [θ] [$\mathrm{\chi}]$ [s] [z]
- Approximants/Glides [w] [j]
- Liquids [r] [1]

Voiced \& Voiceless Consonants

- Consonants either voiced or voiceless.
- English pairs:

$b p$	$v f$	$d t$
$z s$	$\partial \theta$	

Describing Consonants

- Where is the air-flow blocked? labial, alveolar, palatal, velar etc.
- Where/how is the air flowing? nasal/oral, stop, fricative, liquid etc.
- What are the vocal folds doing? voiced vs. voiceless

Features

- Ways of describing sounds e.g., [t] = voiceless, alveolar, stop
- Stronger claim: features are the smallest building blocks of language, used to store sounds in the mind
- Atoms of Speech

Features

- Prediction: by combining a small number of atomic features, it should be possible to create a larger number of speech sounds
- Goal: a set of universal features should make it possible to describe the speech sounds of all of the languages of the world
- Different languages choose different feature combinations

	bi-labial	labiodental	interdental	alveolar	palatal	velar	glottal
oral stop	$\begin{aligned} & \mathrm{p} \\ & \mathrm{~b} \end{aligned}$			t		$\begin{aligned} & \mathrm{k} \\ & \mathrm{~g} \end{aligned}$?
nasal stop	m			n			
fricative	$\begin{aligned} & \phi \\ & \beta \\ & \hline \end{aligned}$	f	$\begin{aligned} & \theta \\ & \text { ð } \end{aligned}$	S	$\begin{aligned} & 5 \\ & 3 \end{aligned}$		
affricate	"Fuji" "Cuba"				t d 3		
liquid				1 r ?			
glide					J	M	

	bi-labial	labiodental	inter- dental	alveolar	palatal	velar	glottal
oral stop	$\begin{aligned} & \mathrm{p} \\ & \mathrm{~b} \end{aligned}$		"Bach"				$?$
nasal stop	m						
fricative	$\begin{aligned} & \phi \\ & \beta \end{aligned}$	f	$\begin{aligned} & \theta \\ & \text { б } \end{aligned}$		3 3		h
affricate					d d 3		
liquid							
glide					J	M	

	bi-labial	$\begin{aligned} & \text { labio- } \\ & \text { dental } \end{aligned}$	$\begin{aligned} & \text { inter- } \\ & \text { dental } \end{aligned}$	alveolar	palatal	velar	glottal
oral stop	p			$\begin{aligned} & \mathrm{t} \\ & \mathrm{~d} \end{aligned}$		$\begin{aligned} & \mathrm{k} \\ & \mathrm{~g} \end{aligned}$	$?$
nasal stop	m			n		7	
fricative		f	$\begin{aligned} & \theta \\ & \text { ð } \end{aligned}$	$\begin{aligned} & \mathrm{S} \\ & \mathrm{Z} \end{aligned}$	$\begin{aligned} & 5 \\ & 3 \end{aligned}$		h
affricate					t d 3		
liquid				1 r			
glide					j	$\begin{aligned} & M \\ & \mathrm{~W} \end{aligned}$	

	bi-labial	labiodental	$\begin{aligned} & \text { inter- } \\ & \text { dental } \end{aligned}$	alveolar	palatal	velar	glottal
oral stop	p			$\begin{aligned} & \mathrm{t} \\ & \mathrm{~d} \end{aligned}$		$\begin{aligned} & \mathrm{k} \\ & \mathrm{~g} \end{aligned}$?
nasal stop	m			n	r^{n}	V	
fricative	$\begin{array}{\|l} \phi \\ \beta \end{array}$	f "año"				$?$	
affricate					t d 3		
liquid				1	$?$		
glide					J	$\begin{aligned} & \mathrm{M} \\ & \mathrm{~W} \end{aligned}$	

	bi-labial	labiodental	interdental	alveolar	palatal	velar	glotal
oral stop	p			$\begin{aligned} & \mathrm{t} \\ & \mathrm{~d} \end{aligned}$		$\begin{aligned} & \mathrm{k} \\ & \mathrm{~g} \end{aligned}$	$?$
nasal stop	m			n	n	7	
fricative	ϕ	f	$\begin{aligned} & \theta \\ & \text { б } \end{aligned}$	S	$\left\{\begin{array}{l} 0 \\ 3 \end{array}\right.$	$\begin{aligned} & \chi \\ & \gamma \end{aligned}$	h
affricate					$\mathrm{t}^{\mathrm{d}} 3$		
liquid				1			
glide		66				$\begin{aligned} & M \\ & \mathrm{~W} \end{aligned}$	

	\|bilabial	$\left\lvert\, \begin{array}{\|l\|l\|l\|l\|l\|l\|l\|l\|l\|} \text { dental } \end{array}\right.$	$\begin{array}{\|l\|l\|l\|l\|l\|l\|l\|l\|} \hline \text { inertal } \end{array}$	$\left\lvert\, \begin{aligned} & \text { al- } \\ & \text { veolar } \end{aligned}\right.$	palatal	velar	glottal
oral stop	p			t		$\begin{aligned} & \mathrm{k} \\ & \mathrm{~g} \end{aligned}$?
nasal stop	m			n	ก1.	Y	
fricative	$\begin{aligned} & \Phi \\ & \beta \\ & \beta \end{aligned}$	f	$\begin{aligned} & \theta \\ & \partial \end{aligned}$	$\left\lvert\, \begin{aligned} & \mathrm{s} \\ & \mathrm{z} \end{aligned}\right.$	$\begin{aligned} & 5 \\ & 3 \end{aligned}$	$\left\lvert\, \begin{aligned} & x \\ & \gamma \end{aligned}\right.$	h
affricate					$\mathrm{tS}_{\mathrm{d} 3}$		
liquid				1 r	$爪$		
glide						M	

VoWELS

What can you do to alter the shape of your vocal tract?

You can....

- Raise or lower your tongue
- Advance or retract your tongue
- Round or spread your lips
- Tense or not tense your mouth

So what vowels do you have?

So here they are!

Some dialectal differences

- caught/cot [Mid back lax vowel and mid back tense vowel]: many American speakers do not have both of these.
- pot/father: some British and (fewer) American dialects have different vowels in these words ("pot" has a low back rounded vowel [p]).

Cross-language Differences

Diphthongs:

Cross-language Differences

- Feature Combinations
- English: back vowels are rounded, others are not
- German/French has high, front, rounded vowel [y]
- Russian has high back unrounded vowel [w]
- Many languages don't make the tense/lax distinction found in English (ex: Spanish [i])
- Many languages distinguish short and long vowels (unlike English), ex: Japanese

Diphthongs:

Diphthongs:

Diphthongs:

Diphthongs:

Speech Perception

- Speech production processes must be undone by the ear
- Motions of articulators must be reconstructed from patterns of air vibration
- Requires extremely precise hearing, possibly a system specialized for hearing speech
- Substantially developed at birth

Diphthongs:

Speech Production - Summary

- Airflow set in vibration by vocal folds Airflow modified by vocal tract
- Vowels: shaping of oral cavity
- Consonants: narrowing or blocking of oral/nasal cavity
- Different languages choose different selections of articulatory gestures

Frequency－Tones

楽

眽

Frequency－Tones

Frequency－Male Vowels

Frequency－Tones（Close Up）

防

四

Frequency－Vowels

－Vowels combine acoustic energy at a number of different frequencies
－Different vowels（［a］，［i］，［u］etc．）contain acoustic energy at different frequencies
－Listeners must perform a＇frequency analysis＇of vowels in order to identify them （Fourier Analysis）

Frequency－Male Vowels （Close Up）

Frequency - Female Vowels

Synthesized Speech

- Allows for precise control of sounds
-Valuable tool for investigating perception

Voice Onset Time (VOT)

Frequency - Female Vowels (Close Up)

Timing - Voicing

English VOT production

- Not uniform
- 2 categories

Discrimination

Cross－language Differences

L

Perceiving VOT

＇Categorical Perception＇

Discrimination

Same／Different $0 \mathrm{~ms} \quad 60 \mathrm{~ms}$的解

Same／Different $0 \mathrm{~ms} \quad 10 \mathrm{~ms}$

Same／Different 40 ms 40 ms

A More Systematic Test
D 0ms 政 作 20 ms D

D 20 ms 作 作 40 ms T
T 40ms 作 作 60 ms T Within－Category Discrimination is Hard

Cross－Language Differences

English vs． Japanese R－L

Cross－Language Differences

English vs．Hindi	明
	明
	明
alveolar［d］	明
retroflex［D］	樶
	樶
	明
	明

Cross-language Differences

Participants: Thai - native
English- second (>3 years in the US)
$\left[d^{1} a\right]$ [d2$\left.a\right]$ DIFFERENT
obs

Imsri \& Idsardi (2001)

What's a Syllable?

- Another phonological unit of words
- Every vowel is at the center of a syllable
- Syllables have hierarchical structure

Japanese Phonotactic Constraints

Toyota, Honda...

Japanese Syllables

- English Pronunciation
[mækdanəldz]
- Japanese Pronunciation
[mækudonarudo]

Phonotactic Constraints: Constraints on Syllable Structure

- Every language has restrictions on what sequences of phonemes may occur (*ktleem)
- These constraints are language specific

English: *zleem Polish: zlev 'sink'

- Illegal sequences are illegal within a single syllable
English: *[kspl]
$\left[\begin{array}{lll}\varepsilon k & \text { spli } & \text { sit }\end{array}\right]$

Japanese Syllable Structure

- Toyota
- Honda

Japanese Syllable Structure

Phonemic Level: /m æ k donald/

Phonetic Level: [mækudonaludo]

Additional Findings

Japanese Syllable Structure

- Japanese speakers have trouble hearing the difference

Dupoux et al. 1999

Speech Perception
It seems that a language speaker is a prisoner of his/her language phonemic alphabet

A Puzzle...

- Korean speakers use the sounds [r] and [I] e.g. Korea

Seoul

- Korean babies hear the difference between [ra] and [la] ... they don't know Korean yet
- Korean adults know Korean ... but they have difficulty hearing the [ra] vs. [la] contrast

Possibility \#1: Adding Features

- Children learn the feature contrasts of their language
- Children learn gradually, adding features over the course of development

Roman Jakobson, 1896-1982

What's innate?

- Auditory abilities

Developmental Questions

- How does the native/non-native difference emerge?
- Does native-language discrimination improve as a result of native language input?

Predictions of Possibility \#1

- Poor discrimination at birth
- Better and better with age

Roman Jakobson, 1896-1982

Evidence from neonates?

- How do we know babies can hear differences in speech?
- What can babies do?
- High-amplitude sucking

English VOT Perception

To Test Adults
Simply ask:
same or different?
or
Is it a $[\mathrm{b}]$ or a $[\mathrm{p}]$?
[ba]

English VOT Perception

To Test Children
Not so easy!
High Amplitude Sucking

Universal Listeners

- Infants may be able to discriminate all speech contrasts from the languages of the world!

What About Non-Humans?

- Chinchillas show categorical perception of voicing contrasts!

What's innate?

- Auditory abilities
- Articulatory rudiments
- Not developed
- Desire to coo and babble even in deaf infants

Connecting Hearing \& Speaking

Auditory [ba] + Visual [ga] = Perceptual [da]

Connecting Hearing \& Speaking

McGurk Effect

Evidence for connection

- Infants know connection between visual and auditory speech stimuli

- Mix and match [a] vs. [i]

What's innate?

- Auditory abilities
- Articulatory rudiments
- Connection between them

When does change occur?

- Phonetic level
- Universal Grammar (UG)

When Does Change Occur?

When Does Change Occur?

U. of British Columbia

What has Werker found?

- Is this the beginning of memory?
- Are the infants learning words?
- ...Or something else?

Possibility \#2: Maintenance \& Loss

- Infants maintain features being used in their language
- They lose all others

Patricia Kuhl
University of Washington

Learning the surface

Model

Possibility \#2: Schematic

Possibility \#2: Predictions

- Loss of discriminability should be permanent and absolute

But...

- Some non-native contrasts are easy for adults to distinguish

But...

- Training improves adult performance
ened portions. Furthermore, adults can be "taught" to discriminate the full syllables if given enough training trials, or if tested in sensitive procedures with low memory demands (Pisoni et al. 1982; Werker and Logan 1985).
- Loss of discriminability is neither permanent nor absolute!
Possibility \#2: Reality Check

What does Development Involve?

- Change - non-native categories lost (structure-changing)
- Growth - non-native categories hidden (structure-adding)

What does Development Involve?

- Evidence for Growth
- (i) Some discrimination retained when sounds presented close together (e.g. Hindi d-D contrast) (ii) Discrimination abilities better when people hear sounds as non-speech
(iii) Adults do better than 1-year olds on some sound contrasts
- All evidence comes from consonants

What yearlings can't do

- Recognize minimal pairs while relating them to real words
- "bear" versus "pair"
- "Piglet" versus *"Biglet"
- More Werker experiments

Word Learning

Word learning results

Key Findings

- 14 month olds can discriminate the minimally contrasting words (Expt. 4)
- But they fail to notice the minimal change in the sounds when they are paired with objects, i.e., when they are words (Expt. 2)
- They can perform the task, when the words are more distinct (Expt. 3)
- Therefore, 14 -month olds use more detail to represent sounds than they do to represent words
- Surface 10 months
- Memory 18 months

Approximate Ages

Swingley \& Aslin, 2002

- 14-month year olds did recognize mispronunciations of familiar words

Table 1. Correctly pronounced (CP) target words and their mispronounced (MP) versions		
CP	MP-close	MP-distant
apple (/xep/)	opple (/apl)	opal (/opl/)
baby (/be'bi)	vaby (/ve'bi/)	raby (/e'cibi)
ball (f al/)	gall (/gol)	shawl (JJ5)
car (kai)	cur (k3)	kier (/kil)
dog (/dog)	$\operatorname{tog}(\mathrm{tog})$	$\mathrm{mog}(\mathrm{mag}$)
kitty (ktil)	pity (prii)	yity (jitio)

Possibility \# 1 Again...

- Children learn the feature contrasts of their language
- Children may learn gradually, adding features over the course of development
- Phonetic knowledge does not entail phonological knowledge

Roman Jakobson, 1896-1982

Word-learning \& phonological detail

- Word-learning is very hard for younger children, so detail is initially missed when they first learn words
- Many exposures are needed to learn detailed word forms at earliest stages of word-learning
- Success on the Werker/Stager task seems to be related to the vocabulary spurt, rapid growth in vocabulary after ~ 50 words

Back to 1-year olds

- 1-year olds know the surface sound patterns of the language
- 1-year olds do not yet know which sounds are used contrastively in the language (which sound variations affect meaning and which don't)
- 1-year olds still need to learn contrasts

Vowels Same or Different?

light	lied
tight	tied
site	sighed
life	live
knife	knive(s)
lice	lies
dice	dies

Some people have this system:

light	lajt	lied	lajd
tight	tajt	tied	tajd
site	sajt	sighed	sajd
life	lajf	live	lajv
knife	najf	knive(s)	najvz
lice	lajs	lies	lajz
dice	dajs	dies	dajz

Some people have this one:

light	$1 \wedge \mathrm{jt}$	lied	lajd
tight	$t \wedge j t$	tied	tajd
site	s \wedge jt	sighed	sajd
life	$1 \wedge j f$	live	lajv
knife	n ^ j f	knive(s)	najvz
lice	l $\mathrm{j}_{\mathrm{j}} \mathrm{f}$	lies	lajz
dice	d $\Lambda^{\mathrm{j}} \mathrm{s}$	dies	dajz

What's the pattern?

light	$1 \wedge \mathrm{jt}$	lied	lajd
tight		tied	tajd
site	s Λ jt	sighed	sajd
life	$1 \wedge j f$	live	lajv
knife	n ^ j f	knive(s)	najvz
lice	I $\mathrm{j}_{\mathrm{j}}^{\mathrm{f}}$	lies	lajz
dice	d $\Lambda^{\mathrm{j}} \mathrm{s}$	dies	dajz

What's the pattern?

voiceless	t	voiced	d
alveolar	t	alveolar	d
stop	stop	d	
voiceless	t	voiced	v
labiodental	f	labiodental fricative	f
fricative	v		
voiceless s	voiced alveopalatal	z	
alveopalatal	z		
fricative		fricative	

Isn't it just two sets of words?

What's the pattern?

light	$1 \wedge \mathrm{jt}$	lied	lajd
tight	$t{ }_{\wedge} \mathrm{jt}$	tied	tajd
site	s $\wedge \mathrm{j} \mathrm{t}$	sighed	sajd
life	$1 \wedge \mathrm{jf}$	live	lajv
knife	n ^ j f	knive(s)	najvz
lice	l $\wedge_{\text {j }} \mathrm{f}$	lies	lajz
dice	d Λ js	dies	dajz

So these speakers have a rule ...

Before a voiceless consonant aj --> \wedge j

Two "levels" of speech sounds

The sounds you actually produce

The sounds you actually produce

Two "levels" of speech sounds

The sounds you "store" in your head

The sounds you "store" in your head

1 phoneme; more than 1 phone

- In some dialects of English, the phoneme /aj/ has two allophones: [aj] and [A j$]$.
- The allophone [a j] occurs whenever the phoneme precedes a voiceless sound

sound(s) actually produced
aj $->\Lambda j / _$[-voice]

Another rule:
t --> d/V___V

Another rule:
-"sit"
-"sitter"
-"heat"

- "heater"
-"at"
-"attic"
[SIt]
[sıdər]
[hit]
[hidər]
[æt] [adık]

What about these?
-"attack"
-"atone"
-"determine"
-"detect"

Is there a pattern?

[sıdər]	[ətæk]
[hidər]	[əton]
[ædIk]	[ditekt]

So we need a slight revision

$$
t \rightarrow d / \overline{V^{\prime}} \quad V
$$

Is there a pattern?

[sídər]	[ətǽk]
[hídər]	[ətón]
[ǽdık]	[ditékt]

1 phoneme 2 allophones

sound(s) actually produced

Points to note:

- Sequence becomes "easier to say"

BUT

- This process is a specific rule of a particular dialect of English

Moral:

The rules that we discover are often "natural" in that one can find an explanation for many of them in terms of ease of articulation, but they are not inevitable/innate: they are specific rules of particular dialects or languages, and had to be learned.

If you can predict something by a rule, you don't have to remember it

Just remember:

- the rule
- the things that can't be predicted

In what sense a specific rule?

- doesn't apply to all instances of "t" between vowels
- isn't a part of the grammar of other dialects of English
- is only one way to make sequencesof vowels and voiceless consonants easier to say

How much detail do you have to remember about the sound of each word?

Allophonic differences ignored by hearers

Varying Pronunciations

－Voiceless stops／p，t，k／

pit	昨	tack	昨
spit	作	stack	做
spit	昨	stack	
bit		dack	

－Aspirated at start of syllable；unaspirated after［s］
－ 6 month olds easily distinguish bottom 2 rows； 1 year olds do not（adults aren＇t great either）

So：Korean has only 1 liquid phoneme

（Koreans don＇t have to remember if a word has［l］or［r］）

So in Korean, [l] and [r] are "the same"

1 phoneme 2 allophones

2 phonemes 2 phones

So Korean works like this:

While English works like this:

Minimal Pairs

- In English, [r] and [I] can occur in the same position in a word

rake	lake
ramp	lamp
rim	limb
ripper	ripple

- In English, [r] and [I] can be used to mark a meaning contrast
- In English, /r/ and /I/ are two phonemes

Minimal Pairs

- Korean works differently
- [r] and [I] are two allophones of a single phoneme in Korean
- It's impossible to create minimal pairs which contrast $r / /$ in Korean
- [r] and [I] cannot be used contrastively in Korean

Minimal Pairs

- Korean works differently

phonemic contrasts are
easier to hear

