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Abstract

During speech perception, listeners make judgments about the phonological category of sounds
by taking advantage of multiple acoustic cues for each phonological contrast. Perceptual experiments
have shown that listeners weight these cues differently. How do listeners weight and combine acous-
tic cues to arrive at an overall estimate of the category for a speech sound? Here, we present several
simulations using a mixture of Gaussians models that learn cue weights and combine cues on the
basis of their distributional statistics. We show that a cue-weighting metric in which cues receive
weight as a function of their reliability at distinguishing phonological categories provides a good fit
to the perceptual data obtained from human listeners, but only when these weights emerge through
the dynamics of learning. These results suggest that cue weights can be readily extracted from the
speech signal through unsupervised learning processes.

Keywords: Speech perception; Speech development; Cue weighting; Reliability; Categorization;
Statistical learning; Unsupervised learning; Mixture of Gaussians

1. Introduction

In every domain of perception, multiple sources of information must be combined. A
classic example is depth perception, where the distance of an object from an observer is
indicated by a number of cues, including stereopsis, perspective, binocular disparity, shad-
ing, motion, and many others (see Kaufman, 1974, for an extensive list). We use the term
cue here to refer to any source of information that allows the perceiver to distinguish
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between different responses. Each cue provides a continuous estimate of depth, and to get
an accurate estimate, observers must combine information across them.

This raises the question of how much weight or importance should be assigned to each
cue. An emerging consensus is that cues are weighed as a function of the reliability of the
estimates they provide (Ernst & Banks, 2002; Jacobs, 1999; Landy & Kojima, 2001) and
that cue reliability can be learned (Atkins, Fiser, & Jacobs, 2001). Some depth cues, like
stereopsis, provide robust estimates (Johnson, Cummings, & Landy, 1994), whereas other
cues, like shading are relatively poor (Bülthoff & Mallot, 1988). Weighting cues based on
their reliability (Jacobs, 2002; Kalman, 1960) offers a formal approach for estimating these
weights and using them to arrive at a combined estimate. Using this method, the weight of
an individual cue at a specific depth is determined by:

w ¼ 1

r2
ð1Þ

where w is the weight of the cue and r2 is the variance of the estimate provided by that cue
at a given depth (i.e., how accurately that cue allows the observer to estimate depth). The
overall depth estimate, X, can then be calculated as a linear combination of the weighted
cue estimates:

X ¼
Xn

i

wixi ð2Þ

This approach has been shown to be consistent with observers’ performance in a number of
tasks (Battaglia, Jacobs, & Aslin, 2003; Ernst & Banks, 2002; Jacobs, 1999).

Weighting-by-reliability works well when cue integration can be described as the linear
combination of continuous cues and when their variance is roughly Gaussian. However, for
many perceptual problems, the causal factors that give rise to the cues are not themselves
continuous. In these cases, the perceptual system faces the joint problem of recovering both
a continuous estimate of the perceptual cue and also the underlying categories that shaped
it.

Speech perception provides an excellent example of this. In speech, phonological dimen-
sions like voicing (which distinguishes voiced sounds like ⁄b, d, g ⁄ from voiceless sounds
like ⁄p, t, k ⁄ ) are often determined by a large number of continuous acoustic cues. For exam-
ple, cues to word-initial voicing include voice onset time (VOT; Liberman, Harris, Kinney,
& Lane, 1961), vowel length (VL; Miller & Dexter, 1988; Summerfield, 1981), pitch (Hag-
gard, Ambler, & Callow, 1970), and F1 onset frequency (Stevens & Klatt, 1974). Under-
standing how listeners combine these cues, often described behaviorally using trading
relations (a shift in the identification function for one cue with changes in another cue), is
central to understanding speech perception (see Repp, 1982, for a review of trading relations
in speech).

While these cues are continuous, their statistical distributions are shaped into clusters of
cue values by the phonological categories of the language. The listener’s goal is to deter-
mine the underlying phonological category from these cues, not necessarily a continuous
estimate (although there is evidence that listeners also estimate continuous values and the

J. C. Toscano and B. McMurray ⁄Cognitive Science 34 (2010) 435



likelihood of a category; see Massaro & Cohen, 1983; McMurray, Tanenhaus, & Aslin,
2002; Schouten, Gerrits, & van Hessen, 2003). Thus, the goal for speech perception is
slightly different than the goal for depth perception. In depth perception, observers must
recover the best estimate of the depth (i.e., determine a quantity along a metric dimension),
whereas the goal in speech perception is to recover the best estimate of a discrete underlying
category.

The presence of categories makes it difficult to apply the weighting-by-reliability
approach directly, as variance along the cue dimension itself does not map onto how well
that cue supports categorization. For example, if we look at the frequency distribution of
values for VOT in Fig. 1A, there are clusters of cue values corresponding to voiced sounds
(VOTs near 0 ms) and voiceless sounds (VOTs near 50 ms). This clustering makes a simple
computation of reliability from the variance in the estimator of a cue impractical. However,
it also enables us to compute a different metric of reliability. That is, the relevant variance

Fig. 1. (A) Distribution of VOT values for voiced and voiceless stops in English (from acoustic measurements
in Allen & Miller, 1999). (B) Two-category cues can vary in how reliable they are (and, in turn, how highly they
should be weighted) from reliable cues with distinct categories (top left) to unreliable cues with overlapping cat-
egories (bottom right). Cues of intermediate reliability (top right and bottom left) require us to take into account
both the distance between categories and the variability within them.
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for speech perception is the variance in the ability of the cue to support categorization. In a
sense, the variance of VOT as an estimator of voicing is a function of both the variability
within the categories and the distance between them. Thus, the reliability of a cue or dimen-
sion can only be determined with respect to the underlying phonological categories.

Given that the distributional statistics of cues must be learned to compute weights based
on their reliability, it is fundamental to take into account what is known about develop-
ment. Thus, whatever solution we adopt to the problem of cue weighting should be based
on knowledge and representations that are developmentally plausible. In particular, as we
will describe below, the acquisition of speech discrimination abilities may derive from a
similar estimation of distributional statistics. The goal of the present work is to adapt the
weighting-by-reliability approach in a way that is consistent with the process of speech
development.

1.1. Models of cue integration in speech

Formal approaches to cue integration in speech preceded the weighting-by-reliability
approach used in depth perception and thus do not incorporate an explicit notion of reliabil-
ity in their solutions to this problem. The fuzzy logical model of perception (FLMP; Mass-
aro & Oden, 1980; Oden & Massaro, 1978) provides one of the best formal approaches and
has successfully modeled a range of cue-integration problems. In its mappings between
dimensions and categories, it is clear that some notion of weighting emerges. However, it
does not completely solve the problem of cue weighting for two reasons. First, it assigns
independent weights to different regions of the same dimensions (e.g., VOTs between 0 and
10 may get substantial weight, but VOTs between 10 and 20 may get less), creating a sparse
data problem (i.e., how does a listener deal with a new value along a familiar dimension?).
Second, and more importantly, the weights are fit to perceptual data, rather than estimated
from the structure of the speech input. Listeners’ responses in speech tasks certainly reflect
their own cue weights; thus, these weights will be implicitly incorporated into FLMPs inte-
gration rules. However, this does not provide an explanation for why listeners would weight
one cue over another and does not allow us predict perceptual data from acoustic measure-
ments alone.

Nearey and colleague’s normal a posteriori probability (NAPP) models offer a similar
approach to cue integration (Nearey, 1997; Nearey & Assmann, 1986; Nearey & Hogan,
1986;). NAPP models use discriminant analysis to assign tokens to categories based on a set
of acoustic cues. Like FLMP, these classifications can be probabilistic, allowing the output
of the model to be compared with listeners’ identification rates. However, unlike FLMP,
NAPP models use measurements from production data along with the intended categories to
classify tokens. As in FLMP, the training categories (i.e., the intended production) capture
some of the differential variability between dimensions, suggesting that NAPP models may
also show implicit weighting effects.

Both NAPP models and FLMP treat cue integration as a category-dependent process. To
weight cue dimensions in this way, listeners would have to know which tokens belong to
which category. However, since category membership is not available to listeners from the
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acoustic input, the problem of acquiring categories, as well as learning cue weights, might
be better characterized as an unsupervised clustering process (Maye, Werker, & Gerken,
2002; McMurray, Aslin, & Toscano, 2009a). Infants tune their phonological discrimination
abilities to the native language well before any words are known (e.g., Werker & Curtin,
2005; Werker & Tees, 1984 for a review), and, thus, the development of speech categories
must be at least partially category independent. Given this, it makes sense to seek a cate-
gory-independent way to describe cue integration and weighting that is sensitive to this
unsupervised developmental process.

1.2. Weighting cues in speech

The weighting-by-reliability approach and NAPP models appear to offer some insights
for solving the problem of cue weighting, as they allow us to estimate cue weights indepen-
dently of perception. While, as stated above, the cue-weighting method used in depth per-
ception is not adequate for acoustic cues in speech, it does offer some intuitions about how
to proceed. In addition, NAPP models suggest that the distributional statistics of acoustic
cues can provide the information needed to weight them. Thus, combining the strengths of
these two approaches may yield a more complete model.

Fig. 1B shows several possible categories imposed on a given dimension. The top-left
panel shows a dimension that would appear reliable: The categories are far apart and have
low variability. Conversely, if categories are close together and have high within-category
variability (bottom right panel) this dimension should receive little weight. For more
ambiguous cases (top right and bottom left), determining reliability is a function of both the
distance between the categories and within-category variability, weighed by their respective
variances. In support of this, Clayards, Tanenhaus, Aslin, and Jacobs (2008) demonstrated
that artificially manipulating the variance of an acoustic cue changes how listeners weight it
perceptually.

These intuitions can be captured formally, by treating each cluster as an indepen-
dent Gaussian distribution. In this case, we can partial out the overall variance along
a dimension into the component due to the difference between category means and
the variance within each category. This leads to a simple way to estimate the reliabil-
ity of a dimension:

w ¼ l1 $ l2ð Þ2

r1r2
ð3Þ

Here, l1 and l2 are the means of each category (e.g., ⁄b ⁄ and ⁄p ⁄ ), and r1 and r2
are their standard deviations. This metric would provide listeners with an estimate of
cue reliability that is similar to the one provided by the weighting-by-reliability method
used in vision. It is similar to standard statistical measures that compare the variance
between groups (l1 - l2)

2, to the variance within groups, r1r2. When both rs are equal,
this is a pairwise F-ratio.

This solution requires that listeners are sensitive to the distributional statistics of
acoustic cues and that cue weights can be based on and learned from this information.
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There is growing consensus that listeners are sensitive to these statistics and, further,
that infants use statistical learning mechanisms to acquire speech sound categories.
Maye and colleagues, for example, have demonstrated that after a brief exposure to sta-
tistically structured input, infants discriminate speech sounds consistent with the number
of clusters along dimensions like VOT (Maye et al., 2002; Maye, Weiss, & Aslin,
2008; see also Teinonen, Aslin, Alku, & Csibra, 2008). Thus, at the coarsest level of
analysis, listeners are likely to have access to and can learn from the statistics neces-
sary for cue weighting.

However, attempts to implement this approach computationally suggest that statisti-
cal category learning is not trivial (e.g., de Boer & Kuhl, 2003; McMurray et al.,
2009a). In particular, when the number of categories is not known (as languages can
carve up the same dimensions in many ways) and the input is not tagged with the
underlying category, there is no analytic solution to the problem of estimating the
parameters that describe the means, variances, and frequencies of the speech catego-
ries. Thus, while at a first approximation, our intuitive modification of the weighting-
by-reliability approach seems reasonable, it is significantly underdeveloped from the
perspective of learnablity.

The purpose of the present work is to bridge this gap and adapt the weighting-by-reli-
ability approach to the problem of cue integration in speech. Recently, McMurray et al.
(2009a) presented a mixture of Gaussians (MOG) model that solves many of the problems
of unsupervised learning of phonological categories. This model offers a computational-
level description (Marr, 1982) of speech sound categorization while also including a mech-
anistic account of the developmental process. Here, we extend this model to multiple
dimensions and demonstrate how the weighting-by-reliability approach can be imple-
mented in it. In doing so, we reveal some surprising findings about the role of learning
processes in statistical cue weighting and the role of context in shifting apparent cue
weights.

2. Model architectures

2.1. Mixture of Gaussians models of speech categories

A distribution of acoustic cues can be described as a mixture of probability distributions,
in which the likelihood of a given cue value (x) is the product of two factors: (1) the prior
probability of each category and (2) the conditional probability of x given each category.
This latter probability is usually described as a continuous distribution of cue values, given
the parameters of that category. In typical instantiations, for a particular category, the values
of a particular cue cluster around the category mean in a Gaussian distribution (although
other distributions are possible).

A number of recent studies have modeled the distribution of speech cues using this
framework (e.g., de Boer & Kuhl, 2003; McMurray et al., 2009a; Vallabha, McClelland,
Pons, Werker, & Amano, 2007). In general, cues in these models are represented by a set of
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Gaussian distributions (Fig. 2A) each defined by three parameters: frequency of occurrence
(/), mean (l), and standard deviation (r) (Fig. 2B). Thus, the likelihood of a particular cue-
value (x) for each Gaussian is:

GiðxÞ ¼ /i
1ffiffiffiffiffiffiffiffiffiffi
2pr2i

p exp $ x$ lið Þ2

2r2i

 !

ð4Þ

and the overall likelihood is the sum of the likelihoods for each Gaussian:

MðxÞ ¼
XK

i

GiðxÞ ð5Þ

Fig. 2. (A) A mixture of Gaussians with five categories along the dimension. (B) Parameters of a Gaussian dis-
tribution used in the mixture model. Each distribution is defined by three parameters—its likelihood (/), its
mean (l), and its standard deviation (r).
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Here, K represents the number of Gaussians in the mixture. For example, the likelihood of a
VOT of 30 ms is the sum of the relatively high probability that it arose from a ⁄p ⁄ (l%50,
r%15) and the lower probability it came from a ⁄b ⁄ (l%0, r%5).

The fact that this model explicitly represents parameters like l and r makes it an
ideal platform for implementing the variation of the weighting-by-reliability approach
described in Eq. 3. However, it also raises the critical question of how to determine
the mixture’s parameter values. One option would be to simply set the values of K, /,
l, and r for each category using values extracted from acoustic measurements. How-
ever, there is no analytic solution to parameter estimation in a mixture model when the
underlying categories for each data point are unknown, and expectation maximization
and similar learning algorithms have a difficult time estimating the number of catego-
ries in this situation (de Boer & Kuhl, 2003). Simply assigning values on the basis of
such measurements, then, assumes that listeners have access to some learning mecha-
nism that is not guaranteed to exist.

McMurray et al. (2009a) demonstrated how gradient descent can be used to model
the gradual acquisition of speech categories when learning is unsupervised and the
number of categories is not known. Their model uses large values of K (e.g., 20), with
the expectation that /s will be reduced to near zero for unneeded categories. The idea
here is that, over training, K itself does not change, but, because most Gaussians will
have very small values for /, the mixture will functionally behave as if K was only 2
(for a two-category dataset). Parameters are updated via maximum likelihood estimation
using the derivatives of the probability density function with respect to each parameter
(see Appendix for these learning rules). A crucial innovation from this model is the use
of a winner-take-all update rule for / such that only one Gaussian updates its / value
on any given trial. This allows the model to suppress unneeded categories and arrive at
the correct solution. Without it, the model does not determine the correct number of
categories (see McMurray et al., 2009a). This winner-take-all competition is similar to
competitive learning approaches used in other unsupervised category learning models
like SUSTAIN (Love, Medin, & Gureckis, 2003) as well as various neural network
models (McMurray, Horst, Toscano, & Samuelson, 2009b; Rumelhart & Zipser, 1985).
McMurray et al. (2009a) describe how this simple solution allowed 97 ⁄100 models in
their simulations to arrive at the correct two-category solution for a corpus of VOT
measurements, and they demonstrate that the time course of learning shows many paral-
lels with infant speech development.

This implementation raises two issues for the cue-weighting approach we have
described. First, as there are more than two categories (even if only two will be used
eventually), our weighting metric must be able to handle many categories and factor
out unused ones. Second, because this model is based on gradient descent, the
learning procedure is not guaranteed to find the globally optimal parameter values
based on the distributional statistics of the data (i.e., it may settle in a local mini-
mum). This raises the question of whether the dynamics of learning affect cue weight-
ing. If learning leads to nonoptimal representations in the model that reflect human
behavior, it would suggest that listeners may be behaving in a way that is not entirely
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consistent with the statistics of the input. We examine both of these issues in our
simulations.

2.2. Cue integration in a mixture of Gaussians

The MOG framework allows us to incorporate underlying categories into the reliability
estimates described above because it explicitly represents those categories, allowing us to
relate the distance between ls to the corresponding rs. The cue-weighting strategy we have
discussed would allow us to combine estimates from different cues into a single overall esti-
mate whose inputs are weighted by the reliability of the individual cues. We also consider,
as a comparison, an alternative approach in which multiple cues are represented in a multi-
dimensional MOG with individual cues along separate dimensions (e.g., two-dimensional
Gaussians for two cues). In this case, weighting emerges implicitly. (This is not necessarily
a criticism of the model; indeed, this property is useful as it allows us to model cue integra-
tion without having to specify an additional function for determining cue weights.) This
multidimensional model, which is highly parameterized and can represent distributions
completely, serves as a baseline model for comparison with a more constrained cue-weight-
ing model.

2.2.1. Cue-weighting model
To compute a cue weight, we must know the variability in the estimate for a given

cue-value. Eq. 3 describes one way to do this in the specific case of a two-category cue.
However, many phonological contrasts contain more than two categories (e.g., voicing in
Thai; place of articulation in English). In addition, using the unsupervised learning approach
from McMurray et al. (2009a), the model will have many more possible categories than the
number of categories in the data. Thus, at some points during learning, it may not be possi-
ble to know which Gaussian will become a particular adult category.

Thus, we use a weighting metric that captures a more general case in which the cue
dimension may have any number of categories. In our model, the weight of an individual
acoustic cue (i) is:

wi ¼
XK

n

XK

m

/m/n lm $ lnð Þ2

rmrn

 !
=2 ð6Þ

This metric is similar to Eq. 3. However, it allows for any number of categories by sum-
ming all of the pairwise comparisons between the parameters of the Gaussians in the mix-
ture (i.e., each pair of Gaussians, m and n, from 1 to K) and then halving this sum so that
each pair does not contribute twice to the weight.

Two features are worth noting. First, pairs of Gaussians whose means are far apart will
increase the weight of the cue, but this is balanced by the within-category variability of those
Gaussians. If within-category standard deviations are large, the weight of the cue will be
smaller. Thus, as with Eq. 3, this metric is similar to measures like d¢ or the t statistic, in which
both the distance between group means and within-group variances are taken into account.
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Second, although K is large, most of the Gaussians are unused after training. This would
seem to clutter up the computation with unnecessary comparisons. However, as unused
Gaussians will have /s near zero, they will not contribute much to the weight. This allows
us to compute the weight of a cue regardless of the number of categories and without know-
ing which specific Gaussians correspond to each category.

After computing the weight for each cue, the weighted estimates are combined to obtain
a continuous overall estimate along an underlying phonological dimension. This overall
estimate serves as input to an additional MOG that represents the abstract phonological fea-
ture distinguished by the cues (e.g., voicing). Thus, the cue-level MOGs are used only to
compute weights and inputs to the combined MOG—category judgments are made on the
basis of the combined MOG itself. Note that, similar to the cues themselves, this combined
MOG is based on a continuous phonological representation. However, it is abstracted away
from the input (as it represents a combination of cues). Thus, it is similar to other proposals
that phonological representations are continuous (e.g., Frisch, 1996), but it stands in contrast
to models that have proposed a more direct mapping between input and phonology, such as
exemplar models (Goldinger, 1998; Pierrehumbert, 2001, 2003).

Because different cues give estimates measured on different scales, the combined
MOG cannot be based directly on the raw values for each cue. Thus, cue values are
normalized by converting the inputs for individual cues to z-scores using the grand
mean and variance of each dimension. In addition, the particular ordering of categories
along each cue dimension may not be the same for all cues. For example, in the spe-
cific case of the two acoustic cues studied here (VOT and VL), voiced sounds are asso-
ciated with short VOTs but long VLs. Thus, z-scores for VL are multiplied by the sign
of the raw correlation between these two cues across all categories (r = )0.196 for
VOT ⁄VL data from Allen & Miller, 1999) to deal with differences in the relative
ordering of categories along each dimension. Finally, the normalized estimates are then
weighted (per Eq. 6) and summed. Fig. 3 shows a schematic representation of the cue
weighting and combination process in the model.

2.2.2. Multidimensional model
The cue-weighting model can be contrasted with a model that represents categories in a

higher-dimensional acoustic space. In this model, categories are multidimensional Gaus-
sians, and each cue lies along a separate dimension. Thus, for two cues, categories would be
represented by bivariate Gaussian distributions (Fig. 4; Eq. A1). This allows the model to
take advantage of the entire acoustic space and does not require it to explicitly weight cues.
Cue-weighting can emerge implicitly when the categories along one dimension are wide
and overlapping, while the other is narrow.

This approach raises several problems. First, the number of parameters in the model
can be quite large. For a set of categories determined by a large number of cues
(which is not uncommon; see Jongman, Wayland, & Wong, 2000; Lisker, 1986), the
model would have to estimate a large number of parameters for each category (e.g., for
16 cues [the number reported by Lisker, 1986], the model would have to estimate 168
parameters for each category). In contrast, in the cue-weighting model, only three
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parameters per category need to be estimated (for each individual dimension), along
with an additional set for the combined dimension (e.g., for 16 cues, the model would
only need 51 parameters for each category).

Second, since a given input is a point in a high-dimensional space, sampling may be
sparse and many regions of acoustic space will never be encountered during training. This

Fig. 3. Schematic representation of the cue-weighting model. Two MOGs receive input for each cue (VOT and
VL). The cue weight for each MOG is computed using Eq. 6, and the inputs are converted to z-scores. The inputs
are then weighted and summed, providing input to a thirdMOG that reflects voicing categories based on both cues.

Fig. 4. A two-dimensional MOG with two categories. Each Gaussian is determined by cue values along both
dimensions.
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makes it difficult to estimate all of the parameters accurately. The cue-weighting model in
contrast considers each dimension independently (not in combination) and may have less
trouble with this. Thus, the cue-weighting model may be preferred, if it is better able to learn
the categories for a larger set of cues.

3. Simulations

3.1. Acoustic and behavioral data

We ran simulations with each of these models using two acoustic cues to word-initial
voicing in English: VOT, mentioned above, and VL. While VL is a robust cue to word-final
voicing in English (Peterson & Lehiste, 1960; Warren & Marslen-Wilson, 1987), the length
of the vowel following the consonantal release has long been recognized as a weak cue to
word-initial voicing (Allen & Miller, 1999; Miller & Dexter, 1988; Miller & Volaitis, 1989;
Summerfield, 1981).

Typically, longer vowels are produced for voiced stops and shorter vowels for voiceless
stops. For example, Fig. 5A shows a scatter plot of the VOT and VL values from Allen and
Miller (1999). Along the VOT dimension, the categories are highly distinct, reflecting the
fact that VOT is a strong cue to voicing. Along the VL dimension, the categories are distin-
guishable, but highly overlapping, suggesting that VL is a weaker cue. Our training data
were similar. VOTs were randomly generated from the means reported by Lisker and
Abramson (1964) and VLs from the data in Allen and Miller (1999) (see Table 1).

Empirical work has demonstrated trading relations between these cues: The category
boundary along a VOT continuum shifts for different VLs (McMurray, Clayards, Tanen-
haus, & Aslin, 2008; Miller & Volaitis, 1989; Summerfield, 1981). Near the boundary, stim-
uli with long VLs are more often categorized as voiced, and short VLs are more often
labeled voiceless (see Fig. 5B for representative results from McMurray et al., 2008). While
previous approaches suggested that this trading relation might be an instance of speaking
rate compensation (Summerfield, 1981), later work has distinguished it from sentential rate
(Wayland, Miller, & Volaitis, 1994; see Repp, 1982 for a discussion of evidence that VL is
distinct from overall speaking rate).

Whatever way we characterize the effect of VL, identification functions like the one in
Fig. 5B suggest that listeners use both cues but rely more heavily on VOT, an effect that
mirrors the statistical distributions of each cue. Simulations 1 and 2 examined whether the
multidimensional and cue-weighting models also show a similar trading relation between
VOT and VL.

3.2. Simulation 1: VOT and VL in the multidimensional model

The first simulation provides a baseline for performance on the VOT ⁄VL task. Fifty repe-
titions of two-dimensional MOGs were trained using data sampled from the VOT and VL
distributions described above.1 Initial l values were randomly chosen from a distribution
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with a mean of 25 and standard deviation of 75 for the VOT dimension and a mean of 179
and standard deviation of 75 for the VL dimension. Initial rs were set to 3 for the VOT
dimiension and 10 for the VL dimension. K was set to 20, and initial /s were set to 1 ⁄K.
Learning rates were set to 1 (gl), 1 (gr), 0.001 (g/), and 0.001 (gq).

2 The models were then
tested on a range of VOTs (0–40 ms in 5 ms steps) and two VLs (125 and 225 ms).3

3.2.1. Procedure
Each model was trained on 200,000 data points. On each trial, a pair of VOT ⁄VL

values was selected for input, and the parameters of the Gaussians in the mixture were
updated via the gradient descent learning algorithm discussed above. Winner-take-all
competition was implemented by selecting the Gaussian with the highest posterior

Fig. 5. (A) Distributions of VOT and VL values for voiced and voiceless stops from the production data in Allen
and Miller (1999). The locations of the lines indicate the mean of each category along each dimension, and the
lengths of the lines are equal to the standard deviations of each distribution. Voiced and voiceless sounds are pri-
marily distinguished along the VOT dimension, but there is also a small difference along the VL dimension. (B)
Identification responses from listeners for sounds varying in both VOT and VL fromMcMurray et al. (2008). Lis-
teners tend to identify sounds as voiced ( ⁄ b ⁄ ) for low VOTs and voiceless ( ⁄ p ⁄ ) for long VOTs. The shift in the
identification function for the two different VL conditions indicates that they also useVL informationwhenmaking
voicing judgments (i.e., they are more likely to identify sounds as voiced for longVLs and voiceless for short VLs).

446 J. C. Toscano and B. McMurray ⁄Cognitive Science 34 (2010)



probability for that input and updating only that Gaussian’s / parameter. The /s were
then normalized so that they summed to 1. Thus, for the winning Gaussian, / increased,
and the others decreased slightly. Only Gaussians with a / value above a threshold of
0.1 were analyzed. Typically, the model arrived at a solution with two above-threshold
Gaussians (i.e., the voiced and voiceless categories) with / values of %0.5. Models that
overgeneralized (i.e., arrived at a one-category solution) or did not have any above-
threshold Gaussians at the end of training were excluded from analysis. While this seems
like a relatively coarse way to assess model performance, we found that if / falls below
a threshold of about 0.1, that Gaussian does not typically recover (other Gaussians
ultimately represent the two categories). Moreover, in an analysis of the one-dimensional
model, we found that if the model arrived at two categories, l and r were almost always
accurate.4

After training, the model was tested using a procedure similar to the task used in McMur-
ray et al. (2008). The model was presented with a pair of VOT and VL values, and identifi-
cation responses were computed from the posterior probability for each category, which
were then normalized using the Luce choice rule (Luce, 1959; temperature = 1) to obtain
the proportion of ⁄p ⁄ responses.

3.2.2. Results and discussion
The model learned this distribution quite well, with every repetition adopting the two-cat-

egory solution. The parameter estimates were also close to the values in the dataset; the
average deviation of l from the category mean was 1.7 ms for VOT and 5.9 ms for VL (see
Table 2).

Fig. 6 shows the mean proportion of ⁄p ⁄ responses for the model. A clear effect of VOT
is observed, with short VOTs producing more ⁄b ⁄ responses and long VOTs producing
more ⁄p ⁄ responses. In contrast, the effect of VL is absent, unlike the effect observed in the
empirical data. This was not because of a failure of learning—the model learned the distri-
butions of the two cues and correctly determined the number of categories. In fact, on
average the model reported means of 1.63 and 51.3 for VOT, and 188 and 178 for VL, sug-
gesting that it had closely captured the statistics of the input (compare to the means of the
training distributions in Table 1). This, however, led to a much weaker trading relation than
was observed behaviorally. Since the categories along the VL dimension are highly

Table 1
Descriptive statistics for the distributions used to generate training data

Voiced Voiceless

VOT (ms) VL (ms) Third Cue VOT (ms) VL (ms) Third Cue

Mean 0 188 260 50 170 300
SD 5 45 10 10 44 10

Note. VOT and VL cues were used in Simulations 1–4. The ‘‘third cue’’ is an additional cue that was used in
Simulation 4.
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overlapping, the model relied on VOT instead of VL. Thus, changes along the VOT dimen-
sion produced large changes in the model’s identification of voicing category, while changes
along the VL dimension did not affect the model’s category judgments. This result does not
reflect listeners’ behavior, suggesting that listeners may actually assign more weight to VL
than they should be based solely on the statistics of the input.

3.3. Simulation 2: VOT and VL integration in the cue-weighting model

We now consider the cue-weighting model, which consists of three one-dimensional
MOGs. The first two represent the VOT and VL dimensions and were used to compute cue

Fig. 6. Identification results for the multidimensional model from Simulation 1. A clear effect of VOT is
observed, but the expected trading relation (i.e., the effect of VL) is not.

Table 2
Mean parameter values at the end of training for Simulations 1, 2, and 4.

Voiced Voiceless

VOT VL Third Cue VOT VL Third Cue

Simulation 1 l 1.37 188 – 51.5 178
r 5.58 44.8 – 10.2 44.8 –
/ 0.493 0.493 – 0.491 0.491 –
q )0.067 )0.067 – )0.040 )0.040 –

Simulation 2 l 0.253 203 – 50.1 154 –
r 5.41 38.4 – 10.0 38.4 –
/ 0.499 0.502 – 0.501 0.498 –

Simulation 4 l )0.067 204 260 50.0 155 300
r 5.35 38.7 10.1 10.1 38.3 . 10.2
/ 0.501 0.498 0.502 0.499 0.502 0.498

Note. Values for the third cue are only applicable to Simulation 4. There is only a single / and q for each
voicing category in Simulation 1, since there is only a single value for each of these parameters in the two-
dimensional Gaussians.
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weights. The third MOG represents categories based on the combination of the two cues
(i.e., a voicing dimension) and is used to compute the actual phonological judgments. Fifty
repetitions were trained on data sampled from the same distributions as in Simulation 1.
Learning rates, K, and the initial rs and /s were the same as in Simulation 1; the initial
l values were chosen in the same way.

3.3.1. Procedure
As in Simulation 1, parameters were updated using gradient descent learning and winner-

take-all competition. Each model was trained on 90,000 data points, and models that over-
generalized were excluded from analysis. On each trial during training, the parameters of
the Gaussians in the VOT and VL MOGs were updated. Then weights were computed for
each of these cue-level MOGs using Eq. 6. Next, the input values for the combined MOG
were computed by converting the inputs for the individual cues to z-scores, negating the sign
for the VL input (because of the negative correlation between the cues), weighting the
inputs, and summing them according to Eq. 2. The update procedure was then repeated for
the Gaussians in the combined mixture. The testing procedure was the same as the one used
for the multidimensional model, except that the posteriors for each category were computed
from the combined MOG.

3.3.2. Results and discussion
Overall, this model performed similarly to the prior model with 46 ⁄50 models showing

the correct two-category solution. Of the ones that failed, three overgeneralized (a single
category in one of the MOGs) and one did not have any above-threshold categories in the
combined MOG.

Fig. 7 shows the responses of the model in the categorization task. A moderate trading
relation was observed, similar to the behavioral data from McMurray et al. (2008). The
average cue weight for the VOT dimension was 0.95, and the average cue weight for VL

Fig. 7. Identification results for the cue-weighting model from Simulation 2. An effect of both VOT and VL is
observed, consistent with responses from listeners.
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was 0.05. The results of this simulation suggest that the cue-weighting model shows a
good fit to the empirical results, demonstrating that cue weights can be learned from the
distributional statistics of the acoustic cues in the input and that a full multidimensional
model is not necessary for combining acoustic cues along a single phonological dimen-
sion.

Why did the cue-weighting model show a trading relation while the multidimensional
model did not? As mentioned-above, the multidimensional model correctly fit the statistics
of the dataset. In the cue-weighting model, however, the categories for the VL dimension
were further apart than the means in the dataset (mean for each category in the model: 203
[ ⁄b ⁄ ] and 154 [ ⁄p ⁄ ] ms; means in the dataset: 188 [ ⁄b ⁄ ] and 170 [ ⁄p ⁄ ] ms). This caused the
model to give more weight to VL, resulting in a trading relation.

This exaggeration of the VL categories may have been a result of the fact that the catego-
ries along the VL dimension are highly overlapping. Since training is unsupervised, this
exaggeration cannot be because of a performance benefit for representing categories in this
way (although there may be one). Thus, during learning there may have been a local mini-
mum that was more stable than the actual means and variances in the data. Indeed, if we
were to compute the cue weights using Eq. 6 directly from the acoustic data, we would
obtain a relative weight of 0.997 for VOT and 0.003 for VL and, consequently, a signifi-
cantly reduced trading relation (Fig. 8). This much more closely reflects the behavior of the
multidimensional model, not the cue-weighting model or listeners. Thus, the cue-weighting
model may have produced different results because its parameters and weights were the
product of learning, not derived veridically from the input.

Fig. 8. Predicted results for the cue-weighting model based on the distributional statistics of the two cues. These
responses were obtained by setting the parameters of the Gaussians in the input-level MOGs to the means and
standard deviations of each cue and training the model (i.e., keeping the parameters at the cue-level MOGs con-
stant while allowing the model to learn the parameters at the combined MOG). The model shows a much smaller
trading relation than the one observed in Simulation 2 and in the data from listeners.
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3.4. Simulation 3: Effects of learning on VL cue weight

To test the hypothesis that the overweighting of the VL dimension in the cue-weighting
model was the product of learning, we ran an additional simulation in which K, the number
of Gaussians in the mixture, was set to 2. While this value is quite a bit smaller than the one
used in the initial simulations, it allows us to manually set the initial values for l to observe
their behavior over the course of learning. Thus, the starting ls were set to different points
along the VL dimension (closer together than the category means, exactly equal to them, or
further apart) to determine what the learning algorithm would do in each case. All other
parameters were the same as those used in Simulation 2. This allows us to ask what
outcomes the learning rules impose on the models’ representation of VL beyond those
determined by the statistics of the input. For example, if the model started with the correct
l-values and the categories were still forced apart, this would suggest that the category
means are not a stable point in state space. Fifty repetitions of this simulation were run.
Initial r and / values were the same as those in the first two simulations.

3.4.1. Results and discussion
The proportion of successful models, as measured by whether the model arrived

at a two-category (successful) or one-category (unsuccessful) solution, is shown in
Fig. 9B. None of the models with starting ls between the two category means succeeded.
Furthermore, every model whose l values started outside the observed local minima val-
ues was successful. Thus, the model needed to start with ls that were further apart than
necessary.5

Fig. 9A shows the change in ls over time. For all models, ls were initially pushed apart
(even if that pushed them beyond their eventual location) and over time evolved to the val-
ues observed in Simulation 2. Thus, the dynamics of learning seem to favor this exaggera-
tion along the VL dimension.

These results suggest that there are attractor points that the model arrives at through
learning in which category means are further apart than the means in the data. Thus, learn-
ing (instantiated here by our gradient descent update rules) may be critical for determining
the weight of individual cues. Indeed, without learning, the cue-weighting model does not
reflect the responses from human listeners. With learning, the model only succeeds under
conditions in which it learns categories that are more distinct than those in the data. This
suggests that human listeners may not behave in a way that optimally reflects the statistics
of the input and that this may result from the fact that speech sound categories are acquired
in part through an unsupervised process.

3.5. Simulation 4: Covarying cues in cue-weighting model

So far, we have assumed that the magnitude of trading relations directly reflects
the relative weight of the cues. However, previous work on cue integration in speech
has shown that the presence of other cues can influence trading relations. For exam-
ple, Shinn, Blumstein, and Jongman (1985) examined listeners’ use of VL and for-
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mant transition duration (TD) on manner ( ⁄b ⁄ - ⁄w ⁄ ) distinctions. In addition to these
cues, they simultaneously manipulated additional cues that covaried with TD to pro-
duce more natural continua. In this case, the trading relation between TD and VL
was reduced. The additional covarying cues may have caused listeners to ignore VL
(although see Miller & Wayland, 1993). Utman (1998) found a similar effect, showing
that the trading relation between VOT and VL is reduced in natural speech, which
contains a large number of voicing cues (see also Lisker, 1975).

Fig. 9. Results of Simulation 3 for the voiced VL category. The bottom panel shows that when the starting l
values of the Gaussians were initially closer than the means in the data, the model always failed to learn a two-
category solution (i.e., it overgeneralized the dimension into a single category). As the starting values were
moved further apart, the model became more likely to succeed. The top panel shows the l values over the course
of learning for the different starting values. The point at which each line ends indicates the latest point during
training at which one of the models for that starting value still maintained a two-category solution. All of the
models that had two categories throughout training settled on l values near points further apart than the means
in the dataset.
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Under the assumption that trading relations are determined largely by the relative weight
of the available cues, these results imply that listeners perceive synthetic and natural speech
differently, reweighting cues depending on the type of input. However, differences in the
observed trading relations may reflect other factors besides the weight of the cues. For
example, if changes in a third cue are correlated with changes in one of the other two cues,
the relative weight of the correlated cues may appear larger—together they are effectively
more reliable.

This is straightforward to test in the cue-weighting model. The model can be tested using
different stimuli without changing the weights to examine whether additional cues have an
effect on trading relations. Thus, we trained the model with a third, artificial cue and tested
it under conditions in which, during testing, this cue either covaried with VOT or was held
constant at an ambiguous value.

3.5.1. Procedure
While there were no other cues to voicing for which measurements were available, previ-

ous research suggested that F1 onset frequency shows a trading relation with VOT similar
in size to the one between VOT and VL (e.g., Summerfield & Haggard, 1977). Thus, the dis-
tributions used for this third cue were based on a small sample of acoustic measurements of
F1 onset frequency for bilabial stops.6 Mean values and standard deviations for the third cue
are given in Table 1.

Training and testing procedures were the same as Simulation 2, except that the model
had three cue-level MOGs. Learning rates were the same and initial parameters were deter-
mined in the same way as the first two simulations. After training, the models were tested
on the VOT ⁄VL pairs used in Simulation 2 under two conditions: (1) the artificial cue was
held constant at an ambiguous value of 280 (constant-cue condition) or (2) the artificial cue
covaried with VOT in nine steps from 240 to 320 (variable-cue condition).

3.5.2. Results and discussion
As in the previous simulations, the model performed quite well. Of the fifty models

trained, only two were excluded because they overgeneralized. An additional two were
excluded because they did not have any above-threshold categories in the combined MOG.
Fig. 10 shows performance in the categorization task. In the constant-cue condition (panel
B) a moderate VL effect is observed (similar to Simulation 2). In this condition, only VOT
and VL are informative, and we see the predicted trading relation between the two cues. In
the variable-cue condition (panel A), a decreased trading relation is observed, consistent
with results from human listeners (J. C. Toscano & B. McMurray, un published data). This
reflects the fact that the artificial cue is informative about the voicing category, decreasing
the apparent effect of VL.

These results demonstrate that the size of trading relations can be changed without
changes in cue weights. Because additional cues covaried with VOT, variation in
responses along the VOT dimension reflected more than the contribution of VOT to the
voicing judgment. VL, on the contrary, is uncorrelated with both of the other cues. As a
result, the apparent size of the trading relation decreased. Cues are not weighted differ-
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ently, but, because variation in the primary dimension (VOT) now reflects variation in
two cues, the overall contribution of that set of cues to the voicing judgment is greater
than the contribution from VL alone. This results in a smaller trading relation between
VOT and VL. Thus, both cue weights and the values of the cues used in testing deter-
mine the size of a trading relation.

4. General discussion

These simulations demonstrate that weighting-by-reliability, when adapted to the particu-
lar features of acoustic cues in speech, can be used to describe trading relations observed
with human listeners. They also suggest that cue weights can be learned using a simple
unsupervised competitive learning mechanism and that the learning process itself may play
a role in determining how cues are weighted. Further, these models are not speech specific
and could be applied to other categorization tasks as well.

Fig. 10. Identification responses for Simulation 4. The trading relation is smaller when the third cue covaries
with VOT (panel A) than when it is held constant (panel B).
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The initial set of simulations revealed that the cue-weighting model provided a better fit
to the data from listeners than the multidimensional model. The reason for this was
counterintuitive: The cue-weighting model overweighted the less reliable cue, resulting in a
trading relation. This was because of the fact that the categories and cue distributions are
learned, not estimated directly from the input. Indeed, learning appears to be essential for
obtaining the correct cue weights. Thus, the weights that listeners assign to cues may be a
function of both the statistics of the input and the history of the learning system. While this
result implies that the cue-weighting model represents certain cues suboptimally, this may
generally be the best representation it can achieve given the requirements of learning. There
may also be a benefit to this, in that it could allow the system to amplify cues that are gener-
ally weak and may be useful in other circumstances (e.g., a noisy environment in which
VOT is hard to detect; Miller & Wayland, 1993).

While these results suggest that learning plays a role, we do not argue that any learning
process will lead to this outcome. Other types of learning with different dynamics (Elman,
1993; McMurray et al., 2009b; Rumelhart & Zipser, 1985) might lead to different outcomes.
Whether it comes from learning, or some other process, however, our simulations suggest
that something must exaggerate the difference between overlapping distributions of VL. Sta-
tistics alone are not sufficient. Given the success of the MOG framework in accounting for a
range of processes in speech development (de Boer & Kuhl, 2003; McMurray et al., 2009a;
Vallabha et al., 2007), this approach provides a compelling explanation for listeners’ perfor-
mance in this task.

The final set of simulations revealed that changes in the trading relation between two
cues can be observed without changes in the weights of the individual cues. Trading rela-
tions not only reflect cue weights but also the influence of correlated inputs. Preliminary
work with human listeners (J. C. Toscano & B. McMurray, unpublished data) confirms the
prediction of the cue-weighting model that changes in the VOT ⁄VL trading relation can be
observed in a single experiment when additional cues either covary with VOT or are held
constant.

In addition to its close correspondence to behavioral data, the cue-weighting model pro-
vides a much more compact representation of the input than the multidimensional model
because it collapses cues into a single dimension. This may offer a better approach for scal-
ing up to a large number of cues. Further, this approach offers a general model of the origin
of trading relations in speech, suggesting that they can largely be determined by the statis-
tics of the input and unsupervised learning. This may allow us to explain trading relations
between other sets of cues (Repp, 1982) as well as changes in cue weights over development
(Mayo & Turk, 2004; Nittrouer, 2002).

The cue-weighting approach may also be informative for describing more general aspects
of speech development. For example, during development, listeners face the problem of
determining which cues are relevant for different phonological distinctions (Rost & McMur-
ray, 2009). The cue-weighting model would suggest that the irrelevant cues simply receive
a weight of zero (i.e., the model learns that they are best described as a single category).
Thus, rather than first determining which cues are relevant and then learning the distribution
of categories along those dimensions, learning may proceed by first determining the distri-
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butional statistics of a set of cues and then weighting them to determine if they are relevant
(or both processes may happen simultaneously). This is a rather counterintuitive prediction,
and it may be informative for understanding how listeners determine which cues to use to
distinguish different phonological contrasts. It may also explain why infants at 14 months
old who have tuned their speech categories to their native language, have still not entirely
completed this process (J. C. Rost & B. McMurray, 2009, unpublished data).

4. 1. Relationship to other models

The cue-weighting model differs from previous approaches in several important
ways. Both FLMP and NAPP models assume that cue integration is a category-depen-
dent process. In contrast, our model suggests that cue weights can be determined inde-
pendently of the categories along the dimension through an unsupervised learning
process that uses the same information for learning the categories themselves. Although
this contrasts with previous models, it provides a more realistic characterization of how
cue weights are learned. In addition, there is evidence that integration may occur at
precategorical stages, although it is not clear if this is because of the fact that cues are
estimated and integrated, or whether these cues are only estimated in combination (Del-
gutte, 1982; Kingston & Diehl, 1994).

Recently, researchers have begun to use Bayesian (i.e., ideal observer) models (Grif-
fiths & Tenenbaum, 2006; Tenenbaum & Griffiths, 2001) to describe various behaviors,
including speech perception (Clayards et al., 2008; N. H Feldman, T. L. Griffiths, & J.
L. Morgan, unpublished data; Norris & McQueen, 2008). These models share a number
of properties with ours. They suggest that perceivers are sensitive to the distributional
statistics of stimuli and use this information to categorize them. In addition, in both
approaches, speech categories are described parametrically, allowing us to specify the
properties of the model using a simple set of equations (Gaussian distributions in our
case).

However, there are many aspects of our models that make them distinctly non-Bayes-
ian. Bayesian models suggest that behavior is based on an optimal encoding of the statis-
tics, whereas our simulations with the cue-weighting model and its close match to the
behavioral data suggest that there are limits to how optimally these statistics are esti-
mated. While perception is largely based on the distributional statistics of speech, we
highlight a potentially important role for an iterative competitive learning process that
leads to nonveridical perception of the input. This learning process eliminates the need
to set the number of categories beforehand, using priors on K or pruning techniques. This
emphasis on developmental plausibility has a further benefit: McMurray et al. (2009a)
show how this iterative learning process can model the developmental time course of
speech discrimination in infancy.

Other aspects, such as the decision rule, make our models suboptimal (Nearey &
Hogan, 1986) and thus non-Bayesian. In addition, other features of Bayesian models,
such as the size principle (i.e., learners decrease the size of a category with increasing
exposure; Tenenbaum, 1999; Tenenbaum & Griffiths, 2001), are not required in our
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models and they may not obey certain constraints (the size of the category increases
over training; see McMurray et al., 2009b). Again, this difference may arise from our
commitment to iterative, developmental processes, but the fact that this model can learn
quite successfully with rules that seem to violate this principle challenge whether it is
necessary.

4.2. Limitations of the model

4.2.1. Perceptual and lexical processes
The MOG approach provides a transparent description of the structure of speech catego-

ries and explains how they can be derived from the statistics of the input using an unsuper-
vised learning mechanism and simple form of competition. While this offers a good
computational explanation of the system and a model of the learning process, it should not
be taken as a model of the perceptual process, which may have additional effects on cue
integration. For example, many cues (such as VOT and VL) are temporally asynchronous,
and recent eye-tracking data suggest that listeners use cues as they become available during
spoken word recognition, rather than waiting until all cues are received (McMurray et al.,
2008). This suggests that the order in which cues are heard may have an effect on their func-
tional weighting during perception. Indeed, the simulations presented here demonstrate that
the developmental process can provide valuable insights about cue integration; an investiga-
tion of perceptual processing may yield further information. Thus, while the MOG provides
a mechanistic account of learning, it provides only a descriptive account of listeners’ per-
ceptual processes. More detailed models of online speech processing may be needed to go
further (see McMurray et al., 2009b; Toscano & McMurray, 2008).

A second aspect of speech processing that is not considered in these models is the role of
feedback and top–down information in learning. The models presented here learn clusters of
speech sounds based solely on bottom–up input. Lexical structure may be an important
source of information for distinguishing speech sounds. For example, the fact that bear and
pear are contrastive words in the lexicon may force the system to make fine-grained pho-
netic distinctions (Charles-Luce & Luce, 1990, 1995; Metsala & Walley, 1998; Walley,
Metsala, & Garlock, 2003), and knowing which of the two words is being referred to can
provide an error signal for supervised speech category learning (Kraljic & Samuel, 2006;
Norris, McQueen, & Cutler, 2003). A complete model of speech development should
include them. However, feedback is not necessary to account for the effects modeled here.
Indeed, if lexical information was used to tag input with the correct category, we might not
expect it to exaggerate the differences between the categories along the VL dimension as
the cue-weighting model did and as human listeners do. Lexical information would help the
model learn the correct distributions, decreasing the relative weight of VL. Thus, if this
model included feedback its behavior would be less similar to listeners’ behavior. This is, in
effect, the result observed when the parameters of the Gaussians were set to match the distri-
butional statistics of the input (discussed in Simulation 2). However, this does not rule out
the utility of feedback. It may be necessary for learning other phonological distinctions, in
particular, those for which there are no good individual cues.
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4.2.2. Computational limitations
One limitation of the cue-weighing model is its ability to model sets of cues for which

the relative order of categories along a dimension is different for each cue. For the case of
VOT and VL, this problem can be solved by tracking the sign of the correlation between the
two cues. However, for distinctions with more than two categories along each dimension
(e.g., place of articulation in English, voicing in Thai), this solution will not necessarily
work. For example, both VOT and F2 onset frequency are cues to word-initial place distinc-
tions. However, the relative order of categories along the two dimensions is not the same in
the context of the vowels ⁄u ⁄ and ⁄o ⁄ (Kewley-Port, 1982). The cue-weighting model would
not be able to collapse these cues into a single dimension (although the weights of each
dimension may still be accurate).

A related limitation is that the model cannot learn sets of cues in which the within-cate-
gory correlations between cues (i.e., the correlation between tokens within each category)
differ for each category. Fig. 11 shows a schematic representation of two hypothetical cate-
gories with different within-category correlations. Some pairs of cues show these types of
relationships in different contexts (e.g., place of articulation: burst center frequency and F2
onset for different vowel contexts; Kiefte & Kluender, 2005; Nearey, 1998).

Both of these problems are a result of collapsing categories into a single dimension. The
multidimensional model would not have these problems, since it can represent the entire
acoustic space and categories may occur in any relative order along the cue dimensions.
Thus, one solution would be to combine aspects of both models: reducing the number of cue
dimensions as much as possible using the cue-weighting strategy outlined here and repre-
senting cues in a smaller multidimensional space. Another possible solution would be to
take contextual information into account in determining the values along cue dimensions.
That is, inputs to the cue dimensions could be determined by first partialing out context
effects (see Cole, Linebaugh, Munson, & McMurray, in press).

Fig. 11. A hypothetical pair of cues for which the within-category correlations for the two categories are different.
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4.3. Conclusion

These simulations demonstrate the power of the weighting-by-reliability approach
applied to speech. Weights given to acoustic cues can largely be determined from the statis-
tics of the input, and these in turn do a good job predicting behavior. However, by
themselves, these statistics are not sufficient to explain all types of cue weighting—some
mechanism by which overlapping categories are enhanced is also needed. We suggest that
learning itself, in addition to distributional statistics, may be crucial for determining those
weights. While statistical learning approaches to perception have largely focused on statis-
tics, there may also be a unique contribution for learning.

Notes

1. All of the simulations were implemented in MATLAB. Code is available from the first
author.

2. For the single-cue case, we have explored a range of different starting l values and
learning rates (Toscano & McMurray, 2005). For initial l values, we have not found
major differences in the model’s ability to learn or its categorization performance.
Learning rates that are £1 tend to be the most successful.

3. We used similar test stimuli to the ones used in McMurray et al. (2008), although they
used different VLs for each of their word continua (because of variations in other
phonological features of the words). The VL differences we chose span a similar range
to the ones they used (100 ms in our simulations; 95–100 ms for McMurray et al.)
and have similar values.

4. We chose this loose definition of success because we wanted to include as many repe-
titions as possible to see how accurately the model reflected listeners’ behavior. At
minimum, the model needed to have at least two categories to compute identification
functions for it. In addition, previous work has demonstrated that for reasonably dis-
tinguishable dimensions (e.g., VOT), MOG models show high accuracy in finding the
correct parameters. For example, in models learning VOT, the average deviation from
the correct VOT was 0.52 ms for l (see McMurray et al., 2009a). For cases in which
the model had more than two above-threshold categories at the end of training, the cat-
egories with the maximum posterior for the prototypical values of each cue (i.e., the
mean value for each category) were used as the voiced and voiceless categories.

5. Since the model normally starts with a large number of categories whose l values are
randomly distributed along the cue dimension, it is likely that some of these categories
will fall outside this range, allowing the model to successfully learn the number of
categories.

6. While these values were not taken from a complete set of acoustic measurements for a
third cue to voicing, we can examine the effects of an additional cue simply by allow-
ing it to covary with VOT.
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Appendix

Bivariate (two-dimensional) Gaussian distribution for the multidimensional model

Giðx;yÞ

¼/i
1

2prxiryi
ffiffiffiffiffiffiffiffiffiffiffiffi
1$q2i

p exp $ 1

2 1$q2ið Þ
x$lxið Þ2

r2xi
$2qixy
rxiryi

þ
y$lyi
" #2

r2yi

 ! ! !
ðA1Þ

This represents a single category in a two-dimensional mixture model, where lxi and lyi
are the means along each dimension, rxi and ryi are the standard deviations along each
dimension, qi is the correlation between the two dimensions, and /i is the likelihood
(frequency) of the category.
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Learning rules for cue-weighting model

D/i ¼ g/
GiðxÞ
MðxÞ

ðA2Þ

Dli ¼ gl
GiðxÞ
MðxÞ

$ %
x$ lið Þ
r2i

ðA3Þ

Dri ¼ gr
GiðxÞ
MðxÞ

$ %
r$3
i x$ lið Þ2$r$1

i

& '
ðA4Þ

These rules update the parameters of the Gaussians in the mixture such that they better
approximate the distributions of the data on each training trial. In each equation, g is the
learning rate for each parameter. Gi(x) is computed from Eq. 4 and M(x) is computed from
Eq. 5. The update rule for each parameter is determined by taking the derivative of the like-
lihood function of the mixture distribution (Eq. 5) with respect to that parameter. Because
M(x) is a sum, taking the partial derivative of any single parameter is only a function of the
relevant category. This simplifies the learning rules, allowing us to drop all of the terms
from the sum except for the one for the relevant category.

Learning rules for multidimensional model

Dlxi ¼ gl
GiðxÞ
MðxÞ

$ %
1

1$ q2ið Þ
xj $ lxi

r2xi
$ qiyj
rxiryi

$ %
ðA6Þ
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" #2
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$
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" #
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" #
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þ
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!!
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As with the learning rules for the cue-weighting model, g is the learning rate for each
parameter, and the update rules are computed by taking the derivative of the likelihood
function of the mixture distribution (Eq. A1) with respect to each parameter.
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