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 iMinerva: A Mathematical  2 

Abstract 

Statistical learning refers to the ability to identify structure in the input based on its 

statistical properties.  For many linguistic structures, the relevant statistical features are 

distributional: they are related to the frequency and variability of exemplars in the input.  

These distributional regularities have been suggested to play a role in many different 

aspects of language learning, including phonetic categories, using phonemic distinctions 

in word learning, and discovering non-adjacent relations.  On the surface, these different 

aspects share few commonalities.  Despite this, we demonstrate that the same 

computational framework can account for learning in all of these tasks.  These results 

support two conclusions.  The first is that much, and perhaps all, of distributional 

statistical learning can be explained by the same underlying set of processes.  The second 

is that some aspects of language can be learned due to domain general characteristics of 

memory.
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 The term “statistical learning” is often taken to mean sensitivity to probabilistic 

conditional relations among sequential elements, especially in the context of discovering 

units in the input as in the case of word segmentation (e.g. Johnson & Seidl, 2008; 

Saffran, Aslin, & Newport, 1996).  The ability to learn from conditional relations has 

been widely demonstrated across different species (e.g. Hauser, Newport, & Aslin, 2001; 

Toro & Trobalon, 2005) and different stimuli (e.g. Fiser & Aslin, 2002; Kirkham, 

Slemmer, & Johnson, 2002).   Infants’ sensitivity to conditional relations has attracted 

special attention, as this early-developing sensitivity has been suggested to play an 

important role in language development (e.g. Estes, Evans, Alibali, & Saffran, 2007; 

Hudson Kam & Newport, 2009; Misyak, Christiansen, & Tomblin, 2010; Thiessen & 

Saffran, 2003, 2007).  However, several subsequent experiments have highlighted areas 

in which sensitivity to conditional relations is inadequate to acquire linguistic regularities 

(e.g. Endress & Bonatti, 2007; Marcus, Vijayan, Bandi Rao, & Vishton, 1999; Toro, 

Nespor, Mehler, & Bonatti, 2008). 

 The assertion that sensitivity to conditional relations is insufficient for language 

learning, however, should not be taken to mean that the statistical learning approach to 

language development is necessarily inadequate.  This is because there is a wide range of 

statistical relations, beyond conditional relations, which may play an important role in 

language learning (Thiessen, 2009).  That is to say, the term “statistical learning” refers 

to learning from many different types of statistical information, not just conditional 

relations (e.g. Hunt & Aslin, 2010; Romberg & Saffran, 2010).  A different class of 

statistical regularities can be termed distributional regularities, because they involve 

learning from the distributional characteristics of exemplars in the input such as 
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frequency and variability (e.g. Clayards, Tanenhaus, Aslin, & Jacobs, 2008; Maye, 

Werker, & Gerken, 2002).  It may be the case that the integration of distributional 

sensitivity with sensitivity to conditional relations enables statistical learning to “scale 

up” to the complexity of natural language (e.g. Thiessen, Kronstein, & Hufnagle, under 

review; Thiessen & Saffran, 2003; Thiessen & Saffran, 2007; Werker & Curtin, 2005). 

 Distributional statistical learning occurs in situations where learners integrate 

information across a set of exemplars.  As such, distributional learning requires a 

comparison across exemplars.  Comparing exemplars, and integrating information across 

them, yields sensitivity to the central tendency of the set.  The frequency, similarity, and 

variability of the exemplars determine how much each exemplar contributes to the 

integration.  An exemplar that occurs frequently will be weighted more heavily than an 

exemplar that occurs rarely, for example.  When two exemplars are similar - a definition 

that depends at least in part upon the variability of the exemplars in the input set – they 

will tend to be integrated into the same category representation.  Indeed, the contribution 

of distributional statistical learning to language development has largely been 

investigated in the context of learning to distinguish between categories, because the 

features that define a distribution of exemplars (frequency, similarity, variability) are 

highly relevant for category formation (e.g. Maye et al., 2002; Thiessen & Yee, 2010).   

Despite the importance of distributional learning for language development, the 

process underlying sensitivity to distributional information is not completely understood. 

One reason for this is that the vast majority of modeling that has been done in the domain 

of statistical learning relates to the learning of conditional relations, especially in the 

context of word segmentation (e.g. Frank, Goldwater, Griffiths, & Tenenbaum, 2010; but 
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see Orbán, Fiser, Aslin, & Lengyel, 2008, for an example of a model of conditional 

learning in the visual domain; Perruchet & Vinter, 1998).  While there have been fewer 

models exploring the contribution of distributional statistical learning to language 

development (though see Feldman, Griffiths, & Morgan, 2009), a comparison between 

the general structure of conditional and distributional statistical learning models will help 

to illustrate the nature of distributional statistical learning more clearly.  Most recent 

models of conditional statistical learning seek to extract units (such as words) from the 

input, based on evidence that conditional statistical learning results in word-like 

knowledge (e.g. Estes et al., 2007; Giroux & Rey, 2009; Orbán et al., 2008).  These 

models bind elements of the input together into a discrete representation, as when 

grouping syllables together into a word (e.g. Frank et al., 2010; Perruchet & Vinter, 

1998).   

By contrast, models that learn distributional regularities must compare across 

units (rather than binding elements together to create units) to identify the central 

tendency of the input (e.g. Hintzman, 1984).  In models of distributional learning, 

previously experienced elements are synthesized or aggregated in a way that represents 

their central tendency (as when learners identify category boundaries or prototypes).  

This synthesis can lead to novel representations, as in studies of prototype formation 

where participants recognize objects or words they have not previously seen (e.g. Bomba 

& Siqueland, 1983; Endress & Mehler, 2009).  Not all of these models require that an 

actual prototype has been formed; many store traces of individual experiences and 

aggregate these, rather than storing a single prototype (e.g. Hintzman, 1986; McClelland 

& Rumelhart, 1985).  However, all of these models emphasize the central role of 
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integration across prior exemplars to identify central tendency.  Because models of 

distributional learning are more concerned with integrating features to identify central 

tendency than they are with binding elements together into a larger representation (as in 

models of segmentation), models of distributional learning often assume that the input 

has been pre-segmented by some other process (e.g. Jusczyk, 1993).  We will return to a 

discussion of the relation between distributional and conditional statistical learning in the 

General Discussion. 

 Prior modeling of distributional learning has largely focused on simulating 

prototype effects and discovery of categories in non-linguistic domains (e.g. Hintzman, 

1984) (but see Clayards et al., 2008; Feldman et al., 2009).  A number of statistical 

learning experiments demonstrate, though, that distributional learning may play an 

important role in identifying linguistic regularities (e.g. Gomez, 2002; Maye et al., 2002; 

Thiessen & Yee, 2010).  Language is often held to be a unique cognitive domain that may 

involve specialized processes (e.g. Lidz, Gleitman, & Gleitman, 2003; Marcus, 

Fernandes, & Johnson, 2007).  Our goal is to understand whether the domain-general 

principles espoused by previous models of distributional learning can also account for a 

wide variety of linguistically-relevant distributional learning tasks, using a single 

computational framework.  With this goal in mind, we have developed a novel model, 

called “Integrative Minerva” (iMinerva for short) intended to simulate the kinds of 

sensitivity to the different distribution of exemplars seen in statistical learning tasks.   

The iMinerva model incorporates a set of processes drawn from the theories of 

long-term memory: activation (of similar memories), decay, integration, and abstraction.  

These processes allow iMinerva to simulate a wide range of distributional learning 
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phenomena.   In particular, we have used iMinerva to simulate three tasks where different 

degrees of variability in the distribution of exemplars help infants discover linguistic 

regularities: category learning, acquired distinctiveness, and discovery of non-adjacent 

relations.  These simulations serve two purposes.  First, they demonstrate that a relatively 

straightforward computational framework can account for a wide range of distributional 

learning.  Second, they explain distributional statistical learning through the use of 

mechanisms of long-term memory.  This type of explanation extends recent attempts to 

make connections between statistical learning and mechanisms of memory (e.g., 

Perruchet & Vinter, 1998; Thiessen, Kronstein, & Hufnagle, under review).  We suggest 

– iMinerva is an attempt to codify this suggestion – that distributional statistical learning 

occurs as a consequence of the processes of long-term memory.  That is to say, there is 

no unique “distributional learning mechanism.”  Rather, distributional statistical learning 

is a result of the way memories are encoded, recalled, and integrated with new 

experiences to identify commonalities. 

In principle, simulating any set of distributional learning phenomena would serve 

to assess the claim that a single domain-general approach, based on principles of 

memory, is sufficient to explain distributional statistical learning.  However, there are 

several reasons to select linguistically relevant tasks for the first assessment of this 

modeling approach.  One is that, as mentioned previously, the majority of research on 

statistical learning has involved linguistic stimuli.  A second is that language is a domain 

where domain-specific mechanisms have often been argued to be at work (e.g., Marcus et 

al., 2007; Lidz, Gleitman, & Gleitman, 2003), so modeling can play a particularly role in 

delineating the potential contributions of domain general processes in this domain.  



8 

Finally, the complexity of language ensures that there are a wide variety of linguistically 

relevant tasks that share very few surface commonalities.  A demonstration that iMinerva 

can successfully simulate a diverse range of tasks provides more compelling evidence in 

favor of the argument that a single theoretical framework is capable of accounting for a 

wide range of distributional learning phenomena. 

 The first task we simulate with iMinerva is category learning.  Maye et al. (2002) 

found that when infants were exposed to a unimodal distribution of phonemes along a 

continuum between /d/ and /t/ (where exemplars in the midpoint of the continuum occur 

most frequently), they failed to respond differentially to the endpoints.  That is, they 

responded as though all of the phonemes along the continuum belonged to a single 

category.  In this unimodal condition, infants were presented with a single distribution 

with a high degree of variability (that is, a relatively large standard deviation).  By 

contrast, when infants were exposed to a bimodal distribution (where phonemes close to 

the endpoint are most frequent, and phonemes near the midpoint of the continuum are 

rare), infants responded differentially to the endpoints of the continuum.  In the bimodal 

distribution, infants were presented with two distributions, each with a much smaller 

degree of variability than the unimodal distribution.  The research by Maye et al. (2002) 

provides a clear example of infants’ sensitivity to the distribution of exemplars in the 

input (for a conceptual replication and extension, see Maye, Weiss, & Aslin, 2008).  

These results suggest that the distribution of exemplars along a similarity continuum 

plays an important role in speech category formation (e.g. Vallabha, McClelland, Pons, 

Werker, & Amano, 2007).   
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The second phenomenon we simulate with iMinerva is the effect of the 

distribution of exemplars across contexts in children’s use of categorical distinctions.  In 

many word-object association tasks, children between 12 and 16 months fail to take 

advantage of phonemic distinctions they can hear (e.g. Pater, Stager, & Werker, 2004; 

Shvachkin, 1973).  For example, after being habituated to an object paired with the label 

daw, children accept taw as a label for that object (e.g. Stager & Werker, 1997; Thiessen, 

2007).  Children’s failure to make use of phonemic distinctions can be alleviated, 

however.  If participants are exposed to the phonemic contrast in variable contexts (e.g., 

/d/ and /t/ in dawbow and tawgoo), they are more likely to use the contrast (e.g. Thiessen, 

2007; Thiessen & Yee, 2010).  When infants are exposed to the phonemic contrast in 

invariant contexts (e.g., /d/ and /t/ in dawgoo and tawgoo), they show no gain in their 

ability to make use of the phonemic contrast.  The fact that variable contexts facilitate the 

use of the contrast may be related to the phenomenon of acquired distinctiveness.  When 

two similar stimuli (A and B) are paired with two different outcomes (X and Y, forming 

the compound stimuli AX and BY), the similar stimuli become easier to differentiate (e.g. 

Hall & Honey, 1989).  These results indicate that learners are sensitive to the contexts in 

which different stimuli are distributed, and that those distributions can help to make the 

distinction between exemplars from different categories more robust.  A more robust 

distinction among the phonemic categories should make it easier to subsequently map the 

categories onto different referents, because discrimination is a necessary precursor to 

learning separate mappings (Gibson, 1940). 

 The third effect we simulate with iMinerva is also related to the effect of 

variability on learning.  Prior research demonstrates that variability plays a role in 
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infants’ ability to detect non-adjacent relations.  Many of the dependencies in language 

are non-adjacent dependencies, as between the morphemes is and ing in phrases like is 

walking and is running.  The intervening material between is and ing is unrelated to the 

dependency (any regular verb can occur between them), and thus variable.  Discovering 

non-adjacent relations is more difficult than discovering adjacent relations (e.g., Creel, 

Newport, & Aslin, 2004).  Fortunately, the variability of intervening elements between 

the non-adjacent elements can help infants to discover the non-adjacent regularity.  When 

infants are exposed to an artificial language with non-adjacent regularities, as in the string 

AXB (where X is a variable element), infants discover the non-adjacent regularity 

between A and B more easily when the X element is more variable (Gomez, 2002).  This 

is a striking result, because increasing variability in the X element actually presents the 

infants with more complex input. 

 As these results indicate, infants are able to take advantage of the distribution of 

exemplars in the input in a wide variety of learning tasks that relate to language 

development.  But the very breadth of distributional learning raises an important question 

about whether all of these aspects of learning can be accomplished by the same 

underlying mechanisms.  This is a question that has been explored with respect to 

conditional statistical learning.  Humans detect conditional relations for both sequential 

auditory stimuli (e.g., syllables in a word) and simultaneously presented visual stimuli, 

such as elements of a visual array (e.g. Fiser & Aslin, 2002).  Learning in these different 

domains is potentially mediated by different mechanisms, a hypothesis that has been 

assessed by both behavioral and computational research (e.g. Conway & Christiansen, 

2005; Kirkham et al., 2002; Orbán et al., 2008).  Computational work provides an 
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especially good technique for testing hypotheses about underlying mechanisms, because 

models allow researchers to provide an existence proof that a single hypothesized 

learning mechanism can account for several different kinds of learning (e.g. Seidenberg 

& McClelland, 1989). 

 However, there have been relatively few models investigating distributional 

learning with the kinds of linguistic stimuli often used in statistical learning tasks.  The 

few prior models in this area are intended to explore distributional learning do so only for 

a single kind of task (e.g. Feldman et al., 2009).  Such models are informative, but do not 

attempt to determine whether a single set of underlying processes can account for two or 

more learning phenomena.  If different aspects of distributional learning are 

accomplished via the same processes, it will be possible to create a single model that can 

simulate many different aspects of distributional learning.  While computational 

modeling cannot provide definitive evidence that a particular process underlies human 

learning, it can provide an existence proof that it is possible for a hypothesized process to 

do so. 

 We propose that distributional statistical learning is accomplished by processes of 

long-term memory, including similarity-based activation of prior memories, strength-

based learning of features, abstraction of irrelevant features and memory decay.  This 

proposal suggests that the same underlying processes are responsible for infants’ success 

in all of the distributional learning tasks discussed above, and possibly many other forms 

of distributional learning.  To assess this hypothesis, we simulated learning in all three 

tasks using the iMinerva model.  This model, which shares many principles in common 

with the MINERVA 2 (Hintzman, 1984) model, is a model of learning from exemplars 



12 

stored in long-term memory.  In a series of simulations, iMinerva was able to mimic three 

different aspects of distributional learning: category learning (e.g. Maye et al., 2002), 

acquired distinctiveness (e.g. Hall & Honey, 1989), and the facilitative effect of 

variability in discovering non-adjacent regularities (e.g. Gomez, 2002).  This provides an 

existence proof that the processes of long-term memory can, in principle, account for 

several different aspects of distributional learning over the kinds of linguistic stimuli used 

in statistical learning tasks.  In particular, we propose that to benefit from the 

characteristics of the distribution of exemplars in the input, a learner must also be able to 

integrate across exemplars over the course of learning.  Only by comparing across 

exemplars, and integrating the current exemplar with prior experience, is it possible to 

learn from the central tendency and variability of exemplars in the input.  Thus, the 

current model accounts for distributional statistical learning by utilizing a process of 

comparison across experienced exemplars. 

The iMinerva Model 

 Unlike most other models of statistical learning, this model is not intended to 

simulate processes via which learners detect sequential conditional relations in the input 

(as when they detect that syllables ‘go together’ in a word).  For the current simulations, 

we assume that processes not invoked by iMinerva are responsible for segmenting the 

input.  These segmentations provide the exemplars over which iMinerva operates.  Rather 

than segmenting the input, iMinerva is intended to simulate learning from the distribution 

of exemplars, especially learning that is related to the variability with which different 

exemplars occur.  To do so, iMinerva relies on four interrelated processes: similarity of 

previously stored exemplars, integration of the current exemplar with previous 



13 

experience, decay of old exemplars, and abstraction from the exemplars.  Together, these 

processes allow iMinerva to produce the entire range of distributional learning discussed 

above.  For a complete mathematical description of the model, see the Appendix.  Here, 

we will provide a verbal description of the key characteristics of the model. 

 Like all exemplar memory models, iMinerva stores prior experiences in the form 

of discrete exemplars.  These exemplars are coded as n-dimensional vectors with positive 

and negative feature values.  Each feature is linked to some psychologically real 

characteristic of the stimulus.  For example, a vector describing a shape might have a 

features linked to the presence or absence of the characteristics “round,” “three-sided,” 

“four-sided” and “five-sided.”  The valence of the features describes whether the 

characteristic is present, absent, or contradicted (i.e., a square would have a 0 feature 

value for the characteristic “round”, because roundness is absent, a positive feature value 

for the characteristic “4-sided,” and a negative feature value for the characteristics “3-

sided” and “5-sided,” because having exactly four sides contradicts having three or five 

sides).  The magnitude of the feature describes the model’s certainty that the 

characteristic is present, absent, or contradicted.  Feature values can, in principle, range 

from positive infinity to negative infinity.  The greater the absolute value of the feature, 

the more certain the model is about the presence (or negation, for features with negative 

values) of the characteristic described by that feature. 

 Four processes drawn from research on memory – similarity-based comparison, 

decay, integration, and abstraction – allow iMinerva to learn from exposure to exemplars.  

Similarity between exemplars is computed as the cosine similarity of the two vectors on a 

feature by feature basis, considering both the valence and magnitude of each feature.  
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Note that the magnitude of a feature can change even after it has been stored in memory, 

due to the effect of decay.  All vectors stored in memory are subject to continuous decay 

effects causing feature values to tend toward zero.  When a new vector is presented to the 

model, prior exemplars in long-term memory are activated as a function of their 

similarity to the current exemplar.  Activation is the cube of raw cosine similarity, which 

means that only highly similar exemplars are strongly activated. 

Similarity of prior experiences causes an integration between current and prior 

information we have termed “engagement,” where the current experience is interpreted in 

light of prior experience.  In engagement, the current example is integrated with a similar 

prior exemplar to create an interpretation of the current experience.  This leads to the 

storage of three vectors in memory: the current example, the prior vector drawn from 

memory, and a new interpretation.  If multiple prior exemplars are similar, the model 

selects the strongest of them above the similarity threshold (a parameter that varies 

between 0 and 1.0).  Interpretations are created through an additive merging of the 

current exemplar and the strongest prior exemplar above the similarity threshold.  If the 

current vector has features consistent with the features of the vector (above threshold) in 

memory, then the engagement strengthens these features, and the resulting interpretation 

has more extreme feature values than either of them.  If the current vector has features 

that are inconsistent with the features of the strongest vector (i.e., has feature values in 

the opposite direction), then the interpretation resulting from their engagement will have 

less extreme values for these features than it did previously.  The additive integration of 

the current vector and the strongest vector in memory is controlled by the learning rate of 

the model, a parameter that can be set to any value greater than 0 (though values between 
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0 and 1 are most plausible).  If the learning rate is set to a high value, the current 

exemplar has greater influence on the new vector that arises from the engagement 

process. 

Interpretations are stored in the same manner as exemplars in the model, so once 

they are formed they can be engaged by subsequent exemplars.  The creation and storage 

of these interpretations (i.e., engagement) is the process by which iMinerva learns the 

central tendency of exemplars in the input.  As an example, consider what would occur if 

iMinerva were exposed to a series of two-feature vectors, where the first feature of all of 

the variables was 1, and the second feature of the vectors alternated between -1 and 1.  

Across a series of engagements, the first feature would be reinforced, and increase in 

magnitude (for example, with a learning rate of .1, the engagement between the first and 

second vector would produce a new interpretation with a first featural value of 1.1).  In 

contrast, the second feature will decrease, since the learning is a function of the feature 

value of the new vector, -1, multiplied by the learning rate, so it will become .9.  Because 

of this decrease, and because of forgetting, the second feature will trend to 0 over time.  

In this way, iMinerva continually refines its interpretations in a way that is consistent 

with the central tendency of the input. 

The final process that is necessary for iMinerva’s learning is abstraction, which 

facilitates generalization to novel stimuli (e.g., McClelland & Plaut, 1999).  To simulate 

abstraction, iMinerva transforms features to null values when an interpretation contains 

features whose values fall below some fraction (controlled by a parameter varying 

between 0 and 1) of the average absolute feature strength for that interpretation.  Features 

that are nullified in this manner are no longer used to compute similarity ratings; they 
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neither make a vector more nor less similar to some other vector (a vector of 2, 1, null 

would be equally similar to a vector with features 2, 1, -1, and a vector with features 2, 1, 

3).  The abstraction process was added to the model to simulate the fact that experience 

often results in a decrease in sensitivity to certain features of the input (e.g. Werker & 

Tees, 1984).  Nullification of features does not necessarily mean that the features are no 

longer detected, but rather that they have lost salience.  This allows attention to be 

devoted to those features that prior experience indicates are informative.  Such efficient 

use of attention is useful both because attentional resources are limited (e.g. Miller, 

1956), and also because it leads to more efficient processing of subsequent experiences 

(e.g. Winkielman, Halberstadt, Fazendeiro, & Catty, 2006). 

The four processes invoked by iMinerva – similarity-based activation, 

engagement, decay, and abstraction – are drawn from research on human memory.  While 

each process is independent, their interaction is crucial to a complete attempt to simulate 

human memory.  For example, while engagement could occur (randomly) in the absence 

of information about similarity, it is the interaction of these two processes that allows 

iMinerva to learn in a principled fashion.  Similarly, while similarity could be processed 

in the absence of abstraction, the presence of this process ensures that spurious relations 

that occasionally occur in the input do not persist in memory.  That is, abstraction serves 

to “sharpen” iMinerva’s sensitivity to regularity.  Decay for its part adds realism to the 

model since it limits the number of active traces (since traces decay away) and captures 

the assumption that memory does not have unlimited capacity. Taken together, these four 

processes present an attempt to simulate the critical processes of human memory that we 

believe are responsible for distributional statistical learning. 
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Much of the theoretical groundwork and delineation of these processes was 

originally set forth in the MINERVA 2 architecture (Hintzman, 1984), from which 

iMinerva is adapted.  However, there are important differences between the ways the two 

models simulate memory processes.  First, in MINERVA 2, vector feature values are 

limited to a range between -1 and 1, whereas feature magnitude is potentially limitless in 

iMinerva.  This means that similarity in iMinerva is influenced by both the direction and 

magnitude (i.e., certainty) of a feature, while similarity in MINERVA 2 is driven more by 

valence.  Both iMinerva and MINERVA 2 are sensitive to the central tendency of the 

vectors stored in memory.  However, they achieve this sensitivity through different 

mechanisms.  MINERVA 2 creates weighted (by similarity) average of all of the vectors 

in long-term memory.  Because of this, two equally similar vectors contribute equally to 

the overall summation, regardless of when they were originally experienced.  In 

iMinerva, the distribution in memory is reflected in the amplitude of features in the 

interpretation resulting from engagement between a current experience and a prior 

experience.  The similarity threshold means that some vectors do not contribute, even 

weakly, to the model’s representation of central tendency.  We believe that this is a more 

psychologically plausible assumption about the processes of recall than the approach 

implemented in MINERVA 2.  Learning and judgments within a domain or category 

often reflect only the characteristics of that domain or category, rather than the 

characteristics of all prior experiences.  The existence of a similarity threshold allows 

iMinerva to simulate this specificity more easily than the MINERVA 2 architecture on 

which it is based.  Finally, discovery of regularities in iMinerva should be stronger in 

some cases than in MINERVA 2, due to the presence of a process of abstraction that 
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removes patterns from memory if they are only rarely experienced (a point we will 

discuss in more detail in Experiment 3). 

Simulation 1 

 Infants begin to discover the phonemic categories of their native language even 

before they are familiar with the meaning of words (e.g. Kuhl, Williams, Lacerda, 

Stevens, & Lindblom, 1992; Werker & Tees, 1984).  One of the features of the linguistic 

input that may allow them to do so is the distribution of phonetic exemplars in the input.  

Because sounds that fall between two categories are ambiguous, it may be the case that 

speakers produce exemplars in these ambiguous regions less often.  If so, regions of 

phonetic space where relatively few exemplars (in comparison to nearby regions) are 

produced would correspond to boundaries between phonemic categories.  While the 

distribution of phonetic exemplars is necessarily noisy due to individual and contextual 

differences in articulation, research indicates that this kind of distributional information is 

available in the input (e.g. Kuhl et al., 1997; Vallabha et al., 2007). 

 Of course, this distributional information is only useful if infants can benefit from 

it.  To assess whether they can do so, Maye et al. (2002) presented 8-month-old infants 

with a simplified version of the distributional information relevant to discovering 

category boundaries.  In their experiment, infants were exposed to phonemes along an 

eight-step continuum from /da/ to (unaspirated) /ta/.  One group of infants was exposed to 

a unimodal distribution, with stimuli 4 and 5 (the two central stimuli, halfway between 

extreme /da/ and extreme /ta/) occurring most frequently.  The other group was exposed 

to a bimodal distribution, where stimuli 2 and 7 (near the endpoints of the distribution) 

occurred most frequently, and stimuli in the middle of the continuum occurred rarely.  
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This bimodal distribution mimics a linguistic system with two categories, while the 

unimodal distribution suggests a single category.  After exposure, only infants exposed to 

the bimodal distribution responded differentially to /da/ and /ta/ during test trials. 

 The goal of this simulation is to reproduce the pattern of data found by Maye et 

al. (2002).  We hypothesize that exposure to the unimodal distribution will promote 

formation of a single broad representation, one that includes a wide variety of exemplars.  

By contrast, we predict that exposure to the bimodal distribution will promote the 

formation of two less inclusive representations.  This would provide an explanation for 

the pattern of results found by Maye et al.  If the model (or the infant) has only a single, 

relatively broad category representation, exemplars from either end of the continuum can 

fall into the same category.  But if the model (or infant) has formed two categories, 

exemplars from each endpoint will fall into different categories. 

Method 

Our goal for the model was to show that given the bimodal or unimodal 

distribution of phonetic input, different representations will be formed that account for 

the different behaviors in response to these distributions of input. For this simulation, we 

used the exact distribution of stimuli shown by Maye, Werker and Gerken (2002) to 

produce sensitivity experimentally.  In this experiment, infants were presented with 64 

examples sequentially from either a bimodal or modal distribution. Table 1 shows the 

coding of the 16 features that were used to represent each vector from phoneme da4 (the 

most extreme da) to ta4 (the most extreme ta).  Note that these features are drawn from 

linguistic tradition suggesting that acoustic input can be decomposed into binary feature 

arrays.  This does not represent a theoretical commitment to abstract phonemic 
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representations, but rather an attempt to capture the similarity structure of the input in a 

way that is mathematically convenient for iMinerva’s vector input. 

------------ 

Insert Table 1 about here 

------------ 

To illustrate this point, consider the first feature of the vectors, corresponding to 

voicing.  This coding system captures a set of assumptions about how infants encode 

their experience.  Recall that the magnitude of a feature in iMinerva does not (directly) 

reflect voice onset time (VOT).  Rather, magnitude reflects the learner’s confidence that 

the feature is present, and magnitude systematically increases for more extreme VOTs 

based on the assumption that more extreme values of VOT (i.e., further from the 

ambiguous middle tokens along the continuum) are more easily perceived as exemplars 

of either voicing or voicelessness.  This coding scheme requires that infants be able to 

detect within-category variation; that is, to be able to perceive the difference between two 

exemplars of the same phoneme.  While early models of categorical perception suggested 

that this was not the case, more recent research with infants indicates that infants do 

perceive within-category variation (e.g., McMurray & Aslin, 2005).  Because of the way 

this coding scheme is devised, iMinerva does not address the problem of how infants 

learn to map a continuous acoustic characteristic (such as VOT) onto a more discrete 

representation (such as voicing).  Rather, the simulation addresses the question posed by 

research of Maye et al. (2002): given that infants can perceive a difference between 

voiced and voiceless exemplars, why does the distributional information in the input lead 

them to respond to these exemplars as though they are members of the same category 
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(i.e., to respond equivalently to perceptually distinguishable inputs for some kinds of 

distributions, and lead them to respond to the exemplars as though they are members of 

different categories for other kinds of distributions? 

While infants’ response to phonetic exemplars was measured by looking time in 

the experiment that produced this data (Maye et al., 2002), we were more interested in 

producing a model that explained why looking time was different rather than a model that 

produced exacting fits to the looking time data of individual infants. For this reason, the 

results for the simulation are characterizations of student representations (or 

interpretations) that are thought to drive the difference in listening times. In this, and the 

later simulations in this paper, we assume that infants’ gaze durations are caused by 

novelty and conflict. Early during habituation longer listening times are caused by the 

novelty of the input not matching any recent input, which drives attention and learning. 

Later on in learning, when new exemplars are presented they may match one or more 

representations in memory. If multiple representations are matched, causing conflict, we 

propose that there is a competitive process of selecting the best match. This idea that 

multiple representations cause conflict and longer latencies is a well-established idea with 

a history of research behind it (e.g. Van Rijn & Anderson, 2003). 

Therefore, what this simulation hopes to establish is that the unimodal and 

bimodal frequency distributions cause different states of memory.  In the case of the 

unimodal distribution input, the model should display a single interpretation that would 

not cause competition and lacks novelty because of more repetition.  By contrast, in the 

case of the bimodal distribution, we expect to see two interpretations that would cause 

competition and have greater novelty due to proportionally less reinforcement. 
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Results 

Figure 1 shows the typical pattern of memory from simulating a child in each 

condition. In the top graph of the figure the memories formed from bimodal input are 

shown, and in the bottom graph memories formed from unimodal input are shown. The x-

axis (trace index) describes the order that examples and interpretations were added over 

time, starting at trace index 0 (the first trace). The y-axis graphs the strength of the initial 

feature of the vector for created examples and interpretations, because the initial feature 

(which reflects voicing status) was the key feature differentiating /t/ and /d/ in Maye et al 

(2002) research. The dashed lines connect examples to descendant interpretations.  The 

solid lines connect the interpretations to any descendant interpretations.  Of course, all of 

these solid lines trace back to the creation of some original interpretation from the 

engagement of two similar examples. Figure 1 shows the critical feature development 

over cycles of engagement. As we can see from the top part of the figure, when input is 

bimodal, two interpretations are formed early and strengthened with the engagements of 

multiple examples. The bottom of the figure shows how only a single interpretation is 

formed when input is unimodal. Since it is impossible to graph the NA values for the 

abstraction in the single interpretation we plotted the solid line at a value of exactly 0 (to 

represent null in a way that would still be visible) in Figure 1 bottom.  

------------ 

Insert Figure 1 about here 

------------ 

Because learners in Maye et al’s (2002) experiment received the stimuli in 

random order, and because we noted that very occasionally the bimodal input would 
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result in the formation of only a single interpretation, it was important to run the model 

multiple times.  This would ensure that while showing some individual difference (which 

occurs in children as well) the basic pattern of results showed a strong difference for the 

two input distributions. Figure 2 shows this comparison for 500 simulated children. From 

these results it is clear that the bimodal input consistently produces 2 interpretations, 

while the unimodal input produces one representation. Unique interpretations were 

determined by tracing forward from each initial interpretation to find the most recent 

version of the interpretation. The few exceptional children in each condition randomly 

received orders of practice that allowed them to initially entrench an inaccurate 

interpretation or interpretations of the input stimuli distribution, which was (were) 

subsequently strengthened well enough to persist. The fact that our simulation shows 

these individual differences helps illustrate that our process-based explanation is not just 

a statistical summary of the results, but rather a mechanistic account of how children 

process the input to arrive at personal interpretations of their experiences. While it did not 

have much effect on the result for this experiment because of the variable order of input, 

we added some variability (random normal with a SD of 0.05) to the threshold for each 

simulated child, so as to insure that our result was not somehow due to assuming our 

simulated subjects had no individual differences. This variability also means that some 

simulated learners are biased to form more or fewer interpretations. 

While we did not simulate looking times, the representations that the model 

develops in response to the bimodal and unimodal exposure are consistent with Maye et 

al’s (2002) data.  In that experiment, infants were exposed to two kinds of test trials: 

alternating (between ta and da stimuli) and non-alternating trials.  Only infants in the 



24 

bimodal condition were able to discriminate between alternating and non-alternating 

trials.  Those models exposed to unimodal input would similarly have difficulty 

distinguishing between alternating and non-alternating trials, because both kinds of 

stimuli (ta and da) yield the same interpretation.  Because of this, alternating trials would 

provoke the same interpretation as non-alternating trials.  For models exposed to the 

bimodal input, alternating trials would invoke two distinct interpretations, which is a 

different pattern than the single interpretation invoked by non-alternating trials.   

------------ 

Insert Figure 2 about here 

------------ 

The representations formed by the model in the unimodal and bimodal cases 

differ primarily on the feature representing voicing, as would be expected from the input.  

In the bimodal condition, the model’s interpretation in response to voiced and voiceless 

test items has an absolute value of about 2 for the feature representing voicing.  That is, 

the magnitude (i.e., certainty) of the voicing feature has increased as a function of 

training.  After exposure to the bimodal input, iMinerva becomes even more confident in 

the voicing distinction that occurs in the input.  In the unimodal condition, iMinerva 

creates a single strong representation.  But rather than retaining the ta-da difference in 

this representation, the model actually abstracts away this feature. This was generally 

confirmed by comparing the total percent abstracted (null) initial feature in the unimodal 

condition to other features values in the final interpretations counts. For the unimodal 

condition we found 85.4% of the interpretations had a null initial feature, while in the 

bimodal condition only 6.36% of the interpretations were null for the initial feature. In 
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other words, the unimodal distribution of input led to simulated children discounting the 

salience of the /t/-/d/ distinction due to the distribution of input, while the bimodal 

condition strengthened the model’s confidence that the distinction was occurring. 

It is important to note that iMinerva is not the first model to demonstrate that 

distributional features of the input can help infants adapt to the phonemic structure of the 

input.  Many computational architectures – including connectionist and Bayesian models, 

in addition to exemplar memory models – are capable of learning from this kind of 

distributional information (e.g., Feldman et al., 2009; McMurray, Aslin, & Toscano, 

2009; Vallabha et al., 2007).  Indeed, many of these models are superior to iMinerva in 

that they learn from linguistic input that is closer to the complexity of natural language, 

or have representational schemes that more closely reflect acoustic features of the input.  

Our goal here is not to argue for the superiority of the iMinerva architecture in simulating 

this (or any) particular aspect of distributional learning.  Indeed, it may be the case that 

all of these models are merely different computational instantiations of the same 

underlying psychological processes (e.g., Shi, Griffiths, Feldman, & Sanborn, 2010).  

Rather, our goal is to demonstrate that iMinerva is able to account for many different 

distributional learning phenomena within a unified approach, thereby providing an 

existence proof that all of these phenomena – though distinct on the surface – can be 

explained by the same set of processes.  To this end, we will next use iMinerva to 

simulate a different distributional learning problem. 

Simulation 2 

 By the end of the first year of life, infants have made much progress toward 

identifying the phonemic categories of their native language (e.g. Kuhl et al., 2006; 
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Werker & Tees, 1984).  However, in some settings they may not use those categories in 

an adult-like manner.  For example, in habituation tasks where infants learn novel word-

object associations, 14-month-olds treat minimal pair labels (such as daw and taw) as 

interchangeable labels for the same object (e.g. Stager & Werker, 1997).  By 17-20 

months, infants improve in this task, and now correctly reject minimal pairs as labels for 

an object they have previously seen labeled with a different label.  At 17 months, the 

ability to correctly reject a minimal pair is linked to vocabulary size (e.g. Werker, 

Fennell, Corcoran, & Stager, 2002).  Infants with larger vocabularies are more likely to 

succeed, suggesting that experience with the distribution of phonemes in lexical contexts 

plays a role in the ability to use those phonemes (e.g. Thiessen, 2007). 

 To test this hypothesis, Thiessen (2007) provided 15-month-olds with exposure to 

phonemes in variable lexical contexts (such as /d/ and /t/ in dawbow and tawgoo).  

Embedding the phonemes in distinct contexts mimics the distributional characteristics to 

which children are exposed as they acquire their native language.  Unlike adults, children 

know very few words were phonemes occur in minimal pairs (as in deer and tear).  

Instead, children are likely to be familiar with words where phonemes occur in distinct 

contexts (e.g. Caselli et al., 1995).  The results of the experiment indicated that 

familiarization with dawbow and tawgoo facilitated use of the contrast between daw and 

taw.  After exposure to dawbow and tawgoo (which provide examples of the phonemes 

/d/ and /t/ in different contexts), children no longer treated daw and taw as 

interchangeable (Thiessen, 2007; Thiessen & Yee, 2010).  This effect was not simply due 

to greater familiarity with the sounds daw and taw.  A separate group of children were 

familiarized with dawgoo and tawgoo (which provide examples of the phonemes /d/ and 
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/t/ in identical contexts) and showed no facilitation.  These results suggest that 

experiencing the phonemes in different contexts facilitates their use. 

 The goal of this simulation is to replicate the results of Thiessen (2007).  We 

hypothesize that exposure to the phonemes /d/ and /t/ in different contexts will yield 

divergent representations.  That is, when the model is presented with “daw,” this will 

activate prior experiences with the phoneme /d/ in the context of “dawbow.”  When the 

model is presented with “taw,” this will activate prior experiences with the phoneme /t/ in 

the context of “tawgoo.”  This will lead to divergent interpretations of the phonemes, and 

make the distinction between them more robust.  By contrast, if the model experiences 

the phonemes in identical contexts (like /d/ and /t/ in “dawgoo” and “tawgoo”), the 

interpretations of /d/ and /t/ will be convergent.  

Method 

To simulate the input in Thiessen (2007), we were able to reuse the da4 and ta4 

stimuli vectors from Simulation 1 (Table 1), because da4 corresponds to “daw” and ta4 

corresponds to “taw”. In addition to the these phonemes, which were represented with 16 

features again, we also had 2 suffixes, “bow” and “goo” which were also represented 

with 16 features (these are shown in Table 2). This meant that for each of the Thiessen 

stimuli we required a 32 feature vector except for “daw” and “taw”.  For “daw” and 

“taw” we choose to pad the stimuli vector with 16 null values to represent the fact that 

there was nothing to compare for this portion of the stimuli unit. According to our 

similarity function (see Appendix), comparing a feature to a null feature causes no effect 

on the similarity. This corresponds to an assumption that similarity is a partial matching 
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process that can cope with sparse information, and in such cases, simply reports back 

based on the comparison of the information available. 

------------ 

Insert Table 2 about here 

------------ 

 Again in the Thiessen (2007) case we were interested in showing how the two 

different input streams caused interpretation states that resulted in discrimination of daw 

and taw.   Because we were interested in retaining as much commonality as possible 

between the 3 simulations in this paper, we only varied the threshold of similarity in this 

simulation with respect to Simulation 1. We lowered it from a mean 0.85 from the Maye 

simulation to 0.6. Lowering it is consistent with the idea we might expect a greater 

propensity for noticing similarity in these older children (e.g. Cohen, 1991, 1998). 

Results 

 Figure 3 shows the interpretation counts in the Thiessen (2007) condition 

simulations. It is clear that the simulation is consistently forming two interpretations 

(99.4% of the time) for the “daw, dawbow, tawgoo” condition (henceforth: the distinct 

contexts condition) and one interpretation (87.6% of the time) for the “daw, dawgoo, 

tawgoo” (henceforth: the identical contexts) condition.  Looking in more detail at the 

feature vectors for the interpretations revealed that in the distinct contexts case, we found 

that “daw” and “dawbow” formed a single interpretation with some of the “bow” 

phoneme moderately included, while “tawgoo” formed its own weaker interpretation.  In 

the identical contexts condition, one interpretation is formed that has a weak  /d/ - /t/ 
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feature, maximal support for the “aw” features, and moderate support for the “goo” 

features. 

------------ 

Insert Figure 3 about here 

------------ 

 Infants in the Thiessen (2007) experiment distinguished between “daw” and “taw” 

test trials after exposure to “dawbow” and “tawgoo;” they failed to do so after exposure 

to “dawgoo” and “tawgoo.”  As in Simulation 1, this result is consistent with the 

interpretations formed by the model after the different exposure regimens.  Figure 4 

shows how these final interpretations are represented in the model. The models exposed 

to “dawgoo” and “tawgoo” (i.e., the identical contexts) form a single interpretation that 

both “daw” and “taw” activate.  That is, these models fail to differentiate between “daw” 

and “taw” in much the same way as infants exposed to “dawgoo” and “tawgoo.”  By 

contrast, the models exposed to “dawbow” and “tawgoo” (the distinct contexts) create 

different interpretations of “daw” and “taw.”  Due to their experience with “daw” and 

“taw” in different contexts, these models have the capability to respond differentially to 

the two syllables. 

------------ 

Insert Figure 4 about here 

------------ 

As in Simulation 1, we inspected the representations iMinerva formed to better 

understand why the model performed differently across conditions.  The key difference 

across conditions is that in the identical contexts condition, both test items give rise to an 
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interpretation that is identical on the second syllable.  In the distinct contexts condition, 

the test items yield interpretations that differ on their second syllable: “daw” activates 

memories of “dawbow,” while “taw” activates memories of “tawgoo.”  Importantly, 

iMinerva does not predict that infants actually perceive the presence of a second syllable 

after the presentation of the two test items.  Rather, the interpretations indicate that 

infants recall (likely implicitly) that they have seen these two syllables presented in 

different contexts; that is, the two test trials activate different sets of memories.  This 

perspective is consistent with many demonstrations that implicit memory can influence 

behavior, even in the absence of conscious awareness. 

In both Simulation 1 and Simulation 2, iMinerva succeeds because the 

distributional characteristics of the input (the frequency of exemplars along a continuum, 

or the lexical context in which a phoneme occurs) alter the interpretation of subsequent 

input.  This commonality reflects our claim that the same set of processes – instantiated 

in iMinerva – can explain a wide variety of distributional learning.  As a point of 

comparison, let us briefly consider some of the other models that have been suggested to 

explain the kinds of distributional learning that we have used iMinerva to simulate.  We 

suggest that an advantage of iMinerva is its flexibility.  For example, the kinds of models 

that are capable of learning categories from phonetic distributions akin – though more 

complex – to those in Simulation 1 (e.g., McMurray et al., 2009; Vallabha et al., 2007) 

have not been applied to the acquired distinctiveness learning iMinerva demonstrates in 

Simulation 2.   

One exception to this is the model developed by Feldman et al. (2009), which 

extends the prior models distributional phonemic learning by adopting a Bayesian 
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approach that is also capable of learning from the distribution of phonemes in lexical 

across lexical contexts.  This model, like iMinerva, is capable of learning in the kinds of 

tasks in both Simulation 1 and Simulation 2.  It differs from iMinerva in that, as a 

Bayesian model, it is not an implementation of psychological process, but rather an 

exploration of the kinds of structure that can benefit an optimal learner.  Additionally, the 

Feldman et al. model is limited in that its learning is limited – based on the hypotheses it 

considers and the structure of the model – to phonemic and lexical learning.  As we will 

demonstrate in Simulation 3, iMinerva can be extended even beyond these domains of 

learning to simulate a distributional learning phenomenon to which no prior model has 

been applied. 

Simulation 3 

 Discovering non-adjacent relations is critically important for language 

development.  This is due to the fact that syntactic patterns are often organized 

hierarchically, rather than obeying adjacent regularities (e.g. Chomsky, 1959).  For 

example, in a noun phrase, the article the signals that a noun will occur, but the noun can 

occur several words later (as in the big shaggy dog).  A variety of experiments have 

demonstrated that infants and adults are capable of detecting these kinds of non-adjacent 

regularities in artificial languages (e.g. Gomez, 2002; Mintz, 2002, 2003).  Indeed, in 

statistical learning tasks, it is even possible to segment words based on non-adjacent 

regularities, as when the first syllable predicts the third syllable but not the intervening 

second syllable (Creel, Newport, & Aslin, 2004; Newport & Aslin, 2004).   

While infants and adults are capable of detecting non-adjacent relations, they 

appear to be more difficult to learn than adjacent relations, and in some cases may only 
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be detected if there is some perceptual or structural cue highlighting their existence 

(Creel et al., 2004).  One structural cue that helps to highlight non-adjacent relations is 

variability.  When exposed to a non-adjacent regularity such as A-X-B (where the A 

element predicts the B element, and the intervening element is variable), the variability of 

the intervening X element is critical.  Gomez (2002) found that infants failed to detect the 

non-adjacent A-B relation if there were 3 or 12 possible intervening X elements.  Infants 

only succeeded when there were 24 possible intervening X elements.  This success is 

striking, as increasing the number of X elements actually makes the input more complex.  

Our goal in this simulation is to understand why variability helps infants to detect 

relations among the less variable elements of the input. 

Although the effect of variability on learning is a striking and robust phenomenon 

(e.g. Gomez & Maye, 2001), the mechanisms underlying the facilitative effect of 

variability are not completely understood.  Indeed, some models of statistical learning are 

unable to detect these kinds of non-adjacent relations.  Chunking models, for example, 

simulate statistical learning by forming discrete, unitized representations of adjacent 

syllables (e.g. Perruchet & Vinter, 1998).  By definition, these kinds of models are unable 

to detect non-adjacent relations (e.g. Perruchet, Tyler, Galland, & Peereman, 2004).  We 

propose that abstraction plays a central role in the ability to benefit from variability.  That 

is, when infants are presented with A-X-B strings with only a few surface forms (i.e., few 

possible intervening X elements), the X elements are represented in memory.  But when 

there are many possible intervening elements, only the A and B elements are represented 

because the individual possible X elements will contradict each other to the point that the 

features representing X are abstracted.  Based on this, we hypothesize that learning the 
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benefit of high variability will be strongest when our abstraction parameter is set to a 

relatively high value, and that variability will be less beneficial when the abstraction 

parameter is set to a lower value.  

Method 

 The goal of the Gomez simulation was to simulate how children may have learned 

the two non-adjacent patterns by forming two strong interpretations, one corresponding to 

each pattern.  As in simulations 1 and 2, we used the same 16 feature vector per phoneme 

representation of the stimuli (see Appendix). Gomez used two different non-adjacent 

regularities for each of the three conditions, A-X-B and C-X-D, in which the intervening 

X was either 3, 12 or 24 different items. In order to equalize quantity of practice, this 

meant that there were either 6 stimuli (3 intervening x 2 intervened between) repeated 8 

times in random order, 24 stimuli (12 intervening x 2 intervened between) repeated twice 

in in random order, or 48 stimuli (24 intervening x 2 intervened between) repeated once 

in random order. 

Results 

 Figure 5 shows the result after 500 simulated children in each condition. 

Displayed is the percentage of learners that have the specified number of representations 

above the criterions of 0.75 (left side) and 2.0 (right side). Numbers on the left are greater 

than numbers on the right because, with the higher criterion, fewer interpretations per 

student are counted.  We show these results for two different criteria to highlight that 

while the model produces similar patterns for the count of strong interpretations (above 

2.0) per simulated child, for 3 and 12 intervening items the model is making qualitatively 

different predictions about the interpretations learned (as revealed by the lower criterion 
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figures).  For example, for 3 intervening pairs, we see that either 4 or 6 interpretations are 

formed per simulated child by looking at the percentages above the lower (0.75) 

threshold. These 6 interpretations are easily explained since this condition repeated 6 

stimuli, so it is hardly surprising that 6 verbatim interpretations were formed. Further, we 

can see that occasionally 4 interpretations are formed. Inspecting the interpretation 

vectors shows that this happens if a particular simulated student’s presentation order or 

lower threshold allows it to group 3 of the 6 stimuli (those belonging to either the 1st or 

the 2nd intervened between phoneme pair), leaving the other 3 ungrouped. When this 

grouping begins, 5 interpretations become unlikely because the grouping of 2 exemplars 

with the same intervened between phonemes draws in the similar third intervened 

between pair in the set.   

------------ 

Insert Figure 5 about here 

------------ 

In contrast, in the 12 intervening pairs case, the intervening X phonemes are 

repeated four times less often when compared to the three intervening pairs case, but 

there is still some repetition on the intervening phonemes, and this causes incorrect 

abstractions and interpretations that block proper noticing of the dependency between 

first and last syllables. It is noteworthy, that unlike the three intervening item case, 

occasionally this model does form two strong interpretations, but by comparing panels b, 

d, and f in Figure 5 we cans see that 12 intervening items is only very slightly better than 

three intervening item case, while 24 intervening items is about twice as good at forming 

2 strong interpretations (>2 mean feature strength). This categorical difference between 
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the conditions accounts for the pattern of results in Gomez (2002).  When the model only 

forms two representations that correspond to the A-B or C-D relationship (with the 

intervening X-element abstracted away), the model can recognize novel test sequences 

that conform to those regularities.  By contrast, when the model forms more 

interpretations, the middle X-elements are not abstracted away.  In these cases, iMinerva 

is representing some information about specific X-elements that have occurred in middle 

position.  This predicts that children would have more difficulty differentiating between 

rule-following and rule-violating test trials using novel combinations of A-X-B or C-X-D 

elements.  Because children remember the particular A-X-B configurations they have 

seen, they have more difficulty generalizing to novel configurations, and thus look 

equivalently at rule-following or rule-violating test items. 

In the 24 X-item case, the 24 intervening phoneme groups tend to be quickly 

abstracted away, and this caused the strong result in Figure 5 panel f. In the case of 24 

intervening X elements, we see 65.0% of the simulations creating the two strong 

interpretations for the A-X-B and C-X-D intervening grammars, while with three 

intervening X-items we only have 31.2% creating two interpretations, and with 12 X-

items only 28.8% of the simulations yield two interpretations. It is noteworthy that the 

interpretations in the 3 and 12 intervening items case were often weaker matches to the 

A-X-B and C-X-D patterns. This precision of the representations in the 24 intervening 

item case is made more clear in Figure 5 left by considering how even for a .75 threshold 

the 24 X-items shows a peak at 2, while the 3 and 12 conditions show a mix of 

interpretations, tending to peak around 6 (which indicates these simulations cannot 

differentiate the two grammars).  
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------------ 

Insert Figure 6 about here 

------------ 

The power of our abstraction mechanism is revealed in Figure 6.  Figure 6 looks 

at the interpretations stronger than 0.75 for each student in each condition, and then 

graphs the student average count of null abstracted features for the interpretations of each 

student. For example, if a student has three interpretations, with 5, 12, and 28 counts for 

null values, they would be represented by a value of 15 for their count of abstracted 

features. As we can see in Figure 6, abstraction is much poorer in the conditions with 

fewer intervening items. Furthermore, when abstraction is turned off, as shown in the 

Figure 7 result, the model is unable to abstract the intervening information, and fails to 

form any coherent representations except in a few exceptional cases. This ability of 

iMinerva to abstract differentiates it from MINERVA 2, which would be completely 

unable to produce results we have shown above because it does not produce abstractions 

in any way. 

------------ 

Insert Figure 7 about here 

------------ 

General Discussion 

 In recent years, a wide variety of experimental evidence has been advanced to 

support the claim that statistical learning plays a role in language development.  While 

the original demonstrations of statistical learning focused on word segmentation (Hayes 

& Clark, 1970; Saffran et al., 1996), subsequent research has suggested that statistical 
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learning contributes to the discovery of syntactic structure (e.g. Hudson Kam & Newport, 

2009; Thompson & Newport, 2007), word meaning (e.g. Vouloumanos & Werker, 2009), 

phonotactic patterns (e.g. Saffran & Thiessen, 2003), and phonemic categories (e.g. Maye 

et al., 2002).  Each of these different aspects of language can be characterized, at least in 

part, by statistical regularities from which infants and adults are able to benefit.  

However, the regularities that contribute to learning in these domains are distributional: 

they relate to the frequency and variability of exemplars.  Our goal in this series of 

simulations was to assess whether a single approach can explain learning from 

distributional regularities in all of these tasks. 

 The simulations of iMinerva represent one approach to assessing this possibility.  

Modeling provides an opportunity to determine whether a simple formal model is capable 

of handling a wide variety of learning problems.  A demonstration that a single model 

can succeed at a variety of tasks does not conclusively prove that humans accomplish the 

task in a similarly uniform manner.  Instead, modeling provides an existence proof that a 

unified approach is capable of succeeding at a wide variety of tasks, and allows for a 

conclusive demonstration of tasks in which the proposed learning mechanism fails.  With 

this in mind, the iMinerva simulations presented in this paper suggest an important 

conclusion about the mechanisms underlying statistical learning.  These simulations 

demonstrate that it is possible for a relatively simple memory-based approach to account 

for a wide variety of learning in tasks where the critical statistical feature is the 

distribution of information. 

 The three tasks that iMinerva simulated (a phonetic discrimination task, a word 

learning task, and a non-adjacent association learning task) are quite dissimilar on the 
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surface.  Nevertheless, iMinerva learned successfully in each task.  Note that this is not 

the only logical possibility; it might have been the case that iMinerva would be unable to 

simulate one or more of these tasks.  Indeed, prior models of distributional learning have 

tended to focus primarily on only one of these problems (e.g., McMurray et al., 2009; 

Vallabha et al., 2007.  Even those prior models that have been applied to multiple 

distributional learning problems have been constrained by the fact that their architectures 

have been focused on acquiring relatively domain-specific kinds of knowledge, such as a 

lexicon or a syntactic structure, meaning that they are not easily applied to other domains 

(e.g., Chang, Dell, & Bock, 2006; Feldman et al., 2009).  The unique contribution of the 

iMinerva model is that its success in each of these three simulations indicates that it is 

possible to explain all three tasks in terms of domain general processes of long-term 

memory.  In particular, the success of iMinerva suggests that learning in all three settings 

can be accounted for via the process of comparing between current and prior exemplars, 

and integrating them into a representation that is sensitive to the central tendencies of 

prior experience. 

 There are many other linguistically relevant learning tasks we did not simulate 

where the critical statistical feature is the distribution of events.  For example, infants are 

able to learn phonotactic and phonological regularities from exposure to a set of words in 

which an acoustic feature (such as stress) consistently occurs in a particular position (e.g. 

Onishi, Chambers, & Fisher, 2002; Saffran & Thiessen, 2003; Thiessen & Saffran, 2007). 

Without simulating these learning tasks, it is impossible to confidently state that iMinerva 

would match human performance in identifying the distribution of acoustic features 

across word positions.  However, it seems plausible that iMinerva’s approach to learning 
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is a good fit for these tasks.  Exposed to a set of words that follow a predominant pattern 

(such as word-initial stress), iMinerva’s interpretations should converge on that pattern 

through the process of engagement.  If the majority of word forms stored in memory have 

a particular acoustic pattern, the subsequent presentation of that pattern should activate 

prior instances and yield an interpretation that is consistent with that pattern. 

 Indeed, it is possible that the principles embodied in iMinerva are capable of 

explaining learning from distributional regularities generally, far beyond the three cases 

simulated here.  While we have focused on those aspects of learning that have been 

proposed to play a role in language development, the processes invoked by iMinerva are 

domain-general principles that have been incorporated into many prior models of long-

term memory.  That is, if the processes invoked by iMinerva are responsible for learning 

from distributional information, the same kind of learning should be seen in many 

domains, because the processes in iMinerva are available in many domains.  In fact, there 

is some evidence to suggest that some of the features of distributional learning seen for 

linguistic stimuli can also be seen for non-linguistic stimuli (e.g. Thiessen, 2011).  

However, like any model, iMinerva can only learn about those features that it encodes.  It 

may well be the case that differences between linguistic and non-linguistic stimuli 

emerge as a function of differences in the salience and distribution of the features 

available in different domains. 

 Another reason that it is premature to claim that iMinerva is definitively capable 

of simulating all aspects of distributional learning is that each of the three tasks we have 

simulated can be characterized as receptive.  In each task, the infant (and the model) are 

required to detect or perceive some regularity, but not to produce it.  There are a variety 
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of distributional learning tasks in which learner’s production is influenced by the 

distributional regularities to which they are exposed (e.g., Warker & Dell, 2006; Warker, 

Dell, Whalen, & Gereg, 2008).  Currently, iMinerva does not attempt to model 

production, in much the same way that it does not attempt to model infants’ behavioral 

responses.  Instead, iMinerva is focused on identifying the representations underlying 

performance in learning tasks, and the processes that lead to the formation of those 

representations.  To the extent that the same representations underlie performance in both 

receptive and productive tasks, iMinerva is potentially capable of simulating learning in 

both, but the current simulations do not assess this possibility. 

 While iMinerva can simulate distributional learning in a wide variety of tasks, it 

must be noted that some variation in the model’s parameters is necessary to “fit” 

iMinerva to the different tasks.  One possibility is that these parameter differences reflect 

developmental differences in the populations being modeled, as the Maye et al. (2002), 

Thiessen (2007), and Gomez (2002) experiments involved infants of different ages.  An 

alternative possibility is that the different stimuli or procedures used in the tasks 

themselves cause changes in the way infants process the stimuli, changes that can be 

reflected by different parameter settings in iMinerva.  This is an issue that can only be 

resolved by further experimentation and simulation.  It may be especially helpful if 

further development of iMinerva enables it to make predictions in terms of behavioral 

responses like looking times, so that it will be possible to more closely assess the fit 

between iMinerva’s responses and infant data.  But while understanding the differences 

in parameters across different simulations is clearly important, it should not distract from 

the main finding of these simulations: it is possible to account for a wide range of 
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performance in statistical learning tasks that require learning from the distribution of 

events by using the same core processes.  These simulations demonstrate that by storing 

prior exemplars, and integrating current and prior exemplars into an interpretation that 

embodies their central tendencies and variability, it is possible to account for a wide 

range of sensitivity to distributional information.  

Relation to Conditional Statistical Learning 

 Despite the possibility of iMinerva simulating a wide variety of distributional 

learning, there are some kinds of statistical regularities that iMinerva – at least in its 

current form – is simply unable to detect.  In particular, iMinerva (like the original 

Minerva model) has no way of segmenting input.  Presented with a string of speech, 

iMinerva simply stores the string as a complete, unbroken vector.  As such, iMinerva is 

unable to simulate word segmentation tasks, or any statistical learning task in which the 

end result of learning is to segment coherent units from a larger stimulus.  These kinds of 

statistical learning tasks rely on conditional (as opposed to distributional) statistics, in 

that the units that are segmented are ones where the component elements (such as 

syllables within a word) have a strong conditional relationship (Aslin, Saffran, & 

Newport, 1998).  Modeling these different statistical learning tasks allows for a 

comparison of the learning mechanisms that are necessary to take advantage of each kind 

of statistical information. 

 Successful models of conditional statistical learning tasks (like word 

segmentation) invoke processes where disparate elements of the input are associated into 

a single representation, consistent with evidence that infants and adults are extracting 

discrete representations from statistical learning tasks (e.g. Fiser & Aslin, 2005; Giroux 
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& Rey, 2009; Graf Estes, Evans, & Else-Quest, 2007).  In chunking models, this 

association is the central mechanism of learning: syllables are linked together into larger 

chunks (Perruchet & Vinter, 1998).  Similarly, in Bayesian models, segmentation is 

accomplished by testing hypotheses about which groupings of syllables are most likely to 

be words, and the end state of learning is a lexicon (e.g. Frank et al., 2010).  Both of these 

approaches to modeling segmentation assume that the goal of the task is to discover 

words, discrete representations in which syllables have been extracted from the larger 

unit. 

 By contrast, iMinerva has no extraction process.  Instead, iMinerva learns by 

forming an interpretation in which the current exemplar and the most active (above a 

similarity threshold) prior exemplar are merged into a new representation that converges 

toward their central tendency.  It may be the case, then, that a mechanistic account of 

statistical learning requires two processes: one that extracts exemplars from fluent input, 

and one that integrates information across exemplars (for discussion, see Thiessen et al., 

under review).  Conditional statistical learning tasks such as segmentation require the 

ability to extract, while distributional statistical learning requires the learner to compare 

across exemplars and identify their central tendency.  If this characterization is correct, 

then the broader term statistical learning can be decomposed into (at least) two separate 

components.  A challenge for future modeling will be to see if it is possible to incorporate 

sensitivity to both conditional and distributional statistical regularities within a single 

computational framework. 

 Incorporating extraction and integration into a single model is likely be necessary 

for a complete understanding of statistical learning, because these two processes 
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influence each other.  For example, the output of conditional statistical learning (e.g., 

words) can serve as the input to subsequent distributional analysis (Thiessen & Saffran, 

2003).  When exposed to a set of words that follow a consistent phonotactic or 

phonological pattern, infants are able to learn that pattern (e.g. Saffran & Thiessen, 2003; 

Thiessen & Saffran, 2007).  From our perspective, this can be explained as a 

distributional analysis.  When exposed to a set of words, infants create an interpretation 

(in iMinerva’s terminology) that accentuates their common features, and deemphasizes 

those aspects that are inconsistent.  The words that infants extract from fluent speech via 

conditional statistical learning provide a set of word forms from which infants can 

discover distributional regularities. 

 Just as conditional statistical learning supports distributional statistical learning, 

distributional statistical learning can influence conditional statistical learning.  When 

infants learn a distributional regularity, such as the relation between stress and word 

initial position in English, this knowledge affects their subsequent segmentation (Saffran 

& Thiessen, 2003; Thiessen & Saffran, 2007).  For example, rather than segmenting a 

word with iambic stress, infants will group together syllables across word boundaries 

(such as TARis from guiTAR is) to maintain the expected relation between stress and 

word position (e.g. Johnson & Jusczyk, 2001).  That is, the items that infants extract from 

fluent speech change as a function of the distributional regularities they have discovered.  

Theories and models of conditional statistical learning will benefit from attempting to 

incorporate these kinds of regularities into mechanistic accounts of segmentation 

(Perruchet & Tillmann, 2010).  A complete model of statistical learning will need to be 
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able to account for both conditional and distributional learning, and the way that 

knowledge acquired from one form of statistical learning influences the other. 

Summary 

 Distributional statistical learning refers to the ability to benefit from statistical 

features of the input such as the variability and frequency of exemplars.  Recent research 

suggests that these distributional characteristics of the input play an important role in 

infant language development (e.g. Onishi et al., 2002; Thiessen & Saffran, 2007).  Young 

language learners are able to take advantage of distributional information to identify 

several linguistic regularities, including phonemic categories (Maye et al., 2002), 

minimal pair distinctions (Thiessen, 2007), and simple syntactic patterns (Gomez, 2002).   

However, the very breadth of distributional learning raises an important question: can a 

single underlying mechanism achieve all of these different tasks? 

 As the iMinerva model demonstrates, it is indeed possible for a single domain-

general approach, incorporating processes of long-term memory, to accomplish all three 

tasks.  In the iMineva model, distributional learning occurs through a process of 

comparison and integration: the current exemplar is compared to prior exemplars (stored 

in memory), and then the current exemplar is integrated with the strongest prior exemplar 

(above a similarity threshold) to form an interpretation that accentuates their common 

features and de-emphasizes their contradictory features.  We believe that this approach 

may, in fact, be capable of explaining many additional aspects of distributional learning 

in addition to the three simulated above.  This is due to the fact that iMinerva relies on 

principles that are domain general and fundamental features of human memory.  As 

iMinerva demonstrates, these basic properties may potentially account for many aspects 
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of language development, and suggests a deep connection between the mechanisms of 

human memory and the more recent statistical learning literature. 

 



46 

Appendix 

Our model of the phenomenon in this paper is called interpretative Minerva 

(iMinerva) because it is an extension of Hintzman’s MINERVA 2 model (Goldinger, 

1998; Hintzman, 1988) with extended capabilities to maintain not only examples in 

memory, but also interpretations of examples. In the model, each new example that the 

learnerencounters is compared with prior examples to determine the similarity with these 

prior examples. This comparison is an automatic process of human cognition according 

to the model and corresponds to learner’s basic ability to interpret new experience 

through the lens of old experience (learning is constructive). If multiple prior examples 

are similar, the learner selects the strongest of them. Assuming a prior example is 

selected; the learner engages with the prior example to modify it and create an 

interpretation. This synthetic interpretation is then recorded as a new memory item. 

Each interpretation the learner forms functions like an example according to the 

model, so that once interpretations are formed, they are themselves engaged with by new 

examples. In this way, interpretations are like concepts that originally develop from a 

perceptual experience, but then get increasingly divorced from perceptual experiences as 

multiple perceptual encounters shape conceptual learning (Sloutsky, 2009).  Learning in 

the model occurs as simple adjustment of the prior example or interpretation trace (or 

memory) using an additive learning rule to determine how prior memories grow by a 

proportion of the new similar example. This mechanism serves to create a more general 

representation from a class of items that originally share some similarity. If the new 

example has a feature that is different than an old example, despite being similar overall, 
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this learning averages the old feature with a portion of the new feature  to reduce the 

strength of the feature that is different in the interpretation. 

Interpretation in this way is a mechanism for prototype creation in the model. If, 

for example, prior example A and new example B are found to be similar, they may be 

engaged. In this case, if A has feature 1 = -1 and B has feature 1 = 1, then the 

interpretation created will show a feature 1 that is moved from -1 closer to 1 during 

learning. While this means that our interpretation is more general, that generality is 

specious (will not generalize) because feature 1 is still included in the interpretation. For 

this reason, if example A is repeated it will still match with prior example A better than 

the interpretation, while if example B is repeated it will also match with prior example B 

better than the interpretation. 

To resolve this issue we introduce a very simple abstraction mechanism that 

removes features from interpretations when those features are some fraction of the 

maximum absolute feature strength. This abstraction mechanism seems a natural addition 

to the system, since salience is something that the brain seems to encode directly 

(Gottlieb, 2007) and our abstraction mechanism is inherently a mechanism that abstracts 

away less salient features. Not only do we find evidence for salience related information 

at the level of parietal cortex activity, but we also see that there appear to be cognitive 

benefits of using prototypes (Winkielman et al., 2006). Furthermore, there are very good 

reasons to believe that humans are limited in their focus of attention (Miller, 1956), and 

so, interpretations must necessarily become abstract because of the lack of an ability to 

attend to all the features in a stimulus each time it is encountered in the environment.  

Specification 
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In iMinerva memory traces are represented as vectors of real numbers where some 

features may be null values. In contrast, MINERVA 2 requires 1, 0 or -1 values. This 

change in the feature coding provides a representation that allows us to capture both the 

strength and durability of an interpretation as the absolute value of a feature’s strength. In 

this formalism, 0 comes to mean either a weak or very equivocal feature, and in either 

case, we allow features to transition to a null value when they are near 0. This mechanism 

(abstraction, described below) allows us to represent salience as a binary quantity that 

depends upon feature strength. This binary salience was a simplification of more complex 

alternatives that would have required feature salience as a continuous quantity for each 

feature. Table 3 shows how each syllable was coded with 16 features. 

------------ 

Insert Table 3 about here 

------------ 

Since we use this representation format for our interpretations, we also needed a 

new similarity function, as MINERA 2 simply uses the weighted average of feature 

agreement. Because our features now represent the strength of each feature in the 

interpretation, we are no longer looking for the mere agreement of features, but rather 

how the pattern of strengths in the exemplar is similar to the pattern of strengths in the 

interpretation. Because of this we have adopted a well-established measure, cosine 

similarity, because cosine similarity compares the magnitude pattern by including a 

normalization factor while MINERVA 2 similarity only weights yes or no agreement of 

features. In addition to handling the magnitudes, cosines similarity has a long history of 

use in text classification (Salton, 1989). Equation 1 below shows the cosine similarity 
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function. Like Hintzman’s MINERVA 2, we compress the results of this metric to 

compute similarity by cubing the raw cosine similarities to increase dispersion amongst 

the values obtained. The calculation of cosine similarity is shown in Equation 1. 

Furthermore, we have modified this traditional equation such that if a feature is missing 

(has been abstracted away in the case of interpretations, or was not present in the stimuli 

in the case of examples) from either trace A or trace B, that feature is ignored in the 

computation.  

A B

n
i Ai Bi

n
i Ai

n
i Bi
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Each new example is compared with all prior memory traces (both interpretations 

and examples) to see if some similarity threshold parameter is exceeded. If the threshold 

is exceeded, it indicates that the learner notices the match(s) with prior stimuli. If nothing 

is matched, no interpretation is formed. While the underlying comparison process is 

assumed to unfold over time, the model operationalises the outcome by a simple "max 

similarity rule" Equation 2 shows how a prior trace, A, accumulates a portion of the 

strength of B when the similarity of B exceeds threshold and is the maximum similarity 

trace that exceeds threshold. The learning rate for this accumulation is represented by  %. 
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This learning process is both strengthening (Equation 2) and abstractive. The 

abstractive component is captured in Equation 3 with specifies that given any feature in 
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the interpretation, it will be removed if it is weak relative to the maximal feature. This 

means that the absolute value of the strength of any feature must exceed a threshold for 

that feature to be retained. Equation 3 describes how each feature must exceed this 

criterion. Equation 3 uses the ! parameter which is the fraction of the maximum absolute 

value that must be exceeded to retain a feature, otherwise that feature is set to null. 

!

"'$!

 

Finally, it seemed useful to provide some inclusion of forgetting in the model, 

which we simulate with simple exponential decay. While exponential decay may be a less 

accurate than power law or other functions in modeling forgetting (Rubin & Wenzel, 

1996), in this model where forgetting is not a key factor, this decay mechanism adds 

plausibility to the model because it illustrates how memory traces are lost and why the 

model does not need to be concerned about the criticism that storing unlimited examples 

is implausible. The model is explicitly limited in the examples it can store because old 

examples eventually decay to the point they are never engaged, and are therefore 

essentially deleted. Equation 4 shows decay in the model for some example feature 

vector, N. 

 

!
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Table 4 shows the parameters across the models, which are discussed in the paper 

body where appropriate. The model above is highly simplified to clarify explanation, but 

we argue that it captures the basic process of general exemplar learning and prototype 

extraction as it occurs in learners without complex language. We would not argue that the 

model above is correct or complete, merely that it adds to our understanding by showing  

a minimal set of principles that can achieve the patterns of representation we predict 

causes the behaviors in this paper. It seems likely that infants have minimal ways to 

direct the above processes, and that the cycle of experience, learning, and abstraction is 

driven by physical needs or by attraction to similarities in the environment (particularly 

similarities to items that were associated with reward in the past). No doubt, humans 

become quite skilled at guiding this cycle and sculpting their learning as their capabilities 

for action grow and they develop complex symbolic representations and goal structures.  

------------ 

Insert Table 4 about here 

------------ 
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Table 1.  Feature coding for the stimuli used in Simulation 1.  The first feature represents 

voicing, on a continuum from 1 (voiced) to -1 (voiceless).  The other features specify 

consonant and vowel features such as place of articulation and vowel height. 

!! )*+,-.*/! 01234+5! 671234+5!
8,*2! #! &! '! (! 9! :! ;! <! =! #>! ##! #&! #'! #(! #9! #:! ).*?-*7@A! ).*?-*7@A!
4+(! #! #! >! >! #! >! #! B#! B#! B#! >! >! >! >! >! >! (! (!
4+'! >C;#9! #! >! >! #! >! #! B#! B#! B#! >! >! >! >! >! >! #:! (!
4+&! >C('! #! >! >! #! >! #! B#! B#! B#! >! >! >! >! >! >! <! <!
4+#! >C#(9! #! >! >! #! >! #! B#! B#! B#! >! >! >! >! >! >! (! #:!
,+#! B>C#(9! #! >! >! #! >! #! B#! B#! B#! >! >! >! >! >! >! (! #:!
,+&! B>C('! #! >! >! #! >! #! B#! B#! B#! >! >! >! >! >! >! <! <!
,+'! B>C;#9! #! >! >! #! >! #! B#! B#! B#! >! >! >! >! >! >! #:! (!
,+(! B#! #! >! >! #! >! #! B#! B#! B#! >! >! >! >! >! >! (! (!
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Table 2. Vectors for suffixes in Thiessen (2007). 

!! )*+,-.*/!
8,*2! #! &! '! (! 9! :! ;! <! =! #>! ##! #&! #'! #(! #9! #:!
BD3E! #! #! #! >! >! >! B#! #! B#! #! >! >! >! >! >! >!
BF33! #! #! >! >! >! #! B#! #! #! #! >! >! >! >! >! >!
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Table 3. Descriptions of the feature meanings for the phoneme vectors used by iMinerva. 

)*+,-.*!874*G! )*+,-.*!H*/@.1I,137!
#! 871,1+5!@37/37+7,!B!J31@*4KJ31@*5*//!
&! 871,1+5!@37/37+7,!B!/,3IK737B/,3I!
'! 871,1+5!@37/37+7,!B!5+D1+5!
(! 871,1+5!@37/37+7,!B!4*7,+5!
9! 871,1+5!@37/37+7,!L!+5J*35+.!
:! 871,1+5!@37/37+7,!L!F53,,+5!
;! M3E*5!B!N.37,KD+@O!
<! M3E*5!B!P1FPK53E!
=! M3E*5!B!.3-74*4K-7.3-74*4!
#>! M3E*5!B!537FK/P3.,!
##! )17+5!@37/37+7,!B!J31@*4KJ31@*5*//!
#&! )17+5!@37/37+7,!B!/,3IK737B/,3I!
#'! )17+5!@37/37+7,!B!!5+D1+5!
#(! )17+5!@37/37+7,!B!4*7,+5!
#9! )17+5!@37/37+7,!B!+5J*35+.!
#:! )17+5!@37/37+7,!B!F53,,+5!
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Table 4. Parameter values used in the simulations. 

Q+.+2*,*.! R*I.*/*7,/! S+A*! TP1*//*7! U32*V!
%! 5*+.717F!.+,*! >C&! >C&! >C&!
W! +D/,.+@,137!I.3I3.,137! >C#! >C#! >C:!
X! 4*@+A!.+,*! >C=<! >C=<! >C=<!

,P.*/P354! *7F+F*2*7,!,P.*/P354! >C<9! >C:! >C(9!
,P.*/P354!731/*! !"!3N!,P.*/P354!"N3.!*+@P!5*+.7*.$! >C>&9! >C>9! >C>9!
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Figure Captions 

Figure 1. This figure illustrates the growth of the /t/ and /d/ feature across examples and 

interpretations. Each step of the index indicates an example trace or interpretation is 

added to memory. The top figure shows bimodal input, while the bottom figure unimodal 

input. 

Figure 2. Percentage of children with each interpretation count with a mean feature 

strength of 2.5 or greater after each of the 500 simulations for each of the two conditions. 

Figure 3. Percentage of simulations that form one, two, three or four interpretations with 

a mean feature strength of 2.5 or greater after the 500 simulations in the identical contexts 

and distinct contexts conditions. 

Figure 4. Examples of the interpretation that results a) from the presentation of either 

daw or taw in the daw, dawgoo, tawgoo case, b) from the presentation of daw in the daw, 

dawbow and tawgoo case, c) from the presentation of taw in the daw, dawbow and 

tawgoo case 

Figure 5. Percentage of simulated children with each interpretation count with a mean 

feature strength of 0.75 or greater (on the left; figures a, c, and e) or  2.0 or greater (on the 

right; figures b, d, and f)  from 500 simulated learners for each simulation. 

Figure 6. Average student abstraction in final interpretations with average feature 

strength greater than 0.75. Histograms show the count of abstractions for the 32 

intervening syllables in each simulation for 3, 12, or 24 intervening items. 

Figure 7. Unique interpretations with a mean feature strength of 2.0 or greater from 500 

simulated learners for the 24 intervening item condition with abstraction set equal to 0.1 

(from Simulations 1 and 2) compared to 0.6 in Figure 5 part f. 
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