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Abstract

The computational approach to syntactic acquisition can be fruitfully pursued by inte-

grating results and perspectives from computer science, linguistics, and developmental psy-

chology. In the article, we first review some key results in computational learning theory that

have immediate consequences for language acquisition. We then turn to examine specific

learning models, some of which exploit distributional information in the input while others

rely on a constrained space of hypotheses, even as both approaches share a common set of

characteristics to overcome the learning problem. By concluding with a discussion of how

computational models may connect with the empirical study of child grammar, we make the

case for computationally tractable, psychologically plausible and developmentally realistic

models of acquisition.

1 Introduction

All models strive to represent reality, and the computational study of grammar learning should

likewise form an integral part of the empirical work. Language acquisition research typically

focuses on the nature of the child’s linguistic knowledge–“the child knows A at age X but B at

age X+Y”–but a more complete explanation will require a specification of what kind of learning

mechanism, acting on what kind of linguistic data, can facilitate the transition from A to B during

the time course of X and Y. This is where computational learning models, which demand a con-

crete algorithmic process that interacts with the input data in specific ways, can make important

contributions.
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It is equally important that computational models be guided and constrained by the findings

from the linguistic and psychological studies of child language.1–3 The uncertainty in our knowl-

edge about human computational capacities should not issue a blanket license of anything goes.

Furthermore, the learning model must produce behavioral patterns consistent with the longitu-

dinal development of grammar which has been amply documented. The search for an acquisi-

tion theory applicable across languages should also be reflected in computational studies, which

must address the diversity and complexity of the world’s languages.

We will develop these themes throughout this article. Section 2 reviews some key results

from computational learning theory and highlights the necessity of constraints on the learner

that are assumed, in one form or another, by all acquisition models. Section 3 discusses the

role of distributional learning in grammar and underscores its connection with computational

linguistics where similar topics have been studied. Section 4 focuses on models of acquisition

that can be broadly framed as a problem of selecting a target among a finite range of options,

with special attention to the complexity and psychological plausibility of the models. Section 5

discusses the need for computational models of grammar acquisition to address the empirical

findings in child language development.

2 Learnability

A hallmark of human language is its unbounded generative capacity. This is evident in child

language acquisition even–and especially–when children commit linguistic mistakes. Every time

a child says “Don’t giggle him” or “The sun is sweating me”, there is a grammatical system at work

that generalizes beyond the input, even though it occasionally gets it wrong.

Learnability is the mathematical study of language learning from examples. It is part of

the field of computational learning theory which was initiated in part to model child language

acquisition.4–6 Computational learning theory was developed in parallel with the research in sta-

tistical inference and approximation7 and some points of contact between these two traditions

can be found.8 In learnability studies, one typically partitions the problem of learning into sev-

eral components concerning the presentation of data, the composition of the hypothesis space,

the mechanism and complexity of the learning algorithm, the condition of convergence, etc.

These components can be varied, producing different learning scenarios that can be studied

formally.

Pertinent to our discussion are two related but distinct frameworks of learning. Gold’s classic

inductive inference framework4 typically requires the learner to converge exactly on the target

language within a finite amount of time and on all the orders in which the examples are pre-
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sented. The Probably Approximately Correct (PAC) framework6 only requires the learner to get

arbitrarily close, e.g., the distance between the conjectured grammar and the actual grammar

can be made as small as possible, but it must be able to do so efficiently. Both frameworks are

broad enough to allow variant instantiations of the learning model. In general, however, the the-

oretical results from both frameworks have been overwhelmingly negative. For instance, Gold

shows that when using positive data alone, only the class of finite languages is learnable; none of

the classes of languages in the Chomsky hierarchy (regular, context free, context sensitive, recur-

sively enumerable) is learnable. These classes are also unlearnable in the PAC learning frame-

work, which requires computational efficiency, even if the learner has access to both positive

and negative data.9 In fact, even the class of finite languages ceases to be PAC-learnable.11

Computational learning theory is well established but its implications for language acquisi-

tion require further elucidation; see references (10–11) for clear reviews with special reference to

language. First, learnability results are very general and can be modified to accommodate a wide

range of learning situations. For instance, the input may consist of form-meaning pairs, e.g., a

string and its associated semantics, rather than just the string itself as has been conventionally

assumed. The language to be identified would then be a subset of the universe that is the product

of the set of all possible strings and the set of all possible meanings: non-learnability results still

hold. Second, learnability results are usually obtained irrespective of the specific learning algo-

rithm as long as some widely adopted conjectures about computational complexity hold. There

is no point employing the latest and trendiest computational techniques to overcome negative

theoretical results.

So far so discouraging, but human children do learn languages. Positive results are possi-

ble by providing the learner with additional information about the grammars to be acquired,

and/or with more powerful or informative ways of processing the learning data. Not all such

modifications are reasonable in the context of language acquisition. For instance, an early re-

sult shows that negative data enlarge the learnable class of languages in the inductive inference

framework4 (but not necessarily in the PAC framework). A further result shows that if the learner

can present queries to an oracle and obtain certain information about the target language (e.g.

whether a string is in the language), then the class of learnable language can be considerably

enlarged along with efficient learning algorithms.20 While results of this type have been appro-

priately influential in the general study of learning and inference (e.g., pattern classification), it

is well known that negative data are not necessary for child language learning and the require-

ment of an oracle for the child learner to consult also appears suspect. We thus limit our review

to some results that rely on at least potentially justifiable assumptions.

An important way to gain learnability is to restrict the space of possible languages. Two ma-
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jor directions can be identified: they differ in their methodological orientation and are often

viewed as divergent but are in fact similar in spirit. An empirical approach is taken in modern

linguistic theorizing, which is devoted to providing a sufficiently restrictive syntactic system for

cross linguistic descriptions.13 To the extent that these efforts are successful, one can take up the

question whether they provide plausible computational models of learning; we turn to these is-

sues in section 4 and 5. A more computational approach aims to define demonstrably learnable

classes of languages. The central challenge is then to show that such classes are sufficient for the

description of human language syntax.

For example, while the entire class of regular language is not learnable, a subset of regular

languages with special properties is. An important positive result was given by Angluin.14 A re-

versible language is a subclass of finite state languages where if two strings share any “tail” (a

substring that continues to the end), then they also share all tails. For instance, suppose a re-

versible language contains “John likes pizza”, “Mary likes pizza”, and “John drinks tea”. Since

“John” and “Mary” share the same tail (“likes pizza”), they must share all continuations. Thus,

“Mary drinks tea” must also be part of the language: the learner thus generalizes. (Sub)string

substitutability is the defining characteristic of reversible languages and captures certain intu-

ition about distributional learning.15 Reversible language induction has been used to learn fairly

complex aspects of natural language syntax.16 However, the class of finite state languages, which

properly include reversible languages, is well known to be inadequate for the description of hu-

man language syntax. Also, the learnability of reversible languages and similar results for restric-

tive classes of languages do not do away with the so-called innateness assumption. The learner

must “know” that the relevant domain of language is reversible; only then is the deployment of

the learning algorithm warranted.

Positive learnability results can also be obtained by providing the learner with additional in-

formation about the input. Specific models of grammars are learnable if the learner can access

certain structural information about the input string in addition to the string itself. For instance,

Wexler & Culicover17 show that the Aspects-style transformational grammar1 is learnable under

certain additional assumptions if the learner has access the D-structure of the sentence, which in

effect limits the totality of transformational operations the learner needs to consider. Similar re-

sults have been obtained for certain types of categorical grammar18 and Minimalist grammar19.

A third way to obtain positive results is to modify/loosen the condition on learnability. The

inductive inference and the PAC frameworks, and the research in computational learning the-

ory in general, aim to derive learnability results in a “distribution free” sense, that is, the learner

needs to succeed without prior knowledge about the distribution from which the learning sam-

ple is drawn. However, if one has certain information about the source distribution of each lan-
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guage in the target set, the class of learnable languages is considerably enlarged (though the

source distribution itself may be difficult to learn).10, 20–21 A well known but often misunder-

stood special case concerns the Bayesian learning approach to probabilistic context free gram-

mars (PCFG).22 Under a probabilistic context free grammar, longer sentences are exponentially

less likely as their probabilities are the product of probabilities of rules used in their derivations.

Informally, the learner can ignore sufficiently long sentences without affecting the overall ap-

proximation to the target; positive learnability thus can be obtained on a finite (albeit very large)

language.11 Additionally, learnability in this case is achieved by enumerating and evaluating the

entire space of possible grammars. These operations are computationally prohibitive even if

one ignores the psychological requirements of language learning it is not clear whether this and

similar results23–24 are plausible models of syntactic acquisitions.

3 Grammar and Distributional Learning

The recent flurry of interest in the distributional and statistical information of language is fre-

quently seen as a reaction to generative grammar, but that seems to be a misreading of history.

The distributional approach to language and language learning have roots in American struc-

turalist linguistics.25 It is also evident in the founding documents of generative grammar,26 which

explicitly advocate distributional and information-theoretic approaches to linguistic categories,

grammar, and the degree of acceptability etc., as seen in current research.27–29 Indeed, distribu-

tional information is what guides linguists in the structural analysis of languages; it would be of

great interest if this process, typically carried out by trained professionals, can be operationalized

by the child during the course of language acquisition.

Much of the statistical parsing research in computational linguistics can be viewed as appli-

cations of distributional learning to grammar. This line of work typically differs from the goals

and methods of language acquisition: unlike the child, a statistical parser is “supervised” as it has

access to a parsed corpus, and there is no need to justify the psychological validity of the learning

algorithm. The state of the art statistical parsers30–31 can produce useful results but there is still

much room for improvement in both quality and efficiency that would approach human level

analysis. The present article is not the appropriate forum to review that vast literature; instead,

we will touch upon some insights from statistical parsing in connection to current theorizing in

linguistics and psychology.

There is comparably little work on unsupervised learning from text, a task closer to that of

language acquisition, and none has produced results approaching the quality of supervised sta-

tistical parsing. Much effort has been devoted to a subproblem in grammar acquisition, the
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auxiliary inversion rule in English questions, which has featured prominently as to demonstrate

the principle of structure dependence in syntax.32–33 One set of results is discriminative in na-

ture: a distributional learning model is trained to distinguish grammatical examples of auxiliary

inversion from ungrammatical ones (e.g., moving the first auxiliary verb such as “Is the boy that

tall is nice?”). A simple recurrent network34 can be trained for this purpose. However, the train-

ing data for the network are generated by a very small artificial grammar and it is not known

how the model would fare in face of realistic child-directed data. Simple statistical models of

language such as n-grams also seem to recognize the correct pattern of auxiliary inversion.35

Subsequent study36 shows that this result is due to the fact that bigrams such as “who is”, which

appears in the grammatical string “Is the boy who is tall nice” are much more frequent than

“who tall”, which appears in the ungrammatical string “Is the boy who tall is nice”, a reflection

of the numerous short Wh-questions in child-directed English (e.g., “who is here?”). The n-gram

model performs very poorly for other cases of inversion and for languages such as Dutch where

question formation does not have the (accidental) property of English that works in favor of the

model.

Bayesian learning models, which have gained popularity in cognitive science, have also see

applications to the problem of auxiliary inversion.23 Strictly speaking, the Bayesian model does

not actually learn a grammar: it evaluates and selects one out of two types of grammars, a finite

state grammar and a context free grammar, both of which are manually constructed by the re-

searchers from a simplified subset of child-directed English. The selection of the target among a

pool of candidates is Bayesian while other criterions such as the Minimum Description Length

principle may also be used.37 (In this sense, the Bayesian model is more in line with the parame-

ter setting approach to language acquisition (section 4 and 5) where learning is viewed as select-

ing a hypothesis out of an innately specific set.) Like Horning’s formulation of Bayesian learning

of grammars,22 the two grammars are assigned prior probabilities, with the smaller grammar be-

ing favored. The learning model then calculates the likelihood of the input data given a grammar,

which is then multiplied with the prior probability of the grammar to obtain the posterior prob-

ability of the grammar. The model is able to favor the context free grammar when the input data

has reached a certain level of volume and complexity. It should be noted that the context free

grammar in the Bayesian model already contains rules for the structure dependent inversion of

the auxiliary; its relevance to the innateness debate is a moot point. While Bayesian models typ-

ically deal with an optimal learner24 and are often explicit in denying psychological plausibility,

theoretical considerations38 and simulation results39 suggest that the enormous computational

demand on the Bayesian learner may even limit its utility as an idealized model.

A distinct, and potentially fruitful, line of distributional learning research is more directly

6



rooted by human learning abilities demonstrated in the laboratory. Computational models can

help evaluate their effectiveness in a realistic setting,40 as we review two main results from com-

putational linguistics that are of direct relevance to empirical research. First, recent studies of

artificial language learning suggest that syntactic rules might be learned via the use of transi-

tional probabilities between words/categories.41–42 This approach has been studied in statistical

parsing,43–44 often producing linguistically incorrect rules. For instance, a verb and a preposition

are frequently adjacent and may thus be grouped together as a rule but that is merely a reflection

of the rule that places a verb immediately before a prepositional phrase. The progress in statis-

tical parsing can be attributed to more linguistically motivated structures to constrain grammar

induction;30 it would be interesting to see if these structural constraints can be exploited by hu-

man subjects in an experimental setting.

Second, a statistical parser may provide insights on the power as well as limitations of distri-

butional information. For instance, a statistical model of syntax can make use of a wide range of

grammatical rules: an phrase “drink water” may be represented in multiple forms ranging from

categorical (VP → V NP) to lexically specific: (VP → Vdrink NP, or even VP → Vdrink NPwater.45) In

practice, it has been found that lexicalization provides very little gain over simpler models that

only use general rules,46–47 These findings are a reflection of the sparse data problem in compu-

tational linguistics,48 which inherently limits storage-based approaches to learning and lexical-

ized approaches to grammar. The fundamental problem of language learning, distributional or

otherwise, remains to be that of generalization from a small set of data.

4 Learning as Selection

The syntactic theory of parameters is usually associated with the Government and Binding the-

ory and the subsequent development of Minimalism.13 Formal considerations of learning, how-

ever, can be extended to any language model that accepts the finiteness of human grammars.

Acquisition in this setting amounts to selecting the grammar(s) used in the learner’s linguistic

environment from a pre-defined set. Even learning models that use context free grammars, or

the Bayesian learning model reviewed earlier, can be viewed as an instance of parameter setting:

the learner is to determine the forms of expansion rules (and their probabilities in a stochastic

formalism), In all these approaches, the constitutive primitives of the grammar space, which can

be broadly called Universal Grammar (UG), are assumed to be innately available to the learner.

The occasionally heated debate in language acquisition is not about the innateness of UG but

about particular conceptions of UG: e.g., whether the learner should be characterized as a set of

abstract parameters or context free grammar rules. The debate is an empirical one and we expect
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the evidence from child language to play a role (section 5). For the purpose of the present review,

we focus on computational models of grammar selection more directly situated in the Principles

& Parameters framework, chiefly due to the amount of empirical child language research in this

tradition.

The original motivation for parameters comes from comparative syntax. Parameters may

provide a more compact description of grammatical facts than construction specific rules; pa-

rameterization of syntax can be likened to the problem of dimension reduction in the familiar

practice of principal component analysis. For language acquisition, the learner needs to deter-

mine the parameter values for her language. Consider an influential algorithmic formulation

known as triggering.49 At any time the learner is identified with a single parameter setting. The

learner randomly changes a parameter value if the current setting fails to analyze an input string.

The revised setting is adopted if it succeeds; otherwise the learner reverts back to the old setting

before moving on to the next string. The triggering model operates in an online fashion so as to

reduce the cognitive load of the learner, and the use of error driven learning follows a long tra-

dition in learnability research.4, 17, 50 Further analysis of the triggering model,51 however, reveals

serious convergence difficulties. At the heart of the matter is the ambiguity problem between

data and grammar. In an error-driven learning scheme, the failure on an input sentence may

result in multiple ways of updating the current parameter setting, but there is no reliable way for

the online learner to know which ones lead to the target and which ones drift further and further

away.

One way to resolve the ambiguity problem is to endow the learner with special knowledge

of the parameter domain.52 In some approaches, parameter setting follows a pre-determined

(i.e. innately specified) sequence: the determination of a parameter value before the setting of

another may eliminate or reduce the ambiguity problem, and similar ideas have been applied

to other parametric domains of language such as metrical stress. A related proposal is to pro-

vide the learner with the ability to detect grammar-data ambiguity.53 The learner may carry out

multiple parses for an input string: if more than one parameter settings are successful, then the

string is clearly ambiguous and the learner will move on to the next string without altering the

current parameter setting. Furthermore, a structural description of the input string may provide

additional cues to guide the learner’s actions than a simple success-failure check, as has been

established in the learnability studies.17, 18–19

A different approach introduces a probabilistic, and possibly domain general, learning com-

ponent to parameter setting. In the variational model,3 the learner is identified not with a sin-

gle parameter setting but with a population of parameter settings whose probabilistic distribu-

tion changes in response to the input. The mechanism of learning has roots in mathematical
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psychology54 and modern theories of machine learning.55 A binary parameter αi is associated

with a probability pi , which denotes the probability that αi is set to 1. Upon receiving an input

string, the learner generates a composite grammar G based on the pi ’s. If G succeeds, all the

chosen values of the parameters are rewarded; no action is taken if G fails. It is possible that a

wrong parameter value may be rewarded if G succeeds thanks to other, correctly set, parameters.

For instance, consider a parameter that only concerns interrogative sentences: even a wrong

value of this parameter does not affect the analysis of a declarative sentence in the input, for

which the parameter is not even relevant and may be incorrectly rewarded. This difficulty does

not pose formal barriers for convergence though the worse case complexity is exponential.56 (Of

course, if the learner were to know which parameters are relevant for grammatical analysis, the

problem may go away altogether though currently there is no successful proposal on decoding

string-parameter relations.) Efficient learning is possible if most parameters have independent

“signature” strings for which successful analysis necessarily requires the correct values of these

parameters regardless of others.3

Little work so far–in either distributional learning and parameter setting–has studied a gram-

mar domain sufficiently complex for cross-linguistic variation; some recent work has given rea-

sons for optimism. Taking 13 linguistically important parameters pertaining to word order vari-

ations in the world’s languages, Sakas and Fodor have constructed a set of over 3000 “languages”

and almost 50,000 distinct syntactic patterns are generated.57 While the data-grammar ambigu-

ity is high as long expected, the data-parameter ambiguity is promisingly low: 10 out of the 13

parameters have independent signatures referred to above,3 and the remaining three effectively

have signatures after the other parameters are set. The space of parameters thus appears favor-

able to the learner. If so, a wide range of computational learning models may prove sufficient in

the selection of the target grammar. The comparative merits and deficiencies of these models

can only be revealed when we turn to the empirical study of child language acquisition.

5 Learnability and Development

In most general terms, computational models of syntactic acquisition attempt to find the best

combination of grammar models and learning algorithms to account for the developmental

findings in child language. Aside from a few notable early efforts, the connection with empir-

ical child language research is an area in computational learning that demands most attention

and remedy. Pinker’s important contribution2 contains many suggestions for the computational

mechanisms of language acquisition though virtually no formal treatment is given. The Subset

Principle50 is perhaps the first major result from learnability research to have a direct impact on
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language acquisition.

Berwick’s Subset Principle follows from the logic of inductive inference and is implicit in ear-

lier results:4, 5 the hypotheses the learner entertains must be ordered in such a way that positive

examples can disconfirm incorrect ones. This tends to force the smallest possible grammar to be

adopted first: no other grammar compatible with the data that leads to the new grammar should

be a (proper) subset of that grammar. The Subset Principle can be implemented either as a con-

straint on the hypothesis space or as a principle of learning that strives for the most conservative

generalizations, and these efforts needn’t be mutually exclusive.

One of the earliest applications of the Subset Principle concerns the acquisition of gram-

matical subjects across languages and their parametric treatment. The pro-drop grammar such

as Italian and topic-drop grammar such as Chinese, which allow the omission (though do not

prohibit the presence) of the subject, appear to constitute a superset to English-like grammar

for which the subject is obligatory. The Subset Principle would imply that the learner adopt the

more restrict English option initially. Unfortunately this leads to the prediction that children

learning English acquire the obligatory use of subject initially, as it is the subset default option–

contrary to the well attested subject drop stage in child English to be discussed below. It turns

out that the English grammar is not a subset of the pro-drop or topic-drop grammar: obligatory

subject languages such as English are exemplified by the use of expletive subjects (e.g, “there is

a car coming”) which are not present in pro/topic-drop grammars. It remains to be seen if there

are any parameter for which the alternative values constitute a strict subset-superset relation.

A learner that operates by conservative generalizations, which has featured in both linguistic

and psychological theorizing,58–59 can be seen as an embodiment of the Subset Principle as a

learning mechanism. A related strategy is the use of indirect negative evidence:13 if the learner

had conjectured an overly general hypothesis but has not observed attestations of examples that

would follow that hypothesis, it may retreat to a more restrictive hypothesis. In other words,

absence of evidence is evidence of absence: a logically flawed but possibly human principle of

inference. The use of indirect negative evidence may be implemented in various ways60 though

there may be serious complications in the execution. At the very minimum, the determination of

superset-subset relations involves comparison of extensions of grammars, which appears com-

putationally intractable when we deal with realistically complex grammars.61

The theory of parameters offers promise for the empirical study of language development.

Since the totality of grammar is capped, the child’s systematic errors can be interpreted as bio-

logically possible though non-target grammars. The well known phenomenon of subject drop in

child language is a case in point. English learning children omit up to 30% of grammatical sub-

jects during the first three years of life; a smaller but non-trivial number of obligatory objects are

10



omitted as well. An attractive position is to attribute these errors to a mis-set parameter to the

pro-drop (as in Italian) or topic-drop (as in Mandarin Chinese) option though these predictions

are not borne out empirically.62–63 Of course, it remains possible that the children has in fact

learned the English grammar correctly very early2, 62 and the omitted subjects and objects are

due to non-syntactic factors such as performance. But cross-linguistic studies reveal difficulties

with this approach. For instance, both Italian and Chinese children from a very early stage use

subjects and objects at frequencies comparable to adults,62–63, in sharp contrast to the delay in

child English.

The variational learning model may help close the gap between language learnability and

language development.3 The introduction of probabilistic learning is designed on the one hand

to capture the gradualness of syntactic development and on the other to preserve the utility of

parameters in the explanation of non-target forms in child language, all the while providing a

quantitative role for the input data in the explanation of child language. And it must be acknowl-

edged that language acquisition research in the generative tradition has not sufficient attention

to the role of the input. Here we briefly summarize some quantitative evidence for parameters

in syntactic acquisition. Parameters with a larger amount of signatures (section 4) in the input,

which can be estimated from child-directed speech data, can be expected to be set faster than

those for which signatures are less abundant. It thus accounts for, among other findings, why

English children approach the adult use of subjects and objects with an extended delay–as the

learner still probabilistically drops the topic–while Italian and Chinese learning children are on

target early.

TABLE I HERE

While formal studies of acquisition have received sufficient attention through mathematical

and computational analysis, the developmental patterns of child language may provide deci-

sive in the consideration of alternative approaches. Consider the child’s hypothesis space (or

UG) as a class of probabilistic context free rules. For instance, the rule “S
α−→ pronoun VP” may

correspond to the requirement of a subject in English, and “S
β−→ VP” accounts for the fact that

languages like Italian allow subject drop: the learner’s task is to determine the weights (α and β )

of these rules. A probabilistic learning model applied to English and Italian corpora may quickly

drive α and β to the right values: β ≈ 0 in the case of English. But one immediately sees that this

learning trajectory of PCFG is inconsistent with child language, as English learning children go

through an extended stage of subject drop despite the overwhelming amount of overt subjects

in the adults’ speech. The formal study of syntactic acquisition allows for the manipulation of

11



the hypothesis space and the learning algorithm to explore their empirical consequences.

6 Conclusion

Computational modeling has been an important component of cognitive science since its in-

ception yet it has not been an unqualified success.Computer chess, originally conceived as a

showcase for human problem solving,64 has become an exercise in hardware development, of-

fering no insight on the mind even as it consistently topples the greatest.65

The task of learning a grammar, something that every five year old accomplishes with ease,

has so far eluded computational brute force. For a research topic that lies at the intersection of

linguistics, engineering, and developmental psychology, progress can only be made if we incor-

porate the explanatory insights from linguistic theory, to assimilate the formal rigor of compu-

tational sciences, and most important, to build connections with the empirical study of child

language.
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Parameter Target Signature Input Frequency Acquisition
wh fronting English wh questions 25% very early
topic drop Chinese null objects 12% very early
pro drop Italian null subjects in questions 10% very early

verb raising French verb adverb/pas 7% 1;8
obligatory subject English expletive subjects 1.2% 3;0

verb second German/Dutch OVS sentences 1.2% 3;0-3;2
scope marking English long-distance questions 0.2% >4;0

Table 1: Statistical correlates of parameters in the input and output of language acquisition. Very
early acquisition refers to cases where children rarely, if ever, deviate from target form, which
can typically be observed as soon as they enter into multiple word stage of production. The 90%
criterion of usage in obligator context is used to mark successful acquisition. The references to
the linguistic and developmental details of these case studies can be found in (3).
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