Universal Grammar

Khanh Phuong Tran

Theory and predictions for the development of morphology and syntax: A Universal Grammar + Statistics approach

1. Introduction

- <u>Goal</u>: "Make different **theoretical proposals** concrete enough to provide **testable predictions**."
 - If **predictions** are borne out, the **proposal** is supported
 - If not, the **proposal** isn't

→ Computational cognitive modeling provides a way to generate testable predictions

Why the focus on computational cognitive models?

 \rightarrow "Because it's often hard to pin down a specific **prediction** that a **UG+stats proposal** makes without a concrete model that uses the proposed **UG knowledge** and implements a specific learning strategy relying on the proposed **statistics**."

 "When we have a computational cognitive model, predictions about children's behavior can be generated that are precise enough to evaluate with empirical data that either already exist or can be obtained in the future."

Computational Cognitive Modeling (cont)

- **UG+stats developmental theory** is typically "a theory of both:
 - The **linguistic representations** the child is learning = the **UG** part
 - The acquisition process the child undergoes = the statistics part"
- \rightarrow The computational model then becomes a "proof of concept" for the developmental theory, as implemented by that model

Computational Cognitive Modeling (cont)

• Implementing a computational cognitive model involves:

"(i) Embedding the **relevant prior knowledge and learning mechanisms** proposed for the child in the model

(ii) Giving the modeled child realistic **input** to learn from

(iii) Generating **output predictions** from that modeled child that connect in some interpretable way to children's behavior."

 \rightarrow Implementing developmental theory in a computational cognitive model is an effective way to evaluate it.

• "A key motivation for UG has always been **developmental**: UG could help children <u>acquire the linguistic knowledge</u> that they do as quickly as they do from the data that's available to them."

 Poverty of the Stimulus = "Where the available data often seem inadequate for pinpointing the right linguistic knowledge as efficiently as children seem to. So, without some internal bias, children wouldn't succeed at language acquisition."

 \rightarrow UG is the proposal for what that **internal bias** could be that enables language to succeed.

- "A UG proposal provide a way to structure the child's <u>hypothesis space</u> with respect to a specific piece of linguistic knowledge"
 - "UG can help define what explicit linguistic hypotheses are considered, and what building blocks allow children to construct those explicit hypotheses for consideration."

 Example: Traditional linguistic parameters = building blocks children can construct their linguistic system from → A language system is described by a specific collection of parameter values for these linguistic parameters → Such parameter building blocks allow children to construct and consider explicit hypotheses about a language's system as they encounter data "Generally, a working definition of UG is that it's anything that is both <u>innate</u> and <u>language specific</u>."