Ling 51/Psych 56L:
Acquisition of Language

Lecture 12
Development of morphology \& syntax I
Announcements

- HW4 due today by 3:20pm
- Review questions for morphology and syntax available
- HW5 available (begin working on it): due 11/22/16

Adult knowledge: The target state for morphology

Words and word parts

https://www.youtube.com/watch?v=nduDAN9sKx4 http://www.thelingspace.com/episode-7
0:38-3:10: smallest units of meaning

Words and word parts

https://www.youtube.com/watch?v=nduDAN9sKx4
http://www.thelingspace.com/episode-7
3:10-4:20: bound vs. free morphemes

Words and word parts

The smallest unit manipulated by the rules of syntax is not a single word. Instead there are units smaller than words that play a role, called morphemes.

One goblin.
Two goblins.
goblins $=$ goblin $+s=$

Morpheme = smallest unit of meaning

Words and word parts

The smallest unit manipulated by the rules of syntax is not a single word. Instead there are units smaller than words that play a role, called morphemes.

One goblin.
Two goblins.
goblins $=$ goblin $+s=$
r

Bound morpheme = morpheme that can't stand on its own - it must be attached to something

Words and word parts

The smallest unit manipulated by the rules of syntax is not a single word. Instead there are units smaller than words that play a role, called morphemes.

Morphology types

https://www.youtube.com/watch?v=BTZCozhneKA
http://www.thelingspace.com/episode-72
1:56-3:20: derivational morphology + structure

Words and word parts

The smallest unit manipulated by the rules of syntax is not a single word. Instead there are units smaller than words that play a role, called morphemes.

One goblin.
Two goblins.
goblins $=$ goblin $+\mathrm{s}=$

Free morpheme = morpheme that can
stand on its own - it does not need to be attached to another morpheme

Types of morphology

Derivational morphology: forms a new word, potentially changing the word's category (nouns become adjectives, verbs become nouns, etc.)

Types of morphology

Derivational morphology: forms a new word, potentially changing the word's category (nouns become adjectives, verbs become nouns, etc.)
goblin
goblinish
goblinish $=$ goblin + ish $=$

Types of morphology

Derivational morphology: forms a new word, potentially changing the word's category (nouns become adjectives, verbs become nouns, etc.)
goblin \quad goblinish $=$ goblin + ish $=$
goblinish
scowl
scowler scowler $=$ scowl + er $=$

Types of morphology

Inflectional morphology: adds grammatical information, but does not change the word's category (nouns stay nouns, verbs stay verbs, etc.)

Types of morphology

Inflectional morphology: adds grammatical information, but does not change the word's category (nouns stay nouns, verbs stay verbs, etc.)

One goblin.
Two goblins.
goblins $=$ goblin $+\mathrm{s}=$

Types of morphology

Inflectional morphology: adds grammatical information, but does not change the word's category (nouns stay nouns, verbs stay verbs, etc.)

One goblin.
Two goblins.

$$
\text { goblins }=\text { goblin }+s=
$$

 + plural

+ present tense + continuing
He's scowling. scowling $=$ scowl + ing $=$

Types of morphology

Inflectional morphology: adds grammatical information, but does not change the word's category (nouns stay nouns, verbs stay verbs, etc.)

One goblin.

Two goblins.
goblins $=$ goblin $+\mathrm{s}=$

He scowls.

$$
\text { scowls }=\text { scowl }+\mathrm{s}=
$$

Cross-linguistic comparison

English does not have a rich morphological system, compared to other languages. Instead, English mostly relies on word order to indicate who did what to whom.

Languages like Hungarian, however, rely more on morphology.
"The boy gave a book to the girl."

A fiú könyvet adott a lánynak.
The boy a book+ACC gave the girl+DAT

Cross-linguistic comparison

English does not have a rich morphological system, compared to other languages. Instead, English mostly relies on word order to indicate who did what to whom.

Languages like Hungarian, however, rely more on morphology.
"The boy gave a book to the girl."

A fiú könyvet adott a lánynak.
The boy a book+ACC gave the girl+DAT

Inflectional morphology:
ACC $=$ accusative case $=$ direct object (thing given)

Words and word parts

https://www.youtube.com/watch?v=nduDAN9sKx4
http://www.thelingspace.com/episode-7
5:08-5:36: cross-linguistic variation

Cross-linguistic comparison

English does not have a rich morphological system, compared to other languages. Instead, English mostly relies on word order to indicate who did what to whom.

Languages like Hungarian, however, rely more on morphology.
"The boy gave a book to the girl."

```
A fiú könyvet adott a lánynak.
The boy a book+ACC gave the girl+DAT
Inflectional morphology:
DAT = dative case = indirect object (recipient of giving)
```

Cross-linguistic comparison http://specgram.com/CLII.3/09.phlogiston.cartoon.3.html

Isolating languages

https://www.youtube.com/watch?v=Ts2DSOZsTyo\&feature=youtu.be 1:30-2:24: isolating languages

Cross-linguistic comparison http://specgram.com/CLII.3/09.phlogiston.cartoon.3.html

"Are you one of those whom we could not Europeanize?"

Cross-linguistic comparison http://specgram.com/CLII.3/09.phlogiston.cartoon.3.html

Polysynthetic languages

https://www.youtube.com/watch?v=Ts2DSOZsTyo\&feature=youtu.be 6:45-7:49: polysynthetic languages

Cross-linguistic comparison
http://specgram.com/CLII.3/09.phlogiston.cartoon.3.html

Morphology recap

Morphology refers to how words are put together to convey meaning.

The smallest units of meaning are morphemes, which can be smaller than a whole word.

Some morphology can change the category of a word (derivational), while other morphology does not (inflectional).

Languages vary on how rich their system of morphology is. Children must learn how their language puts words together, and what types of meaning can be conveyed via morphology.

Adult knowledge:
The target state for syntax

http://mimiandeunice.com/2011/09/23/sentenced-to-death/

Adult knowledge:

The target state for syntax

http://arnoldzwicky.org/category/syntax/word-order/

http://arnoldzwicky.org/category/syntax/word-order/

Creativity of human language

Ability to combine signs with simple meanings to create
(1) Utterances with complex meanings
(2) Novel expressions
(3) Infinitely many

Sentences never heard before...
"Some tulips are starting to samba across the chessboard."

Creativity of human language

Ability to combine signs with simple meanings to create
(1) Utterances with complex meanings
(2) Novel expressions
(3) Infinitely many

Sentences of prodigious length...
"Sir Didymus said that he thought that the odiferous leader of the goblins had it in mind to tell the unfortunate princess that the cries that she made during her kidnapping from the nearby kingdom that the goblins themselves thought was a general waste of countryside ..."

Creativity of human language

Ability to combine signs with simple meanings to create
(1) Utterances with complex meanings
(2) Novel expressions
(3) Infinitely many

A word game to
 communicate in any
 language

https://www.ted.com/talks/ajit narayanan a word game to communicate in any language

"So there is another hidden abstraction here which children with autism find a lot of difficulty coping with, and that's the fact that you can modify words and you can arrange them to have different meanings, to convey different ideas. Now, this is what we call grammar. And grammar is incredibly powerful, because grammar is this one component of language which takes this finite vocabulary that all of us have and allows us to convey an infinite amount of information, an infinite amount of ideas. It's the way in which you can put things together in order to convey anything you want to."

Syntax is more than meaning

Nonsense sentences with clear syntax

Colorless green ideas sleep furiously. (Chomsky)
A verb crumpled the ocean.
I gave the question a goblin-shimmying egg.
...which are incomprehensible when the syntax is nonsense
*Furiously sleep ideas green colorless.
*Ocean the crumpled verb a.
*The question I an egg goblin-shimmying gave.

Syntax is more than meaning

More nonsense sentences with clear syntax
From "Automated Alice" by Jeff Noon:
Oh spoons may dangle from a cow With laughter ten feet tall;
But all I want to know is how
It makes no sense at all.

Oh shirts may sing
to books who pout
In rather rigid lines;
But all I want to turn about
Is how the world unwinds.

Syntax is more than meaning

Famous nonsense sentences with clear syntax
'Twas brillig and the slithy toves Did gyre and gimble in the wabe; All mimsy were the borogroves, And the mome raths outgrabe
Beware the Jabberwock, my son! The jaws that bite, the claws that catch!
Beware the Jubjub bird, and shun
The frumious Bandersnatch!"

- Lewis Carroll, Jabberwocky

Syntax is more than meaning

And these same nonsense sentences with nonsense syntax are incomprehensible...
'Toves slithy the and brillig 'twas wabe the in gimble and gyre did...

Syntax is more than meaning

Ungrammatical sentences that make perfect sense

Jareth put the cape on. Jareth put on the cape.

Jareth put it on.
*Jareth put on it.

Syntax is more than meaning

Ungrammatical sentences that make perfect sense
Jareth made Hoggle leave.
Jareth let Hoggle leave.
Jareth saw Hoggle leave.
*Jareth wanted Hoggle leave.
*Jareth made Hoggle to leave
*Jareth let Hoggle to leave.
*Jareth saw Hoggle to leave.
Jareth wanted Hoggle to leave.

Syntax is more than meaning

Ungrammatical sentences that make perfect sense

Sarah gave a ring to the Wiseman.
Sarah gave him a ring.

Sarah donated a ring to the Wiseman.
*Sarah donated him a ring.

Syntax is more than meaning

Ungrammatical sentences that make perfect sense

Hoggle poked at the wall.
Hoggle hit at the wall.
*Hoggle touched at the wall.

*Hoggle poked the stick against the wall.
Hoggle hit the stick against the wall.
*Hoggle touched the stick against the wall.

Syntax is more than meaning

Cross-linguistic variation
If syntax was entirely determined by meaning, then we should not expect to find syntactic differences between languages of the world....but we do see variation.

English: Sarah	sees	that book.
Korean: Sarah	ku chayk	poata.
Sarah	that book see	

So...what does determine

 how you string words together?Answer: Syntax!
(That is, our knowledge of the possible forms of sentences in our language.)
"Syntax is determined by Meaning" (The way words are put together is determined solelyby what they mean)

Syntax is more than meaning

Cross-linguistic variation
If syntax was entirely determined by meaning, then we should not expect to find syntactic differences between languages of the world....but we do see variation.

English:
Baso put the money in the cupboard.
Selayarese (spoken in Indonesia):

Lataroi doe injo ri lamari injo i Baso.			
put	money the	in cupboard the	Baso

A sentence often consists of a Noun Phrase followed by a Verb Phrase

A template	
Noun Phrase	Verb Phrase
Hoggle	slept
The chicken	tricked the guards
left	
Seven goblins	sarah that Ludo thought that A feeling The strangest story that you ever did hear
	picked the bucket
	got drunk on dwarf wine

A template	
Noun Phrase	Verb Phrase
Hoggle	-slept
The chicken tricked the guards	
Seven goblins	
Sarah	said that Ludo thought that
A feeling	ies were nasty
The strangest story that you ever did hear	kicked the bucket got drunk on dwarf wine
6 Sentences	

A template

A tiny little grammar	
5 Rules	9 Words
S --> NP VP	Det: the, four, some
NP --> Det N	N: goblins, crystals, peaches
$\begin{array}{ll}\text { NP } & -->N \\ \text { VP } & -->V N P\end{array}$	V: understood, ate, approached
VP --> V	468 Sentences

A tiny little grammar

5 Rules

S --> NP VP
30 Words
10 Determiners

NP --> Det N
10 Nouns

NP --> N
10 Verbs
VP --> V NP

VP --> V
122,100 Sentences

Embedded sentences

Additional VP Rule

Hoggle thought Sarah ate the peach.
$\mathrm{VP} \rightarrow \mathrm{VS} \quad \begin{aligned} & \text { Can be used to create a } \\ & \text { sentence-inside-a-sentence } \\ & \text { = example of recursion }\end{aligned}$
Recursion = a phrase of one kind inside a phrase of the same kind (a sentence is a kind of phrase, so a sentence-inside-a-sentence fits this definition)

Infinitely many sentences can be generated!

Ludo said Hoggle thought Sarah ate the peach.
The fairy claimed Ludo said Hoggle thought Sarah ate the peach.
The Wiseman's birdhat hoped the fairy claimed Ludo said Hoggle thought Sarah ate the peach.

Recursion

We can also see this property in English noun phrases
$N P \rightarrow$ NP's Noun
Sarah's friend is a dwarf.
Sarah's friend's uncle is a dwarf.
Sarah's friend's uncle's neighbor is a dwarf.

Recursion

http://phdcomics.com/comics/archive.php?comicid=1758

"What if I know what I don't know, but I don't know how to know what I need to know to know what I don't know?"

Recursion

http://xkcd.com/1557/

I MET A TRAVELER FROM AN ANTIQUE LAND WHO SAID: "I MET A TRAVELER FROM AN ANTIQUE LAND, WHO SAID: "I MET A TRAVELER FROM AN ANTIQUE LAND, WHOSAID: "I MET...

Recursion

http://hyperboleandahalf.blogspot.com/2010/02/please-stop.html

Me: "It's a free country! I can sit on your bed if I want!"
My sister: "PLEASE STOP!"
Me: "PLEASE STOP SAYING PLEASE STOP!"
My sister: "PLEASE STOP TELLING ME TO PLEASE STOP SAYING PLEASE STOP!"
Me: "PLEASE STOP TELLING ME TO PLEASE STOP TELLING YOU TO PLEASE STOP SAYING PLEASE STOP!"
We had discovered a glitch in the system -- Please Stop was flawed. It could be used against itself infinitely, thereby becoming useless. We were in a goddamn Mexican standoff.

Complementizer

Complementizer (Comp): words like THAT, IF, and WHETHER that allow one sentence to be the subject or object of another sentence

Hoggle realized that Sarah ate the peach.
Whether Sarah ate the peach didn't matter.
$S^{\prime} \rightarrow$ Comp S
$\mathrm{VP} \rightarrow \mathrm{V} \mathrm{S}^{\prime}$
$S \rightarrow S^{\prime} V P$

Complementizer

Complementizer (Comp): words like THAT, IF, and WHETHER that allow one sentence to be the subject or object of another sentence

Hoggle realized that Sarah ate the peach.
Whether Sarah ate the peach didn't matter.
$S^{\prime} \rightarrow$ Comp S
$\mathrm{VP} \rightarrow \mathrm{V} \mathrm{S}^{\prime}$
$S \rightarrow S^{\prime}$ VP
Example of Recursion 1:
S expands to include S^{\prime}
S^{\prime} expands to include S
$S \rightarrow \quad S^{\prime}$ VP $\rightarrow \quad$ Comp SVP

A slightly bigger grammar

9 Rules
S --> NP VP
S--> S'VP

NP --> Det N
NP -->N
VP --> VNP
VP -->V
VP -->V S
VP --> V S'

S' --> Comp S

A slightly bigger grammar

9 Rules
Sentences it can generate:

```
S --> NP VP
S --> S' VP
```

Hoggle likes jewels.

```
NP --> Det N
```

NP --> N

S --> NP VP

VP --> V NP
VP --> V
VP --> V S
VP --> V S'

S' --> Comp S

A slightly bigger grammar

9 Rules
Sentences it can generate:
$S \quad-->N P V P$
S --> S'VP
$N P \rightarrow \operatorname{Det} N$
NP --> N
$V P \quad->V N P$
VP --> V
VP --> V S
VP --> V S'

S' --> Comp S
Hoggle likes jewels.
S --> NP VP

NP --> N VP --> V NP

A slightly bigger grammar

9 Rules
Sentences it can generate:
$\begin{array}{ll}S & -->N P V P \\ S & -->S^{\prime} V P\end{array}$

NP $-->$ Det N
NP $-->N$

VP $-->V N P$	$N P-->N$	$V P->V N P$	
$V P-->V$	N	V	$N P$
$V P-->V S$		$N P->N$	
$V P-->V S^{\prime}$		N	

S' --> Comp S

A slightly bigger grammar

9 Rules

Sentences it can generate

S --> NP VP
S --> S' VP

NP --> Det N
NP $-->N$
VP $-->V$ NP
VP $-->V$
VP --> V S
VP --> V S

VP --> V S'

S' --> Comp S

Hoggle likes jewels.
S --> NP VP

$$
\begin{array}{cc}
\text { NP --> N } & \text { VP --> V NP } \\
N & V \text { NP } \\
\text { Hoggle } & \text { likes NP --> N }
\end{array}
$$

N
jewels

A slightly bigger grammar

9 Rules
Sentences it can generate:
S --> NP VP
S --> S' VP
Hoggle likes jewels.
NP --> Det N
NP $-->N$

VP --> V NP
VP --> V
VP --> V S
VP --> V S'

S' --> Comp S

A slightly bigger grammar

9 Rules

$$
\begin{aligned}
& \text { S --> NP VP } \\
& \text { S --> S' VP } \\
& \text { NP }-->\text { Det N } \\
& \text { NP }-->\text { N } \\
& \text { VP }-->V \text { NP } \\
& \text { VP }-->\text { V } \\
& \text { VP }-->V \text { S } \\
& \text { VP }-->V S^{\prime} \\
& S^{\prime}-->C o m p ~ S
\end{aligned}
$$

Sentences it can generate:
Sarah thought that she solved the Labyrinth.

S --> NP VP

A slightly bigger grammar

9 Rules
S --> NP VP
S --> S' VP

NP --> Det N
NP --> N
VP --> V NP
VP --> V
VP --> V S
VP --> V S'

S' --> Comp S

Sentences it can generate:

Sarah thought that she solved the Labyrinth.
S' --> Comp S

A slightly bigger grammar

9 Rules
S--> NP VP
S--> S'VP
$N P \rightarrow$ Det N
NP --> N
Sentences it can generate:
Sarah thought that she solved the Labyrinth.

NP --> N VP --> V S'

VP --> V NP
VP -->V
$V P \rightarrow V S$
$V P \rightarrow V S^{\prime}$

S' --> Comp S

A slightly bigger grammar

9 Rules
Sentences it can generate:

```
S --> NP VP
S --> S' VP
```

NP --> Det N
NP --> N
VP --> V NP
VP -->V
VP --> V S
VP --> V S'
$S^{\prime} \rightarrow$ Comps

Sarah thought that she solved the
Labyrinth.
S --> NP VP
NP --> Det N
NP --> N
NP --> N
VP --> V S'
N
V S'
Sarah thought S' --> Comp S
VP --> V NP
VP --> V S
VP --> V S'
$S^{\prime} \rightarrow$ Comp S \square

A slightly bigger grammar

9 Rules

```
S --> NP VP
S --> S' VP
\(\begin{array}{ll}S & -->N P V P \\ S & -->S^{\prime} V P\end{array}\)
```

NP --> Det N
NP $-->N$

NP --> N
N
Sarah thought Comp S
VP -->V NP
$\begin{array}{ll}\text { VP } & -->V \\ V P & -->V\end{array}$
VP --> V S
VP --> V S'

S' --> Comp S

Sentences it can generate:

Sarah thought that she solved the Labyrinth.

S --> NP VP
NP --> Det N
NP --> N

A slightly bigger grammar

9 Rules
$\begin{array}{ll}S & -->N P V P \\ S & -->S^{\prime} V P\end{array}$

NP --> Det N
NP --> N

VP --> V NP
VP -->V
VP --> V S
VP --> V S'

S' --> Comp S
$\begin{array}{cc}\text { NP --> N } & \text { VP }-->V S^{\prime} \\ N & \text { V } S^{\prime} \\ \text { Sarah } & \text { thought Comp S } \\ & \text { that }\end{array}$
$\begin{array}{cc}\text { NP --> N } & \text { VP }-->V S^{\prime} \\ N & \text { V } S^{\prime} \\ \text { Sarah } & \text { thought Comp S } \\ & \text { that }\end{array}$
$\begin{array}{cc}\text { NP --> N } & \text { VP }-->V S^{\prime} \\ N & \text { V } S^{\prime} \\ \text { Sarah } & \text { thought Comp S } \\ & \text { that }\end{array}$
$\begin{array}{cc}\text { NP --> N } & \text { VP }-->V S^{\prime} \\ N & \text { V } S^{\prime} \\ \text { Sarah } & \text { thought Comp S } \\ & \text { that }\end{array}$
$\begin{array}{cc}\text { NP --> N } & \text { VP }-->V S^{\prime} \\ N & \text { V } S^{\prime} \\ \text { Sarah } & \text { thought Comp S } \\ & \text { that }\end{array}$
Sentences it can generate:
Sarah thought that she solved the Labyrinth. that

$$
j
$$

\qquad

A slightly bigger grammar

9 Rules

S --> NP VP
S --> S' VP

NP --> Det N
NP $-->N$

VP --> V NP
VP -->V
VP --> V S
VP --> V S'

S' --> Comp S

Sentences it can generate:

Sarah thought that she solved the Labyrinth.

S --> NP VP
NP --> N VP --> V S'
N
V S'
Sarah thought that S

A slightly bigger grammar

A slightly bigger grammar

9 Rules

```
\(S \rightarrow->N P V P\)
\(S ~-->S^{\prime} V P\)
\(S \quad-->N P V P\)
\(S ~-->S^{\prime} V P\)
NP --> Det N
NP --> N
NP --> N
VP \({ }^{\prime}\)
    \(N \quad V\) S
    Sarah thought that \(\mathrm{S}-->\) NP VP
VP --> V NP
VP --> V
VP --> V S
VP --> V S'
S' --> Comp S
Sentences it can generate:
Sarah thought that she solved the
Labyrinth.
                                S --> NP VP
VP --> V S'
```

9 Rules

```
S --> NP VP
S --> S' VP
\(\begin{array}{ll}S & -->N P V P \\ S & -->S^{\prime} V P\end{array}\)
```

NP --> Det N
NP $-->N$

NP --> N
N
Sarah thought that NP VP
VP --> V NP
VP -->V
VP --> V S
VP --> V S'

S' --> Comp S

Sentences it can generate:

Sarah thought that she solved the Labyrinth.

S --> NP VP
NP --> Det N
NP --> N
VP --> V S'
V S'

A slightly bigger grammar

9 Rules

Sentences it can generate:

S --> S' VP

NP $-->\operatorname{Det} N$
NP --> N

VP $-->V N P$
--> V

VP --> V S'

S' --> Comp S

A slightly bigger grammar

9 Rules

S --> NP VP
S --> S' VP

NP --> Det N
NP --> N

VP --> V NP
VP -->V
VP --> V S
VP --> V S'
Sentences it can generate:
Sarah thought that she solved the Labyrinth.

> NP --> N

N
Sarah thought that NP VP

NP --> N	VP --> V NP
N	$V N P$
she	solved

$\begin{array}{cr}-->N & \text { VP --> } \\ \mathrm{N} & \mathrm{V} \text { NP } \\ \text { she } & \text { solved }\end{array}$
solved

S' --> Comp S

A slightly bigger grammar

9 Rules
Sentences it can generate:

```
S --> NP VP
S --> S' VP
NP \(\rightarrow\) Det \(N\)
Sarah thought that she solved the
\[
S ~-->N P V P
\]
\[
N P \quad-->N
\]
NP \(-->N\)
NP --> N
Labyrinth.
VP --> V S'
arah
theurht
VP --> V NP
VP --> V
VP --> V S
VP --> V S'
\[
\begin{array}{cc}
\text { NP --> N } & \text { VP --> V NP } \\
\text { N } & \text { V NP } \\
\text { she } & \text { solved } \\
& \text { NP --> Det N }
\end{array}
\]
S' --> Comp S
```


A slightly bigger grammar

9 Rules

S --> NP VP
S --> S'VP

NP --> Det N
NP --> N
NP --> N
N
Sarah thought that NP VP
VP --> V NP
VP --> V
VP --> V S
VP --> V S'

S' --> Comp S

Sentences it can generate:

Sarah thought that she solved the Labyrinth.

S --> NP VP
VP --> V S'
V S'

NP --> N	VP --> V NP
N	$V N P$
she	solved
	Det N

the Labyrinth

A slightly bigger grammar

9 Rules
Sentences it can generate:

S --> NP VP
S --> S'VP

NP --> Det N
NP -->N
VP -->VNP
VP -->V
VP --> V S
VP --> V S'
Sarah thought that she solved the

Labyrinth.

the Labyrinth

Figuring out structure: bottom-up
9 Rules
S --> NP VP
S--> S'VP

NP --> Det N
NP --> N
VP --> VNP
VP -->V
VP --> V S
VP --> V S'

S' --> Comp S
Sarah thought that Hoggle was a cheat.

Figuring out structure: bottom-up

9 Rules

```
S --> NP VP
S --> S' VP
NP --> Det N
NP --> N
VP -->VNP
VP -->V
VP -->VS
VP --> V S'
\(S^{\prime}\)--> Comp S Sarah thought that Hoggle was a cheat.
```

Figuring out structure: bottom-up
9 Rules

```
S --> NP VP
S --> S' VP
    NP --> Det N
    NP -->N
    VP -->VNP
    VP -->V
    VP -->VS
    VP --> V S'
    S' --> Comp S
        N V Comp \(N\) V Det \(N\)
        Sarah thought that Hoggle was a cheat.
```

Figuring out structure: bottom-up
9 Rules

```
S --> NP VP
S --> S' VP
NP --> Det N
NP \(-->N\)
VP --> VNP
VP -->V
VP --> V S
VP --> V S'
S' --> Comp S Sarah thought that Hoggle was a cheat.
```

Figuring out structure: bottom-up
9 Rules

```
S --> NP VP
S --> S' VP
NP --> Det N
NP --> N
VP --> VNP
VP -->V
VP --> V S
VP --> V S'
S' --> Comp S
Sarah thought that Hoggle was a cheat.
```

Figuring out structure: bottom-up
9 Rules

```
S --> NP VP
S --> S' VP
NP --> Det N
NP --> N
VP --> V NP
VP -->V
VP --> V S
VP --> V S'
S' --> Comp S
N V Comp N V Det N
Sarah thought that Hoggle was a cheat.
```

Figuring out structure: bottom-up
9 Rules

S --> NP VP
S --> S' VP

NP --> Det N
NP $-->N$

VP --> V NP
VP --> V
VP --> V S
VP --> V S'

S' --> Comp S
N

Figuring out structure: bottom-up
9 Rules
S --> NP VP
S --> S'VP

NP --> Det N
NP $-->N$

VP --> V NP
VP --> V
VP --> V S
VP --> V S'

S' --> Comp S

Sarah thought that Hoggle was a cheat.

Figuring out structure: bottom-up
9 Rules
S --> NP VP
S --> S' VP

NP --> Det N
NP --> N

VP --> V NP
VP $-->V$
VP --> V S
VP --> V S'

S' --> Comp S

Figuring out structure: bottom-up
9 Rules

Figuring out structure: bottom-up
9 Rules

```
S --> NP VP
S --> S' VP
    NP --> Det N
    NP --> N
    VP -->VNP
    VP -->V
    VP --> V S
    VP --> V S'
    S' --> Comp S
        Comp \(N\) V \(V\)
                                That Hoggle lied surprised Sarah.
```

Figuring out structure: bottom-up
9 Rules

```
S --> NP VP
S --> S' VP
NP --> Det N
NP --> N
VP --> V NP
VP --> V
VP --> V S
VP --> V S'
S' --> Comp S
That Hoggle lied surprised Sarah.
```

Figuring out structure: bottom-up
9 Rules
S --> NP VP
S --> S'VP

NP --> Det N
NP --> N

VP --> V NP
VP --> V
VP --> V S
VP --> V S'
Comp N V V NP
S' --> Comp S
That Hoggle lied surprised Sarah.

Figuring out structure: bottom-up

9 Rules

```
S --> NP VP
S --> S' VP
    NP --> Det N
    NP --> N
    VP --> V NP
    VP --> V
    VP --> V S
    VP --> V S'
    S' --> Comp S
                                That Hoggle lied surprised Sarah.
```

Figuring out structure: bottom-up
9 Rules

S --> NP VP
S --> S' VP

NP --> Det N
NP --> N

VP --> V NP
VP --> V
VP --> V S
VP --> V S'

S' --> Comp S
That Hoggle lied surprised Sarah

Figuring out structure: bottom-up
9 Rules
$\begin{array}{ll}S & -->N P V P \\ S & -->S^{\prime} V P\end{array}$

NP --> Det N
NP $-->N$

VP --> V NP
VP --> V
VP --> V S
VP --> V S'
Comp N
VP

S' --> Comp S
That Hoggle lied surprised Sarah.

Figuring out structure: bottom-up
9 Rules

$$
\begin{aligned}
& \text { S --> NP VP } \\
& \text { S --> } S^{\prime} \mathrm{VP} \\
& \text { NP }-->\text { Det N } \\
& \text { NP }-->N \\
& V P-->V N P \\
& V P-->V \\
& V P-->V S \\
& V P-->V S^{\prime}
\end{aligned}
$$

S' --> Comp S

Figuring out structure: bottom-up

9 Rules

```
S --> NP VP
S --> S' VP
NP --> Det N
NP --> N
VP --> V NP
VP --> V
VP --> V S
VP --> V S'
S' --> Comp S
```



```
That Hoggle lied surprised Sarah.
```

Figuring out structure: bottom-up
9 Rules
S --> NP VP
S --> S' VP

NP --> Det N
NP --> N

VP --> V NP
VP --> V
VP --> V S
VP --> V S'

S' --> Comp S

That Hoggle lied surprised Sarah.

Syntax recap

The structure of language (syntax) involves more than simply the meaning of the words. It involves rules about how the words themselves are allowed to go together.

It isn't enough to know the list of possible sentences in the language. Because adults can generate novel sentences and sentences of infinite length, adults need to know a rule system that can generate sentences.

Adults know (unconsciously) a system of rules for generating the word orders they use. A fairly small set of rules can generate a fairly large set of sentences.

Questions?

You should be able to answer up through question 4 on the review questions, and up through question 10 on HW5.

