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Abstract

Word-object co-occurrence statistics are a powerful information source for vocabulary

learning, but there is considerable debate about how learners actually use them. While

some theories hold that we accumulate graded, statistical evidence about multiple referents

for each word, others suggest that we track only a single candidate referent. In two

large-scale experiments, we show that neither account is sufficient: Cross-situational

learning involves elements of both. Further, the empirical data are captured by a

computational model that formalizes how memory and attention interact with

co-occurrence tracking. Together, the data and model unify opposing positions in a

complex debate and underscore the value of understanding the interaction between

computational and algorithmic levels of explanation.

Keywords: statistical learning, word learning, language acquisition, computational

models
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An Integrative Account of Constraints on Cross-Situational Learning

Natural languages are richly structured. From sounds to phonemes to words to

referents in the world, statistical regularities characterize the units and their connections at

every level. Adults, children, and even infants have been shown to be sensitive to these

statistics, leading to a view of language acquisition as a parallel, possibly implicit, process

of statistical extraction (Saffran, Aslin, & Newport, 1996; Gómez & Gerken, 2000). Recent

experiments across a number of domains, however, show that human statistical learning

may be significantly more limited than previously believed (Johnson & Tyler, 2010;

Yurovsky, Yu, & Smith, 2012; Trueswell, Medina, Hafri, & Gleitman, 2013).

We focus here on the use of statistical regularities to learning the meanings of

concrete nouns (known as cross-situational word learning; Pinker, 1989; Siskind, 1996; Yu

& Smith, 2007). Because words’ meanings are reflected in the statistics of their use across

contexts, learners could discover the meaning of the word “ball” (for instance) by noticing

that while it is heard across many ambiguous contexts, it often accompanies play with

small, round toys. A growing body of experiments shows that adults, children, and infants

are sensitive to such co-occurrence information, and can use it to map words to their

referents (Yu & Smith, 2007; L. B. Smith & Yu, 2008; Vlach & Johnson, 2013; Suanda,

Mugwanya, & Namy, in press).

Information about a word’s meaning can thus be extracted from the environmental

statistics of its use (Frank, Goodman, & Tenenbaum, 2009). But this analysis is posed at

what Marr (1982) called the “computational theory” level: dealing only with the nature of

the information available to the learner. At the “algorithmic” level—the level of

psychological instantiation in the mind of the learner—this idealized statistical

computation could be realized in many ways, and the computation human learners actually

perform is a topic of significant debate (see e.g., Yu & Smith, 2012).

Do human learners really maintain a representation of word-object co-occurrences?

Some evidence suggests that humans are indeed gradual, parallel accumulators of
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statistical regularities about the entire system of word-object co-occurrences,

simultaneously acquiring information about multiple candidate referents for the same word

(Vouloumanos, 2008; McMurray, Horst, & Samuelson, 2012; Yurovsky, Fricker, Yu, &

Smith, 2014). Other evidence suggests that statistical learning is a focused, discrete

process in which learners maintain a single hypothesis about the referent of any given

word. This referent is either verified by future consistent co-occurrences or instead rejected,

“resetting” the learning process (Medina, Snedeker, Trueswell, & Gleitman, 2011; Trueswell

et al., 2013). While both of these algorithmic-level solutions will, in the limit, produce

successful word-referent mapping, they will do so at very different rates. In particular, if

learners track a only a single referent for each word, it may be necessary to posit additional

biases and constraints on learners in order for human-scale lexicons to be learned in

human-scale time from the input available to children (Blythe, Smith, & Smith, 2010;

Reisenauer, Smith, & Blythe, 2013).

To distinguish between these two accounts, previous experiments exposed learners to

words and objects in which co-occurrence frequencies indicated several high-probability

referents for the same word. At the group level, participants in these experiments showed

gradual learning of multiple referents for the same word (e.g., Vouloumanos, 2008;

Yurovsky, Yu, & Smith, 2013); but gradual, parallel learning curves can be observed at the

group level even if individuals are discrete, single-referent learners (Gallistel, Fairhurst, &

Balsam, 2004; Medina et al., 2011). Experiments measuring the same learner at multiple

points—a stronger test—have produced mixed results. In some cases, learners showed clear

evidence of tracking multiple referents for each word, suggesting a distributional

approximation mechanism at the algorithmic level (K. Smith, Smith, & Blythe, 2011;

Yurovsky, Smith, & Yu, 2013; Dautriche & Chemla, 2014). In other experiments, however,

learners appear to track only a single candidate referent, and to restart from scratch if

their best guess is wrong (Medina et al., 2011; Trueswell et al., 2013).
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Figure 1 . Results of previous experiments investigating representations for

cross-situational learning. These experiments vary along a number of dimensions, but two

appear to predict whether multiple-referent tracking is observed: the number of referents

present on each trial, and the interval between trials for the referent.

These mixed results expose a fundamental gap in our understanding of the

mechanisms humans use to encode and track environmental statistics critical for learning

language. Evidence for each account is separately compelling, but neither account can

explain the evidence used to support the other. Because previous experiments differ along

a number of dimensions—e.g., methodology, stimuli, timing, and precision of

measurement—it has been difficult to integrate them to understand why cross-situational

learning sometimes appear distributional and sometimes appear discrete (for a review, see

Yurovsky et al., 2014).

We propose that differences in task difficulty may explain diverging results across

experiments. Two salient dimensions vary across previous studies: ambiguity of individual

learning instances, and the interval between successive exposures to the same label (Fig. 1).
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Figure 2 . A representation of the continuum between the Statistical Accumulation and

Single Referent Tracking models as learners’ attention is varied from evenly distributed

(σ = 1
|O|) to focused on a single referent (σ = 1), as well as the best-fitting integrated

model’s position along this continuum.

As attentional and memory demands increase, learners may shift from statistical

accumulation to single-referent tracking (K. Smith et al., 2011; Trueswell et al., 2013).

We present a strong test of this hypothesis, adapting a paradigm first introduced in

(Bower & Trabasso, 1963) to study the information learners store in concept identification.

We parametrically manipulated both the ambiguity of individual learning trials and the

interval between them and measured multiple-referent tracking at the

individual-participant level. Even at the maximum difficulty tested, learners tracked

multiple referents for each word: Strong evidence against a qualitative shift from statistical

accumulation to single-referent tracking. However, the data also show that learners encode

the referents with differing strengths, remembering their hypothesized referent much

better. Thus, each previous account appears to be partially correct.

To clarify how these two accounts are related, we implemented both single-referent

tracking and statistical accumulation as computational models. We also extended these

accounts into an integrative model that subsumes both as special cases along a continuum.

Only the integrative model accounted for our full dataset. Further, this model was able to
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make nearly perfect parameter-free predictions for a follow-up experiment that was

designed to verify that learners encode mappings rather than individual words and objects.

We conclude that cross-situational word learning is best characterized by an integrative

account: Learners track both a single target referent and an approximation to the

co-occurrence statistics; the strength of this approximation varies with the complexity of

the learning environment (Fig. 2).

Experiment 1

We designed Experiment 1 to estimate learners’ memory for both their single best

hypothesis about the correct referent of a novel word and their additional statistical

knowledge as demands on attention and memory varied. Participants saw a series of

individually ambiguous word learning trials in which they heard one novel word, viewed

multiple novel objects, and made guesses about which object went with each word. To

succeed, participants needed to encode at least one of the objects that co-occurred with a

word, remember it until their next encounter with that word, and check whether that same

object was again present. If participants encoded exactly one object, they would succeed

only when their initial hypothesis was correct. However, the more additional objects

participants encoded on their first encounter with a word, the greater their likelihood of

succeeding even if their initial hypothesis was incorrect.

Rather than allowing chance to determine whether participants held the correct

hypothesis on their first exposure to a novel word, the set of novel objects presented on the

second exposure to each word was constructed based on participants’ choices. On Same

trials, the participant’s hypothesized referent was pitted against a set of novel competitors.

In contrast, on Switch trials, one of the objects the participant had previously not

hypothesized was pitted against a set of novel competitors (see Fig. 3). Logically, either a

single-referent tracking or a statistical accumulation mechanism will succeed on Same

trials. However, only statistical accumulation of information about non-target items can

succeed on Switch trials.
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Figure 3 . A schematic of the experimental trials seen by participants in Experiments 1

and 2. On their first exposure to each novel word, participants were asked to guess its

correct referent. In Experiment 1, the second trial for each word was either a Same

trial—the set of referents contained the participant’s previous hypothesis, or a Switch

trial—the set of referents contained one the participant had previously not hypothesized.

In Experiment 2, Switch trials were replaced with New Label trials that showed same set of

referents but a played a novel word. The number of referents on the screen and the interval

between successive exposures to the same word varied across conditions.

Method

Participants. Experiment 1 was posted to Amazon Mechanical Turk as a set of

Human Intelligence Tasks (HITs) to be completed only by participants with US IP

addresses that paid 30 cents each (for a detailed comparison of laboratory and Mechanical

Turk studies see Crump, McDonnell, & Gureckis, 2013). Ninety HITs were posted for each

of the 16 Referent x Interval conditions for a total of 1440 paid HITs. If a participant

completed the experiment more than once, he or she was paid each time, but only data

from the first HIT completion was included in the final data set (excluded 180 HITs). In
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addition, data was excluded from the final sample if participants did not give correct

answers for familiar trials (64 HITs, see Design and Procedure). The final sample thus

comprised 1,196 unique participants, approximately 75 participants per condition (range:

71-81).

Stimuli. Stimuli for the experiment consisted of black and white pictures of

familiar and novel objects and audio recordings of familiar and novel words. Pictures of 32

familiar objects spanning a range of categories (e.g. squirrel, truck, tomato, sweater) were

drawn from the set constructed by Snodgrass and Vanderwart (1980). Pictures of distinct

but difficult to name novel objects were drawn from the set of 140 first used in Kanwisher,

Woods, Iacoboni, and Mazziotta (1997). For ease of viewing on participants’ monitors,

pixel values for all pictures were inverted so that they appeared as white outlines on black

backgrounds (see Figure 3). Familiar words consisted of the labels for the familiar objects

as produced by AT&T Natural VoicesTM (voice: Crystal). Novel words were 1-3 syllable

pseudowords obeying the rules of English phonotactics produced using the same speech

synthesizer.

Design and Procedure. Participants were exposed to a series of trials in which

they heard a word, saw a number of objects, and were asked to indicate their guess as to

which object was the referent of the word. After a written explanation of this procedure,

participants were given four practice trials to introduce them to the task. On each of these

trials, they heard a Familiar word and saw a line drawing of that object among a set of

other familiar objects. On the first two trials, participants were asked to find the squirrel,

and the correct answer was in the same position on each trial. On the next two trials,

participants were asked to find the sweater, and the correct answer switched positions from

the first to the second trial (in order to ensure that participants understood the on-screen

position was not an informative cue to the correct target). These trials also served to

screen for participants who did not have their audio enabled or who were not attending to

the task.
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After these Familiar trials, participants were informed that they would now hear

novel words, and see novel objects, and that they should continue selecting the correct

referent for each word. Participants heard each of the eight novel words twice, but the

order in which these words were presented and the number of objects seen on the screen

were varied across sixteen between-subjects conditions. Participants saw either 2, 3, 4, or 8

Referents on each trial, and the two trials for each word occurred either back-to-back, or

were interleaved between trials for other words for an Interval of 1, 2, 3, or 8. Four of these

follow-up trials were Same trials in which the referent that participants selected on the first

encounter with that object appeared again amongst the set of objects. The other four were

Switch trials in which one of the referents in the set was selected randomly from the objects

a participant did not select on the previous exposure to that word. All other referents were

completely novel on each trial. The number of referents on Familiar trials for each

participant matched the number of referents they would see on Same and Switch trials.

Because participants performed this task over the internet, it was important to

indicate to them that their click had been registered. Thus, a red dashed box appeared

around the object they selected on for 1 second after their click was received. This box

appeared around the selected object whether or not it was the “correct” referent.1

Results

Do statistical learners encode multiple referents for each word, or do they instead

encode only a single hypothesized referent? We compared the distribution of correct

responses made by each participant to the distribution expected if participants were

selecting randomly (defined by a Binomial distribution with four trials and a probability of

success of 1/#Referents). The top row of Fig. 4 shows participants’ accuracies in

identifying the referent of each word in all conditions for both kinds of trials (Same and
1It is possible that forcing participants to select an object on each trial could have changed their perfor-

mance. However, control conditions from three previous experiments suggest that empirically this is not the

case (Medina et al., 2011; K. Smith et al., 2011; Trueswell et al., 2013).
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Switch). At all Referent and Interval levels, both for Same and for Switch trials,

participants’ responses differed from those expected by chance (smallest χ2(4) = 15.07, all

ps < .01). Thus, learners encoded more than a single hypothesis in ambiguous word

learning situations, even under high levels of memory and attentional load.

Next, to quantify the effect of each factor on word learning, we fit a mixed-effects

logistic regression model to the data from the full dataset (Baayen, Davidson, & Bates,

2008). All mixed-effects models presented in the paper were implemented in R 3.02 using

version 1.1-6 of the lme4 package. Because of the complexity of the dataset, we

constructed models iteratively, with first main effects and then interaction terms added as

long as they significantly improved the fit of the model to the data (measured by likelihood

comparison tests using χ2).

This analysis showed significant main effects of Number of Referents, Interval, and

Trial Type. In addition, the model showed a significant two-way interaction between

Referents and Trial Type and a significant three-way interaction between all three factors

(Table 1). Thus, while word learning was best at low levels of referential ambiguity and at

low memory demands, the decreases in word learning observed on Same and Switch trials

were due to different factors. For Same trials, the number of Referents played a relatively

small role in the difficulty of learning, while the Interval between learning and test played a

large role. However, for Switch trials, there was relatively little decline in word mapping as

Interval increased but a large decline due to number of Referents.

These data suggest that neither the single-referent tracking nor the statistical

accumulation account of cross-situational word learning is correct. Although learners did

encode multiple referents, they did not encode them all with equal strength. Memory for

the hypothesized referent was stronger than for non-hypothesized referents at all

referent-set sizes and at all intervals. Further, the difference between them grew with

number of referents. Thus, it appears that a new account is necessary that integrates

elements of both single-referent tracking and accumulative statistical tracking.
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Predictor Estimate Std. Error z value p value

Intercept 4.68 0.41 11.45 <.001 ***

Log(Referents) -0.55 0.18 -3.00 <.001 **

Log(Interval) -0.41 0.19 -2.19 .03 *

Switch Trial -1.44 0.43 -3.34 <.001 ***

Log(Referents)*Log(Interval) -0.13 0.09 -1.45 .15

Log(Referents)*Switch Trial -1.04 0.20 -5.32 <.001 ***

Log(Interval)*Switch Trial 0.13 0.20 0.65 .51

Log(Referents)*Log(Interval)*Switch Trial 0.20 0.10 2.13 .03 *

Table 1

Predictor estimates with standard errors and significance information for a logistic

mixed-effects model predicting word learning in Experiment 1. The model was specified as

Correct ∼ Log(Referents) * Log(Interval) * TrialType + (TrialType | subject).

Before presenting a formal integrative account in the Model section below, we first

rule out one other possibility. Because the set of foils for each target referent was distinct,

participants could have succeeded on Switch trials by selecting the most familiar object

regardless of which word they were hearing. If so, these data would be consistent with a

slightly amended single-referent tracking account in which learners also have some residual

memory for previously-seen objects but have not learned them as word-object mappings.

Experiment 2 presents a new learning condition to test this possibility.
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Figure 4 . Proportion of repeated referents selected by participants at each combination of

number of Referents and Interval on Same and Switch trials in Experiment 1, and Same

and New Label trials in Experiment 2. Each datapoint represents ∼75 participants in

Experiment 1 and ∼50 participants in Experiment 2. Error bars indicate 95% confidence

intervals computed by non-parametric bootstrap. Learning in all conditions of Experiment

1 differed from chance and declined mostly due to Interval for Same trials but mostly due

to Referents for Switch trials. Experiment 2 Same trials replicated performance in

Experiment 1 Same trials, but New Label trials were different from Switch trials in all

Referent and Interval conditions.
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Experiment 2

Participants’ above-chance accuracies on Switch trials in Experiment 1 provide

evidence of their memory for multiple objects, but not necessarily for the formation of

referential mappings between the objects and the novel words. To rule out this second

possibility, Experiment 2 replaced Switch Trials with New Label trials in which

participants saw an object they had previously not selected among a set of novel

competitors but heard a New Label (Fig. 3). If success on Switch trials was due purely to

referent familiarity, New Label trials should produce similar responses. In contrast, if

success on Switch trials was due to a learned mapping between words and referents, New

Label trials should show a different pattern of performance.

Method

Participants. As in Experiment 1, participants for Experiment 2 were recruited

from Amazon Mechanical Turk under the constraint that they had a US IP address. Each

HIT paid 30 cents for completion. Sixty HITs were posted for each of the sixteen Referent

x Interval conditions for a total of 960 paid HITs. Participants were again paid for multiple

HITs, but only data from their first was included in the final set (excluded 100 HITs). In

addition, data was again excluded from the final sample if participants did not give correct

answers for familiar trials (60 HITs). The final sample thus comprised 803 unique

participants, approximately 50 participants per condition (range: 41–55).

Stimuli, Design, and Procedure. All aspects of the Stimuli, Design, and

Procedure of Experiment 2 were identical to those of Experiment 1 except for the

construction of New Label trials. On these trials, the set of candidate referents was the

same as on Switch trials in Experiment 1, but the word was novel (Figure 3).
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Results

Participants showed robust evidence of learning mappings (rather than simply

tracking familiar objects). Whereas participants on Same trials were more likely than

predicted by chance to select a referent they had previously seen but not guessed,

participants in New Label trials were, in many cases, less likely than predicted by chance

to select these same referents. Further, in all Referent and Interval conditions, performance

on New Label trials differed significantly from performance on comparable Switch trials.

That is, these participants recognized these referents from their first exposure, and further

recognized that they did not co-occur on their previous exposure with the label they heard

at test (bottom row of Fig. 4).

In addition, a mixed-effects logistic regression largely reproduced the patterns

observed in Experiment 1—word learning accuracies on Same trials declined predominantly

due to Interval between learning and test, and very little due to the number of Referents.

New Label trials were driven almost entirely by the number of Referents—as was the case

with Switch trials in Experiment 1 (Table 2).

Taken together, these data are strong evidence that neither the single-referent

tracking nor the statistical accumulation account of cross-situational word learning is

correct. Instead, cross-situational word learning is best characterized by a combination of

both of these mechanisms. In the next section, we formalize this idea.
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Predictor Estimate Std. Error z value p value

Intercept 3.97 0.27 14.88 <.001 ***

Log(Referents) -0.47 0.10 -4.76 <.001 ***

Log(Interval) -0.60 0.07 -8.39 <.001 ***

New Label Trial -4.02 0.30 -13.31 <.001 ***

Log(Referents)*New Label Trial -0.24 0.12 -2.00 .04 *

Log(Interval)*New Label Trial 0.58 0.08 6.99 <.001 ***

Table 2

Predictor estimates with standard errors and significance information for a logistic

mixed-effects model predicting word learning in Experiment 2. The model was specified as

Correct ∼ Log(Referents) * TrialType + Log(Interval) * TrialType + (TrialType |

subject)

Model

We begin by describing the computational-level learning problem posed by

Experiment 1 using the model developed in Frank et al. (2009). In this framework, the

learner observes a set of situations S with the goal of determining the lexicon of

word-object mappings L that produced them P (L|S). We can use Bayes’ rule to describe

the inferential computation the learner must perform:

P (L|S) ∝ P (S|L) P (L) (1)

Each situation consists of two observed variables: objects (O) and words (W ). In addition,

situations implicitly contain an additional hidden variable: an intention (I) by the speaker

to refer to one of the objects. Thus, speakers first choose an object from the set and then

choose a referential label for it. The probability of a lexicon is given as the joint probability

of observing all of the words, objects, and intentions given that lexicon, times the lexicon’s
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prior probability:

P (L|S) ∝
∏
s∈S

P (Ws, Is, Os, |L) P (L) (2)

Because the referential intention mediates the relationship between words and objects

(Frank et al., 2009), we can rewrite Equation 2 using the chain rule:

P (L|S) ∝
∏
s∈S

P (Ws|Is, L) P (Is|Os) P (L) (3)

To make predictions from this model, we need to define the probabilities in Eq. 3.

Following Frank et al. (2009), we propose that the word (W ) used to label the intended

referent on each trial is chosen uniformly from the set of all words in the lexicon for that

object (Lo). In addition, we propose a simple parsimony prior for the lexicon: A priori, the

larger the set of words in the lexicon that refer to the same object O, the lower the

probability of that lexicon: P (Lo) ∝ 1
|Lo| .

We can then take this computational-level description of the problem and add

cognitive constraints to understand how the patterns observed in our data arise from the

interaction of learning mechanisms, attention, and memory (see e.g., Frank, Goldwater,

Griffiths, & Tenenbaum, 2010; Shi, Griffiths, Feldman, & Sanborn, 2010). We start by

describing how participants allocate their attention on each learning trial, a critical point

of difference between the two different accounts of cross-situational learning.

In this framework, the most convenient place to integrate attention is in defining the

learner’s beliefs about P (I|O), the probability of the speaker choosing to refer to each

object in the set. One possibility is to let each object be equally likely to be the intended

referent, implementing parallel Statistical Accumulation as in Frank et al. (2009).

Alternatively, the learner could place all of the probability mass on one hypothesized

referent – implementing a Single Referent tracking strategy. A more flexible alternative is

to assign some probability mass σ to the hypothesized referent, and divide the remainder
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evenly among the remaining objects: 1−σ
|O|−1 . This Integrated model subsumes the other two

as special cases: At σ = 1, it is a Single Referent tracker, and at σ = 1
|O| , it is a parallel

Statistical Accumulator (Fig. 2).

There is some debate about the mechanisms that give rise to attentional limitations

(e.g. Wei, Wang, & Wang, 2012). In our formulation, attention is treated as a continuous

resource, but this choice is a matter of convenience rather than a theoretical commitment.

For our purposes, the important question is to what extent attention is focused on the

single target referent, and a continuous implementation allows parameter-estimation to

answer this question.

Next, we model how learners’ memories for observed situations decay over time. We

follow previous memory researchers by formalizing memory for a lexical entry as a power

function of the interval between successive exposures (Anderson & Schooler, 1991). As

with attention-allocation, there a number of successful models of the underlying

mechanisms that give rise to phenomena like the power-law observed in human memory

(e.g., Murdock, 1982; Shiffrin & Steyvers, 1997). Again, the critical aspect for modeling

this data is to be consistent with the broader dynamics of human memory, rather than

with determining which model can best account for these dynamics. Accordingly, memory

for lexical entry Lo decays according to a power function of time t in which γ scales the

strength of initial encoding and λ defines the rate of decay.

M(Lo) = γ Lo t
−λ (4)

Finally, we provide a choice rule describing how learners select among the objects on

each test trial. We propose that learners choose the correct referent with probability

proportional to their memory for its lexical entry, and otherwise choose randomly among

the set of referents.2 We use this rule because all of the foils on both Same and Switch
2This formulation is equivalent to using Luce’s Choice Axiom (Luce, 1959) in which the target has strength

M(Lo) + 1−M(Lo)
|O| and each foil has strength 1−M(Lo)

|O| .
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trials were novel, and thus should have no trace in memory.

P (Correct) = M(Lo) + 1−M(Lo)
|O|

(5)

We implemented our models in R 3.02 using version 2.20 of the rstan package. Raw

data for all participants presented in the paper and R code for running the models are

available in a github repository at http://github.com/dyurovsky/XSIT-MIN. All three

models—Statistical Accumulation, Single Referent, and Integrated—were fit to the data

from Experiment 1 at the individual-participant level. Best-fitting parameters for

Experiment 1 for each model were estimated by computing the mean value returned across

1000 samples.

While the Single Referent and Statistical Accumulation models capture some of the

structure in the data in Experiment 1, each leaves significant variance unexplained. The

Single Referent Model cannot predict above-chance performance on Switch trials, and the

Statistical Accumulation model cannot predict a difference between the Same and Switch

trials. The Integrated model, however, predicts 95% of the variance in the data, and

significantly outperforms the other models in BIC comparisons as well—a metric that

trades off its superior performance against its one additional parameter (Table 3).

Model Log Likelihood BIC E1 r2 E1+2 r2

Statistical Accumulation -6565 13145 0.33 0.66

Single Referent -5950 11915 0.83 0.77

Integrated -5590 11203 0.95 0.97

Table 3

Likelihood and Correlation measures for models on Experiments 1 and 2. The Integrated

model outperformed both of the individual accounts on all measures.
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Figure 5 . Predictions of the Integrated model for all conditions in Experiment 1 and 2.

This model was able to account for 97% of the variance in the data, significantly

outperforming both Single Hypothesis and Parallel Accumulation models.

We can use the models presented above, with parameters estimated from Experiment

1, to make parameter-free predictions about the data observed in Experiment 2. As before,

the Single Referent and Statistical Accumulation models predict some of the variance in

the new data, but leave much unexplained. The Integrated model makes near-perfect

predictions about the new data—including the New Label condition—explaining 97% of

the combined variance in the data from Experiments 1 and 2 (Table 3). Fig. 5 presents

model predictions for all experimental data. Taken together, Experiments 1 and 2 and the

integrated model results thus provide strong evidence that learners track not only a single

hypothesis for the most likely referent of a novel word, but also some approximation to

distributional statistics—in particular, an approximation that becomes less precise as

referential uncertainty increases.

General Discussion

For an ideal learner, word-object co-occurrence statistics contain a wealth of

information about meaning. But how is this information used by human learners? One
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possibility is that learning is fundamentally statistical, and we gradually accumulate

distributional information across situations. Another possibility, however, is that we track

only a single, discrete hypothesis at any time. While each of these accounts has some

support in prior work, neither is consistent with all of the extant data.

Our results here suggest a synthetic explanation: The degree to which learners

represent statistical information depends on the complexity of the learning situation.

When there are many possibilities, learners represent little about any other than the one

that is currently favored; when there are few, learners represent more. This account does

not depend on positing multiple, discrete learning systems. Instead, the tradeoff between

the most likely hypothesis and the alternatives emerges from graded constraints on

memory and attention. Consistent with this account, when we manipulated the cognitive

demands of a cross-situational word learning paradigm, we found a gradual shift in the

fidelity with which alternatives were represented.

This graded shift in representation was well-described by an ideal learning model, but

only when this model was modified to take into account psychological constraints on

attention and memory (Kachergis, Yu, & Shiffrin, 2012; Vlach & Johnson, 2013; Yurovsky

et al., 2014). This framework allowed us to estimate the effects of these constraints on

learning to find the model that best fit the data—one intermediate between the two

extreme poles of parallel statistical accumulation and single-referent tracking. This

unifying account provides a route by which both hypotheses and sensitivity to statistics

can make complementary contributions to word learning (Waxman & Gelman, 2009;

Kachergis, Yu, & Shiffrin, 2013).

The shift from a computational to an algorithmic (or, psychological) description was

critical in capturing the pattern of human performance in our task (Marr, 1982; Frank et

al., 2010; Yurovsky et al., 2012). For the current model, we chose one principled

instantiation of cognitive limitations based on previous work, but there may be other

consistent proposals. Indeed, recent work from Yu and Smith (2012) suggests that human
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performance observed in cross-situational learnings task can be consistent with a number of

seemingly quite different models that can mimic each other (see also, Townsend, 1990).

These authors note that modeling choices peripheral to the central learning

mechanism—e.g., attentional allocation, memory, choice rule—can be varied to produce

many different patterns of learning. In order to address this issue, we fit a large set of

parametrically-varying data that imposes strong constraints on model parameters and

modeling choices. In addition, we prevented overfitting by fixing model parameters using

Experiment 1 and making parameter-independent predictions about learning that were

supported in Experiment 2. This approach allowed us to gain insight about both the

central learning mechanism and the constraining processes that together determine human

performance.

Although cross-situational learning has been proposed as a potential acquisition

mechanism for children (e.g. Pinker, 1989), the majority of experimental work has focused

on adults. While children can learn from cross-situational evidence (L. B. Smith & Yu,

2008; Vlach & Johnson, 2013; Suanda et al., in press), the mechanisms underlying these

inferences could well be different from those operating in adults. Indeed, some recent

findings suggest qualitative differences between children and adults, specifically in scenarios

that require exclusion inferences (Ramscar, Dye, & Klein, 2013). Any inference from adult

data to children’s learning mechanisms remains necessarily speculative.

Nonetheless, as more developmental data become available, models like ours will be

important tools in interpreting these data. Adults and children differ substantially in

general cognitive abilities such as memory and attention (e.g. Gathercole, Pickering,

Ambridge, & Wearing, 2004; Lane & Pearson, 1982). Our model suggests that even if there

were continuity in learning mechanisms across age, the representations underlying

cross-situational learning might seem to shift between childhood and adulthood. For young

children, even “simple” two-referent situations might be sufficiently challenging to prevent

strong representation of multiple alternatives. Thus, interpretation of new data should be
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guided by predictions for memory- and attention-constrained learners.

We further note that connecting experimental data from children to the natural

context of word learning may also require substantial work. Cross-situational learning

experiments may impose additional cognitive demands on children (e.g., encoding many

new words and unfamiliar objects) that are not representative of the familiar circumstances

in which children’s word learning often takes place. In natural speech to children, referents

are introduced into common ground and then discussed (Clark, 2003). In contrast,

cross-situational tasks are intentionally stripped of the constellation of communicative,

attentional, and linguistic cues that typically surround naming events (Frank, Tenenbaum,

& Fernald, 2013; Gogate, 2010; Mintz, 2003), and each naming event appears in isolation,

rather than being embedded in a coherent discourse (Frank et al., 2013; Rohde & Frank, in

press). Thus, a full understanding of the processes of early word learning will necessarily

require further analyses of the natural ecology of word learning. Nonetheless, data and

models of the kind presented here provide useful guiding principles for understanding word

learning in the wild.

In sum, our work stands as a case study of how ideal learning models can inform

psychological accounts of statistical learning. Although we focused on noun learning, our

results are relevant for many problems in language, including phonetic category learning,

speech segmentation, and grammar learning. In each of these domains, researchers have

debated the degree to which learners represent distributional information (Endress, Scholl,

& Mehler, 2005; Frank et al., 2010; McMurray, Kovack-Lesh, Goodwin, & McEchron,

2013). We suggest a synthesis: Learning is fundamentally distributional, but the fidelity of

learners’ distributional estimates depends critically on their limited attention and memory.
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